[e

()

Debre Berhan University
College of Computing

Department of Information Technology

Lempel-Ziv and Welch Compression with Cuckoo Search based Elliptic
Curve Cryptography (LZWC-CS-ECC) to Enhance Image Encryption

Security and Speed Performance

Woldeiyesus Ayele Agiz

A Thesis Submitted to the Department of Information Technology in Partial Fulfillment for

the Degree of Master of Science in Computer Network and Security

Debre Berhan, Ethiopia
June 2021

Debre Berhan University
College of Computing

Department of Information Technology

Woldeiyesus Ayele Agiz

Advisor: Gnanaprakasam Thangavel (PHD)

This is to certify that the thesis prepared by Woldeiyesus Ayele, entitled: Lempel-Ziv and
Welch Compression with Cuckoo Search based Elliptic Curve Cryptography (LZWC-CS-
ECC) to Enhance Image Encryption Security and Speed Performance and submitted to
College of Computing in partial fulfillment of the requirements for the Degree of Master of
Science in Computer and Network Security complies with the regulations of the university

and meets the accepted standards with respect to originality and quality.

Signed by the Examining Committee:
Name Signature Date

Advisor;

Internal Examiner:

External Examiner:

Chairman:

Abstract

The usage of images transferring through the internet is dramatically increasing in today’s
digital era. These images are vulnerable to hacking and tamper by attackers. Securing
publicly available images over untrusted internet is necessary to protect against network
intruders. Nowadays, various encryption and decryption algorithms (RSA and DH) are
available to offer a good level of security. However, in these algorithms, the size of the
encryption key is large and much slower. Thereby Elliptic Curve Cryptography (ECC) is a
better alternative, and it provides equal security with smaller key sizes. But, the private key
is an issue unless chosen optimally. We used the Cuckoo Search (CS) algorithm to optimize
the best private key to fill this gap, Lempel Ziv and Welch (LZW) algorithm for
compression, compressed byte values converted into large numbers, and Net Bean IDE 8.2
for implementation and performance analysis. Based on the simulation result, the proposed
algorithm improves the original ECC image (keys generation time by 23.6%, encryption
time by 95.7%, decryption time by 102.1%, the overall processing time base on bit length by
45.9%, and the overall processing time base on image size by 111.9%). As a result of the

performance investigation, the proposed algorithm is very fast and secure.

Key Words: - Cryptography, CS, ECC, Image Security, LZW.

Acknowledgments

First and foremost, I would like to thank God, his Holy mother (Kindest Mariam), for

helping me throughout my life in general and complete this work.
I am grateful to my advisor Dr. Gnanaprakasam Thangavel, for his supervision and advice.

I would also like to thank my parents, brothers, sisters, and my friends (Especially thanks for
Getaneh A., Amdework A, ...) for their support and patience. Without their encouragement,
motivation, and understanding, it would not have been possible for me to complete this

work.

Finally, my thanks go to all the people who have directly or indirectly supported me to

complete the research work.

Big Thanks for alll!!

Table of Contents

ADSITACE caueeireiitiiiiinitenneinttistiinissieseecstsssesssnsessnsssstsssssssstssssssssesssssssssssssesssssessasssssssssssns ii
List of Tables.. teetesseessatesatesatesatesare bt s b e s bt e b e s bbbt e Rt s bR e bR e s bR e b e e bR e b e e b e s bee i
LSt OF FIGUI'ES ..cuuueiiereriirniiinnrinsntiensntiessnnesssnssssnsssssssssssesssssssssssessssssosssssesssssesssssessssssssnsess ii
List 0f AIGOTitRI....u.uciiieeiiiiiiiiiiiinnininninsnnissnnnsssnnisssssssssssnsssssssssssssssasssssasssssssssssssssssanssss iii
LiSt 0f ADDIeVIAtIONS ..cccueiieiviiiiiiiinisiiiniiiinsinieininticssnicsssicssssesssssessssessssessssesssssssssssssssses iv
Chapter 1. INtroduUCtiON.... .. iccceieiiveienisiinssiisssnisssnissssisses 1
1.1 Back@roUnd.........coouiiiiiiiieiieeitee ettt st 1
1.2 Research MOtIVALIONiiiiuiiiciiiecie ettt e e e e ear e e 4
1.3 Statement of the Problem............ccoocuiiiiiiiiiiieeee e 4
1.4 Objective of the StUAYccooiiiiiiiiii e 6
1.5 SCOPE OF STUAY ...ttt e e e e e enaeeennnee s 6
1.6 Research MethOdOLOZYooeviiieciiieeiieeee et 6
1.7 Research SignifiCancCe.........cccuieviiiiiieiiieiierie ettt ennees 7
1.8 Organization 0f the ThESIS.......ccviiieriiiiriieece e e e 7
Chapter 2. Literature ReVIEWiiiiieeiiinnenniiniinnninnieciiseisiesessssosissesssseessee 8
2.1, INEEOAUCHION. ettt ettt et a et et sbe e 8
2.2, SUIVEY OF SCCUTTLY ..uvieiiieiieiiieiie ettt ettt et sneees 8
2.2.1. Introduction t0 CryptOZraAPNYcccoeveiiieiiieiiieeeee et 8
2.2.2. Symmetric Key CryptoOgraphy............ccccoeeeeveeeiiieeeiieeeiieeeeeeeeeeeeeiee e 9
2.2.3. Asymmetric Key CryptogQraphy...............cccccooievirciioieniieiiiiinieieeeeeseee e 10
2.2.4. IMAZE COMPIESSION ..ot e e s 16
2.2.5. CUCKOO SOAVCH ...t 17

2.2.6. IMAZE SECUFTLY ..ottt 19
230 Related WOTK c..ooueiiiiiiiiieieec e e 19
2.3.1. ECC Image Encryption MeCRANISTc..ccccuveeieieaiiieeiiieeeiee e 20
2.3.2. Cuckoo Search Algorithm OptimizZation.................cccceeecirceeniieniiiciniienieneene. 21
2.3.3. LZW CompresSion algorithim.................ccccccceeiiiiiiiiiiaieeiee e 22
234, CSWItR ECC ..ottt 22
2.4, Summary of the Chapter........cocoiiiiiiiiiiii e 23
Chapter 3. The Proposed Enhanced Image Security Algorithm..........cccccevverencercnnnnen. 25
3.1 INErOAUCHION. ..ottt 25
3.2. Architecture of LZWC-CS-ECCccccoiiiiiiiiiniiiiiienieeeieeeeeeeeeseesie e 25
3.2.1. LZW image COMPTESSION.........cc..eeeeueeeeiieeeiiieeeiiieeeeieee e e eeiaaeeiseeeiveeaniveeenasee s 26
3.2.2. K@Y GONEFALION ...ttt 27
3.2.3. Cuckoo Search AIGOFItRMcccccocouiiiiiiiiiiiieieeeee e 28
3.2.4. Byte to Big Integer CONVEFSION.cccoeeeueeeiiieeiiieeiee e 28
3.2.5. Encryption and Decryption PrOCESScccouviaioeeiieeeiiieiieeie e 29
3.2.6. LZW DeCOMPIOSSION. ..ottt 30
Chapter 4. Implementation and Performance Evaluation............coeeecvnsecseccseccnennne 31
4.1, IMPLeMENTATIONeiiiiieiieeiieeie ettt ettt e st e e teesbeesseesseesnneeneeens 31
4.2. Performance Analysis and DiSCUSSION.........ccccuereriuirerieieeeiieeerieeereeeereeeeneeeseneens 31
4.1.1 Key Generation Time of AIGOVItRISccccccerveimiiiiiiiiiiiiiiiiiicciceeee 31
4.1.2 Encryption Time of AIGOFItRMS.............cccccocoueeiiiiiiiiieeiieecee e 33
4.1.3 Decryption Time of ALGOFItAMSccccoeoveeiiiiiiiiiieeiieeeie e 34
4.1.4 Overall Processing Time based on Bit Lengthc.ccocevveeoincnceannnne. 35
4.1.5 Overall Processing Time Based on Image Sizeccccoovevevviivinvennannnnn. 36
1.6 K@Y SPACE........c.oioiiiiii e 38
4.1.7 K@Y SEHSITIVILY.....cceiiiiiieiii ettt 38
4.1.8 Security Strength ANGLYSISccceeviieiiiiieiiie e 38

Chapter 5. Conclusions and Future Workeiiiiiiinnniiniinsenisnennseecseesssnsssenenns 40

5.1, CONCIUSIONS. c...teutiiiiiietteiie ettt ettt et et et e st e st et e e e e s seeteeneesneenteenseenees 40
520 FULUIE WOTK .c.eiiiiiiiiiiiiieeeeeee et sttt st 40
L S 1 TR 41
ATINICXES couureeerrrneessneecssanecssseesssssnessssnesssssesssseessssnssssssssssssesssssesssssesssssesssssesssssesssssssssssssssssssssssnes a
Annex A. Implementation EXamples........cooiiiiiiiiiiiiiiiieie e a
Annex B. Key Generation and En/Decryption Time screenshot..........coeecvevvverveeneenneennen. c

Annex C. LZWC-CS-ECC Sample Java Code........ccocvvrieiiiiniiieeiieeriee e esvee e d

List of Tables

Table 2. 1 Comparison of Symmetric Encryption and Asymmetric Encryption................... 11
Table 2. 2 Summary of related WOTKS.........ccoiiiiiiiiiiiicieeeee e 24
Table 4.1 Key Generation Time (in S€CONAS) ..ecvveeeieiiieiiiieiieeieeeee e 32
Table 4.2 Key Generation Time Comparison of LZWC-CS-ECC with ECC (%)................ 32
Table 4.3 Encryption Time (1N SECONAS)eiiiiiiiiiiiiiiieiieeie ettt 33
Table 4.4 Encryption Time Comparison of LZWC-CS-ECC with ECC (%)......cccoeviveennnns 33
Table 4.5 Decryption Time (In SECONAS)......cecvierieriiiirieeiieeiierieeieeeteeieeereeneeeseesreeseneens 34
Table 4.6 Decryption Time Comparison of LZWC-CS-ECC with ECC (%)ccccecvvvuvennnnn. 34
Table 4.7 Overall Processing Time based on Bit Length (in Seconds)cccccevcvveervvrennnnn. 35
Table 4.8 Overall Processing Time Comparison of LZWC-CS-ECC with ECC based on Bit
33T () USSR 35
Table 4.9 Overall Processing Time based on Image Size (in Seconds)ccceeververiennenn 36

Table 4.10 Overall Processing Time Comparison of LZWC-CS-ECC with ECC based on
IMAZE SIZE (90) vveenrieiiieiie ettt ettt ettt e ettt e st e st e e bt e enbe e neeetaesntaenaeeen 37

Table 4.11 Security Strength Comparison of Algorithmscccceecvvieiiiiiiceiiie e, 39

List of Figures

Figure 2. 1 Classification of Encryption algorithms..........cccccooviiiiiiiiiiiiiie e, 9
Figure 2. 2 Symmetric Key Cryptographycocoiieiiiiiiiiiiiiiieneeeeeeeeseee e 10
Figure 2. 3 Asymmetric key Cryptographycoooioiiiiiiiiiiieeeeeee e 11
Figure 2. 4 Diffie-Hellman Key exchange mechanismcoccoiiiiiiiiiiniiniiinciccs 13
Figure 2. 5 Basic EIlIPtical CUIVE.......cotiiiiiiiiiiriieiecietceeeeece et 15
Figure 3. 1 Encryption architecture of the LZWC-CS-ECCccccoviiiiiiiniiiniiiiiiiiees 26
Figure 4. 1 Analysis of Key Generation Performance (Seconds)ccoceeeveerveenveriveennnnns 32
Figure 4.2 Analysis of Encryption Performance (in seconds).........cccceceveeneenerccnieneennennn 33
Figure 4.3 Analysis of Decryption Performance (in seconds)..........cceceeveirieinienininieennens 35
Figure 4.4 Analysis of Overall Speed Performance based on Bit Length (in seconds)......... 36
Figure 4.5 Analysis of Overall Speed Performance based on Image Size (in seconds)........ 37

i

List of Algorithm

Algorithm 3.1 LZW Compression AIGOTIthmcccciiieiiiiiiiiieiieeieeeeeeee e 27
Algorithm 3. 2 Cuckoo Search AIZOTithm.........cccoiiiiiiiiiiiiiiiii e 28
Algorithm 3. 3 LZWC-CS-ECC En/Decryption algorithm.........cccccoceeviiiinicninniniincnnnn 29
Algorithm 3. 4 LZW Decompression Algorithmccccoiiiiiiiiiiiiine e 30

111

List of Abbreviations

3DES
AES
bis

CS
DES
DH
DLP
DSA
ECC
En/Decryption
LZWC
PRkr
PRks
PUkr
PUks
SHA1

Triple Data Encryption Standard
Advance Encryption Standard
Big Integer Sequence

Cuckoo Search

Data Encryption Standard
Diffie-Hellman

Discrete Logarithm Problem
Digital signature Algorithm
Elliptic Curve Cryptography
Encryption and Decryption
Lempel-Ziv and Welch Compression
Private Key of Receiver

Private Key of Sender

Public Key of Receiver

Public Key of Sender

Secure Hash Algorithm 1

v

Chapter 1. Introduction

1.1 Background

In recent years, with the development of digital communication technology, computer
network technology and information communication technology, information dissemination
and access have become increasingly convenient and fast. Communication and transmission
of data over networks have increased exponentially in the last few years. Every user can
easily download digital multimedia such as images, audio, and video files from the Internet.

Therefore, cybercriminal and data thieves have also become an increasingly serious problem

[1].

Security is the means of protecting assets from adversaries. Data security refers to protecting
data from destructive forces and the unwanted actions of unauthorized users. Data security
hierarchy involves challenges and issues which encryption algorithms intend to reduce. To
achieve the goal of data security, the ability of a specific type of cryptographic algorithm

(symmetric and asymmetric) needs to be considered [2].

The Image plays a key role in part of providing information, significantly in remote sensing,
medical specialty and video conferencing applications. The employment and dependence on
information carrying image and its application is still growing. An image is made up of
pixels which are displayed as a rectangular array. Each pixel can be a single value or a
vector of components. The single value can be the grayness level of a monochrome image or

can be an index into a color that maps a single value into a set of color components [3].

Digital images occupy a large part of our daily communications. Digital cameras, phones,
and computers have made the process of capturing, processing and sharing images between
interpersonal via instant and unrestricted communication extremely sensitive. Images are
stored and then used throughout various applications such as Twitter, Facebook, Viber, Imo,

Telegram, and WhatsApp [4].

The fact that many areas such as the medical field and the military field carry sensitive

digital images must be secured and protected against attacks in effective ways. Encryption

of sensitive data is necessary, and encryption algorithms are designed to protect data and
ensure confidentiality and the authorized recipients can access the decryption data [5].
However, Image size is larger than text and this is one of the struggles of processing time
and storage. To reduce the size of the image for storage and transmission bandwidth we

apply compression the technique.

Compression is the process of reducing data file size and it gives benefits in terms of less
storage, faster transmission and faster read or writes files [6][7]. Two types of compression
are available namely, lossy and lossless. The Lossy compression strips some of a file’s
redundant data. Because of this data loss, only certain applications are fit for lossy
compressions, like graphics, audio, and video. Lossy compression essentially reduces the

quality of the file to arrive at the resulting highly compressed size [8].

Lossless compression, on the other hand, can recover the exact original data after
compression. It is used mainly for compressing texts, executable programs, spreadsheets,
etc., where exact replication of the original is essential & changing even a single bit cannot

be tolerated. Examples: Run Length Encoding, Huffman Coding and LZW [9].

We select lossless image compression over other techniques because most images in most
discipline areas such as health and military require high security and quality. Furthermore,
LZW compression is advisable than other compression techniques because it is fast, simple

and efficient [10][11].

Encryption is a process to convert data into an unreadable format to preserve data from
unauthorized users using cryptographic algorithms. It is used to keep sensitive data so that it
can be difficult for unauthorized users to see it. The good algorithms must have been tested
to meet the requirements of the security which protect the encryption components[5]. Image
encryption refers to applying a symmetric or asymmetric encryption algorithm on an input

image to be converted into a cipher image [12].

Cryptography is used nowadays to facilitate secure communications. It is used in military
and healthcare applications to protect multimedia files (image, audio, and video). The

symmetric key system uses the same key for both Encryption and Decryption
2

(En/Decryption) processes and offers high security while the asymmetric key system uses a
private key and a public key which is available for everyone and can be used by authorized

users to derive the secret-key [13].

Asymmetric cryptography is the foundation of internet security, allowing for two parties to
communicate securely without the need to exchange confidential key material in advance.
All public-key cryptosystems in widespread use today are based on either the problem of
factoring large integers (e.g., RSA) or the problem of computing discrete logarithms in some

groups such as elliptic curves [14].

ECC was discovered in 1985 by Neal Koblitz and Victor Miller. The main advantage of
ECC is that it provides better security with a smaller key size. For example, a 160-bit elliptic
curve provides the same security as that of a 1024 bit RSA [15]. It is also difficult to solve
discrete logarithmic problems on elliptic curves. The elliptic curve over the prime field
comprises coetficients of the elliptic curve and the base point, which is a point on the curve.
The curve selected to show be known to both the sender and the receiver. The major
operation in ECC 1is scalar multiplication, which comprises Point addition and Points
doubling. ECC provides an alternative to the popular public-key cryptosystems of the time,
such as a multiplicative group over the finite field - RSA. In recent years, ECC has been the
primary cryptographic protocol for secure web pages, online banking, encrypted email, and

many other types of data [10][14].

Generally, in today’s world image plays an important role in everyone’s life. The security of
images is required while transferring them across the network. Various En/Decryption
algorithms are available to protect the image from unauthorized users. RSA and Diffie-
Hellman(DH) key exchange provide a good level of security, but the size of the encryption
key in these two is a big problem. ECC is a better alternative for public-key encryption. It
provides equal security with a smaller key size. But choosing the private key is always an
issue in all public key cryptographic algorithms such as RSA, and ECC. If tiny values are
chosen in random the security of the complete algorithm becomes an issue. Since the Public
key is computed based on the Private Key, if they are not chosen optimally they generate

infinity values [16][17]. To overcome this issue we use the Cuckoo Search algorithm.

The CS algorithm is inspired by obligate brood parasitism of some cuckoo species by laying
their eggs into the nest of host birds [18][19]. Those female parasitic cuckoos can imitate the
colors and the pattern of the eggs of the host species. The algorithm works based on the
following three assumptions:
1. A cuckoo chooses a nest randomly to lay the egg and at a time only one egg is laid
by the cuckoo.
2. The best nests with the highest quality egg (solution) will carry over to the next
generations.
3. The total number of available host nests is fixed and the host bird can discover a

cuckoo’s egg with a probability.

1.2 Research Motivation

Due to the growing popularity of networks and increasing rate of the use of technology
including smartphones in every aspect of life tacking images, and sharing them is almost
common in the fields of communication, transportation, military, medicine, education, social
media, etc. In these fields, the digital image which contains critical information (e.g. Bank
swift, military information, financial statements, and patient body part) can be transmitted.
Due to this, the transmitted image has to be secured in the transmission medium because
several attackers target these images. Thus, it is imperative to find a highly secured and fast
method to protect these images data and their contents from any type of attack. Therefore,
these issues motivated us to propose “LZW compression and CS-based ECC” to protect the

image and its contents from any type of attack.

1.3 Statement of the Problem

Nowadays, digital images have become an inevitable source of information and are mostly
used over a network. Every day the world comes across various images from various
sources. Most of these images often include data on a high degree of confidentiality.
Attackers always try to steal, damage, or use these private images to extort the owner of
these images in different ways. In addition [20], the security of digital images has attracted
much attention recently. As a result, the need aroused to suggest a strong way to protect

these images against different types of attackers taking into consideration that the rapid

4

development of the internet and the wide applications of multimedia technology enable
people to exchange digital multimedia with others conveniently over the Internet. Although,
different researches were conducted using RSA, Data Encryption Standard (DES),
Advanced Encryption Standard (AES) and others to increase the security of the data [21].
But the size of En/Decryption keys, memory requirement and loss of random key search
[17], processing time were not considered due to their large bit key [22]. ECC has gained
attractiveness because it offers a similar security level comparing to traditional systems,
such as RSA, but with significantly smaller key sizes. Thus, this feature makes it highly
suited for implementation in very resource-constrained devices. However, the problem in
ECC is that tiny values are chosen at random for the security of the complete algorithm and
this becomes an issue. In ECC public key is computed based on the private Key, if they are
not chosen optimally they generate infinity values and this leads to an incorrect
En/Decryption process [17][16]. Another problem in image encryption is time to generate
keys, encryption and decryption and transition issues in sharing cipher images. As the larger

the size of the image, the higher the bandwidth it requires.

Therefore, instead of using the large key size and slow processing methods, we have
proposed a new method called CS based ECC to Secure Image that overcomes the above
shortcomings of existing algorithms. In addition to this, applying image compression by the
LZW algorithm, before the encryption dramatically minimizes the time of encryption,

decryption and transmission bandwidth.
Hence, this research work aimed to answer the following research questions:

» Which algorithm is better for image encryption and decryption for image data
security?

» How can we enhance the performance and security of ECC for image encryption?

» Which algorithm is better for image compression and decompression to improve the
perfocemace and security?

» How can we improve the key generation of ECC to improve the private key

selection?

1.4 Objective of the Study

General Objective

The general objective of this work is to enhance image security using Cuckoo Search-based

Elliptic Curve Cryptography with LZW compression.

Specific Objectives

To achieve the general objective of the thesis, the following specific objectives are
identified.

» Exploring literature review related to encryption, decryption and Compression
Identifying vulnerabilities and issues of ECC Image encryption
Selecting a better algorithm for image compression and decompression

Selecting a better optimal key generation algorithm

Y V VYV V

Designing a better image security algorithm to overcome weaknesses of ECC and a

new recent variant of ECC

A\

Implementing proposed cryptosystem

A\

Testing the proposed cryptosystem performance concerning existing works
1.5 Scope of Study

This research exhaustively discusses the ECC for image encryption performance, security,
and its shortcomings. Then, it attempted to propose an algorithm to overcome these
shortcomings. The scope of research is limited to improving image security and speed of
image encryption, decryption, and key generation of ECC using CS algorithm and LZW
compression. The proposed algorithm performance is compared to that of the original ECC
because the new variations on ECC improved by adding new techniques and methods rather

than modifying ECC special for image data security.

1.6 Research Methodology

Draw.i0, an online diagramming application, was used to show our algorithms architectural

design for key generation, encryption, decryption, and the whole process of the proposed

system [23]. LZW compression and CS algorithm are used to speed up and optimize key
search, respectively. Net Beans IDE 8.2 Java programming environment was used to
implement algorithms because it has suitable for testing, bit manipulation, and other Big
Integer operations. Microsoft Excel 2010 shows evaluation metrics such as speed
performance (key generation, En/Decryption) and security performance (keyspace and key
sensitivity) are used. Generally, the research processes include literature review,

development of test cases, test and identify weaknesses, design solutions, and simulation.

1.7 Research Significance

Nowadays, image security is very important because it is used by almost all organizations,
especially in healthcare, military, telemedicine, business institution, transportation, etc.
Therefore, our work can be applied in these areas. This research work helps and satisfies
numerous organizations by improving efficient real-time image encryption and decryption in
various fields. Some of the significances of this thesis are as follows: it: -

» Optimize the ECC key generation based on the CS algorithm.

» Minimize the time for encryption, decryption.
» Fast and secure communication.
>

Provides greater security performance in image encryption without difficulty.
1.8 Organization of the Thesis

The rest of this research work is organized as follows: Chapter two presents a detailed
literature review research article related to image security and research article related to
ECC, RSA, CS algorithm and image compression. It also provides a comprehensive
summary of the literature review carried out for this research. It also introduces related
works which are conducted for Image encryption using ECC and CS algorithm and discuss
security issues and challenges of image. Chapter three presents our proposed algorithm.
Chapter four provides an extensive simulation study and evaluation of the proposed
algorithms and compares the proposed LZWC-CS-ECC with ECC. Finally, Chapter five
concludes the research and summarizes the contributions of the thesis by comparison of all
the proposed approaches for enhancing difference. Suggestions for future work are also

included.

Chapter 2. Literature Review

2.1. Introduction

This chapter presents literature, the basic concept of security, cryptography and the type of
cryptography, image encryption and compression algorithms and elliptic curve cryptography

and Cuckoo search algorithm as follows:

2.2. Survey of Security

Security is one of the main challenges in the computing environment that results in the
limitation of confidentiality, integrity, and availability of the data [24]. Many researchers
and scholars have been providing different security schemes to achieve high-security
encryption to protect the image from malicious attacks [25]. Nowadays, the security in
digital images have become very important in many applications-confidential video
conferencing, defense database, banking, finance, mobile computing, personal
communication, etc. image share cryptography may play an important role particularly to
those applications that require authentication based on shared keys maintained by multiple

parties exclusively [26].

Since security in image transmission is a challenging issue during the transformation of an
image for communication purposes, we need a strong mechanism to protect our data not be
exposed to an attacker. To avoid this, the image should be protected before transmitting it
from the sender to the recipient. For secure image transmission, researchers proposed that
many techniques and methods to ensure security, out of the most commonly used techniques
are encryption and data hiding [27][28]. Encryption ensures security but the problem with
encryption algorithm is that the resultant noise image attracts the attention of hackers so it
may be possible after many trials they can be decrypted by a hacker. Another method is data
hiding in which pieces of secret information are hidden behind a carrier that may be

anything a text file, video, audio or an image [27].

2.2.1. Introduction to Cryptography
Cryptography is the process used to convert data from readable type to unreadable type to

realize the protection needs. It also provides an authentication mechanism for a user to
8

protect their data from authorized access. In cryptography, the original data is called
plaintext, and encrypted data is called a ciphertext [28][25]. The process of converting
plaintext to ciphertext is called encryption whereas the inverse is called decryption [29].
Generally, we categorized cryptography into two main types. These are symmetric and
asymmetric cryptography. In symmetric (private key) cryptography, the same key is used for
both En/Decryption whereas, in asymmetric (public key) cryptography, the sender uses a
private key for encryption, and the receiver uses the public key to decipher the ciphertext
[30, 31, 32]. The keys used in cryptosystems represent the strength of the encryption
algorithm. These keys should be complex and large enough to achieve high security to the

secret data [33].

[Cryptography]

A 4
A 4 A 4
[Symmetric key] [Asymmetric key]
h 4 v
A 4 l h 4 h 4 A 4 A 4 Y_
; : ; Diffie-
AES DES 3DES Bowfish RSA DSA ;
Heliman

Figure 2. 1 Classification of Encryption algorithms

The use of cryptography also provides the authentication service for data during
transmission. To secure our data from illegal users, there is a need to convert the information
into a distorted format. In this case, cryptography is the best-known mechanism that
encrypts an image using a different algorithm such as hashing algorithm, Blowfish, RSA,

AES, and ECC[33][34].
2.2.2. Symmetric Key Cryptography

Symmetric key (privet key) cryptography is also called secret-key or shared key
cryptography. In this type of mechanism, the sender and receiver share a common key for

both En/Decryption. The method follows a self-certification method i.e. the key is self-

certified. The key needs to be shared through secret communication. If it is compromised,
then the encrypted message can be easily decrypted by the attacker. This type of
Cryptographic technique is required because it provides faster service without using many
resources. Various algorithms have been developed so far as to describe symmetric key

cryptography such as AES, DES, 3DES, Blowtfish [33].

A 4

Encryption Decryption -
Algorithm —75“”9‘:9(1 Dﬁta/L) Algorithm riginal Dat

Figure 2. 2 Symmetric Key Cryptography

Recently symmetric key cryptography is well known and used in many applications because
of its simplicity. Since a single key is used on both sides in symmetric techniques, the
sharing of a key becomes sometimes insecure. The speed of symmetric key cryptography is
better than public key cryptography, but the adversary knows the secret key anyway, then
the entire private key cryptography will be unlocked. Therefore, the key must be secret
between communicating parties. However, sharing or exchanging the same key is not a
trivial task. These parties may share the secrete keys physically. However, it is not a good
solution to exchange key physical for parties with a geographical barrier. The major attacks
on symmetric key cryptography include the chosen-plaintext attacks, know-plain attacks,
brute force attacks, linear cryptanalysis, etc. [28][35]. Different researchers perform image
encryption using DES, AES, and Blowfish but because of the above limitations, we select

asymmetric key cryptography [36].
2.2.3. Asymmetric Key Cryptography

Asymmetric key cryptography is also called public key cryptography. In this system, the
sender uses a public key of the receiver to encrypt the plaintext and the receiver uses his

private key to decrypt the ciphertext [32].

10

Original Data

Public key of Receive/

/ Secret key of Receiver

Encryption
Algorithm

—7/Encrpted Data

Decryption
Algorithm

Original Datg

Figure 2. 3 Asymmetric key Cryptography

Asymmetric key cryptography is very important in data security to transmit secure data even

when both communicating parties have no opportunity to agree on a given private algorithm

[37]. Tt uses a longer key to improve the security of data during transmission. However, the

limitation of public key cryptography is that slower than private key cryptography. As the

study shows it needs more computing time and memory consumption for encrypting and

decrypting the content of a message [22].

Table 2. 1 Comparison of Symmetric Encryption and Asymmetric Encryption

Basis For Symmetric Encryption Asymmetric Encryption
Comparison
Symmetric encryption uses a | Asymmetric encryption uses a different
Basic single key for both | key for En/Decryption.
En/Decryption.
Symmetric encryption is fast | Asymmetric Encryption is slow in
Performance | in execution. execution due to the high computational
burden.
Algorithms DES, 3DES, AES, and RC4. DH, RSA, ECC.
Symmetric encryption is used | Asymmetric encryption is often used for
Purpose

for bulk data transmission.

securely exchanging secret keys.

There are various algorithms to implement this encryption mechanism. These are RSA,

DH, ECC and Digital Signature Algorithm (DSA) [32]. In the incoming section, we

continue our discussion on Public key crypitogrpy such as RSA, DH Key Exchange, DSA,

and ECC.

11

A. Rivest, Shamir and Adleman
RSA is one of the public key encryption algorithm developed in 1977 by Adi Shamir, Ron
Rivest and Len Adleman [38]. It is the most well-known public key cryptography that
provides both digital signature and secrecy [39]. This cryptography generates a public and
private key using mathematical functions depending on a large number of prime numbers.
RSA algorithm uses a block cipher in a message both plaintext and ciphertext represent a
number between 0 and n-1 for large number n. In this case the size of n 1024 bits or 309
decimal and make use of an exponential function. This algorithm provides a security service

by using the following steps:

Step 1: Choose two large prime numbers p & q
Step 2: Compute n=pq and z=(p-1)(q-1)
1. Choose number e, less than n, which has no common factor (other than 1) with z
2. Find number d, such that ed — 1 is exactly divisible by z
3. Keys are generated using n, d, e
4. A public key is (n,e)
5. A private key is (n, d)
6. Encryption: ¢ = me mod n
m is plaintext
c is ciphertext
Decryption: m = ¢! mod n

7. A public key is shared and the private key is hidden

However, the basic RSA is not secure enough for encrypting the same message more than
once always gives the same ciphertext. Another primary drawback of RSA is the speed
performance. This makes RSA to be exposed to different attacks such as indirect attacks like
timing attacks, common modulus, known-plaintext, chosen-plaintext, and frequency of
blocks attacks [39]. In addition to this, RSA is known to be much slower asymmetric key

encryption and not advised for encrypting large data like image, video and sound.

12

B. Diffie-hellman Key Exchange
The other public key cryptography is called DH Key Exchange. This algorithm was first
introduced by Witfield Diffie and Martin Hellman in 1976. It is used for key exchange. This
type of key exchange mechanism consists of two keys: a private key and a secret key. The
sender encrypts the message with his private key and public key. Then the receiver decrypts

the message using his own private and sender’s public key [30]. Figure 2.4 shows the basic

the key exchange of DH.
Alice and Bob agree on public
Generator G and Prime number P
- Alice Bob _
v
Generate a Compute Compute Generate a secret
secret random X=G"mod P y = G? mod P random number b
><
Compute / Compute
y= G’ mod P X = G*mod P
: '
Compute Compute
k,_ y* mod P ky, _ xPmod P

Shared secret key
S =k,_k,_ 6G*’mod P

Figure 2. 4 Diffie-Hellman Key exchange mechanism

However, the DH key exchange cannot be used for signing a digital signature. The nature of
key exchange does make it susceptible to man-in-middle attacks since it doesn’t authenticate

either party involved in the key exchange.

13

C. Digital Signature Algorithm

On the other hand, the DSA is the other public key cryptography used for authentication and
verification of the integrity of data. DSA was performed to be able to generate and verify
signatures using a Secure Hash Algorithm (SHA). If the sender (source of message) wants to
send a message to the receiver the signature generation in the sender uses its private key to
generate a digital signature, once the receiver gets the message the signature verification
uses the sender's public key. DSA is compatible with signing and verifying functions [30].
But DSA algorithm requires a lot of time for computing a signature and verification process.
It is not encrypted data only used for authentication purposes. The other drawback of DSA is
that it computes Secure Hash Algorithm 1(SHA1) and signs it due to any drawback in the
cryptography security of SHAT in the DSA [22][37].

D. Elliptical curve cryptography

The elliptic curve cryptosystem, which was proposed in 1985 by Neal Koblitz and Victor
Miller [3][41], is one of the cryptosystems now in use for public key cryptography. The
ECC uses the curve equation of the form as shown in equation (1), with a line only passes
through three points along the curve (P, Q, and R), and that by knowing two of the points (P
and Q), the other (R) can be calculated easily, but with just R, the other two, P and Q, cannot
be derived. The basic diagram of ECC is shown in figure 2.5. In this equation (1), y, X, a,
and b are all integers with modulo p. The coefficients a and b are called characteristic
coefficients of the curve, which help us to determine what points will be on the curve [12,

17, 41].

y2=x3+ax+b (1)
Where a and b are integers that satisfy equation (2) and p is a large prime number.

4a? +27b%* =0)

The certain formula is defined for operation with the elliptic curve points are point addition,

point doubling and point multiplication.

Point addition: Adding two points is not as easy as simply adding their x and y components

and taking them modulo p. Instead, it is more like connecting the two points via a line and

14

then intersecting that line with the curve. The two-point P(x;, y1) and Q(x2, y») are distinct. P
+ Q = R(x3, y3) is calculate as equation (3, 4, 5).

R

P
/Q//\ y?=x*+ax+b

Figure 2. 5 Basic Elliptical Curve

x3 = {s* —x, —x;} mod p (3)
y3 = {s(x; —x3) —y;} mod p 4)
Where
_ V2=V
S =T mod p (5)

Point doubling: Point doubling comes into play if two points are in the same (X, y)
coordinate [12][40]. The two points P(x;, y1) and Q(xi, y1) overlap. P + Q = R(x3, y3) is

calculate as equation (6, 7, 8).

x3 = {s?—2x;} mod p (6)
y3 ={s(x; —x3) —y;} mod p (7)
Where
3x_rx+a
s = ;y mod p (8)

The other additional important calculation here is scalar point multiplication and checking if
a point is on a curve. When point multiplication and point doubling are implemented, one
can derive from those two basic building blocks scalar point multiplication, i.e. multiplying
a scalar value (an integer) with a point. Let P be any point on the elliptic curve.
Multiplication operation over P is defined by the repeated addition. nP =P +P + P +---+n
times [12, 41, 42].

15

In recent years, ECC has been the primary cryptographic protocol for secure text, images,
web pages, online banking, encrypted email, and many other types of data [12, 14, 37]. The
technology can be used in combination with a large amount of public key encryption
techniques, like RSA, and DH. Some researchers project that ECC can computationally
equal level of security measures with a 164-bit key that other systems need a 1,024-bit
(RSA, DSA) key to attain. Since ECC helps to set up comparable security with lesser
computing power and battery usage, it is becoming extensively used for mobile applications

[15][30].

Elliptic curves are appropriate for encoding, digital marks, and other tasks. They are also
used in several integer factorization techniques that have relevance in cryptography. The
most important advantage promised by ECC is a lesser key range, sinking storage and
transmission requirements, i.e. that an elliptic curve cluster could offer the same level of

safety given by an RSA-based scheme with a huge modulus and equally superior key.
2.2.4. Image Compression

Compression is the technique of minimizing the size of a data file. Compression has
advantages such as less storage, faster transmission, and faster reading and writing of files.
The huge data file size is compressed to the smaller for the compressed data file which is

limited network bandwidth [42][43].

There are two types of the compression algorithm. These are lossy and Lossless. The lossy
compression algorithm loses some original data which is not necessary after decompression.
It throws away perceptually insignificant information and cannot recover all bits. Some of
the methods of lossy data compression methods are transform coding, discrete cosine

transform, discrete wavelet transform, and fractal compression.

Lossless compression is a method used to reduce the size of a file while maintaining the
same quality as before it was compressed. It is used in a text files, database tables, and
medical images because of the law of regulations. Lossless image compression becomes

significant because it can reduce the size of an image without quality loss. Some of the main

16

techniques are Run Length Encoding, Arithmetic Encoding, Shannon fano, LZW, Huffman
coding [43].

LZW COMPRESSION coding is invented by Abraham Lempel, Jacob Ziv, and Terry
Welch. It is the process of encoding an image file in such a way that it consumes less space
than the original file. It is a type of lossless compression technique that reduces the size of
an image file without affecting or degrading its quality to a greater extent. It is a dictionary-
based coding algorithm and the most preferred method for lossless file compression. It is the
foremost technique for general purpose data compression due to its simplicity and versatility
than other lossless compression techniques. It addresses spatial redundancies in an image. It
is also an error-free compression approach that doesn’t require prior knowledge of the

probability of occurrence of symbols to be encoded [44, 45, 46].

Compression and encryption are interconnected with each other. Their objective is to reduce
image file size, retain quality in reconstruction image from compression, manageable in

available transmission bandwidth and secure during transferring [42, 47, 48].

» Compression followed by encryption: In this sequence, an intruder has less cleave to
access the image but encryption may again increase the size.

» Encryption followed by Compression: In this sequence, size is not again increased
but an intruder may have more clues to access the image.

» Joint compression and encryption: This approach is recently used which may be fast

as compared to the previous two but the procedure is complicated.

2.2.5. Cuckoo Search

CS was inspired by the obligate brood parasitism of some cuckoo species by laying their
eggs in the nests of other host birds (of other species). Some host birds can engage in direct
contests with the infringing cuckoos. For example, if a host bird discovers the eggs are not
its own, it will either throw these alien eggs away or simply abandon its nest and build a new
nest elsewhere. In addition, the timing of the egg-laying of some species is also amazing.
Parasitic cuckoos often choose a nest where the host bird just laid its eggs. In general, the

cuckoo eggs hatch slightly earlier than their host eggs [18].

17

Once the first cuckoo chick is hatched, the first instinct action it will take is to evict the host
eggs by blindly propelling the eggs out of the nest, which increases the cuckoo chick’s share
of food provided by its host bird. Studies also show that a cuckoo chick can also mimic the

call of host chicks to gain access to more feeding opportunities [48].

CS is based on three idealized rules [49]: Each cuckoo lays one egg at a time and dumps its
egg in a randomly chosen nest. The best nests with high-quality eggs will carry over to the
next generation. The number of available host nests is fixed, and the egg laid by a cuckoo is
discovered by the host bird with a probability P € (0, 1) discovering operate on some set of

worst nests, and discovered solutions dumped from further calculations.

S. Amtade and T. Miyamoto (2015) considered the problem of computational jobs capably
considering system resource constraint and a CS algorithm is introduced. Experimental

results show that CS outperforms the genetic algorithm in terms of fitness value [50].

B. M. Ismail et al., in 2016 proposed a cuckoo inspired fast search technique used for fractal
image compression. This technique cuckoo inspired fast search uses an ordered vector of
range blocks which was considered through their coordinate distance and also the ordered
vector of range blocks by coordinating their similarity. The experimental results evinced that
the suggested model is the most robust, scalable technique and there is a significant
reduction in mean square error calculation, as there are only four transformations of the

dihedral group and is sufficient for the similarity comparison in this proposed work [49].

P. Sekhar and S. Mohanty (2016) proposed a meta-heuristic algorithm which is called an
enhanced CS algorithm for Contingency Constrained Economic Load Dispatch to alleviate
transmission line overloading. The assessment of power system security deals with
discovering the secure and the insecure operating states, whereas the improvement of
security deals with the essential control action against overloads under a possible scenario.
By generation of rescheduling, the overloaded lines are relieved from the rigorousness. In
this proposed algorithm, to develop the solution vectors, dynamically variable parameters
that are the step size and the possibility are incorporated instead of the fixed values of the

parameters [51].

18

W. Yang et al., in 2017 designed a new local-enhanced CS algorithm, it differs from the
standard version, and the local search for each cuckoo is attracted by the global best position
found by the entire swarm. Simulation results show it achieves the best performance when

compared with the other four algorithms [52].
2.2.6. Image Security

An image is defined as a two-dimension function, f(x, y) where x and y are spatial plane
coordinates and the amplitude of f at any pair of coordinates (X, y) is called the intensity or
gray level of the image at that point. When x, y and the intensity values of f are all finite,
discrete quantities, we call the image a digital image [53]. The digital image is a kind of

popular data widely used on the Internet [46].

Currently, images from various applications or sources are transmitted through the internet
for various applications such as military images, medical imaging systems, confidential
documents, online personal photo albums, cable TV and so on. These images contain some
secret and confidential information that is required to be protected from leakage so that only

the intended users should be able to read that image [26][54].

ECC is one approach to public-key cryptography with the algebraic structure of elliptic
curves on finite fields. It requires smaller keys when we compared to non-ECC
cryptography (based on finite field GF(p), where p is a prime number) to provide equivalent
security. Before it becomes popular, all public-key algorithms which are based on the RSA
cryptosystem, DSA and DH key exchange, and alternative cryptosystems which are based
on modular arithmetic. However, the foundations and implementation skills of ECC are still
a mystery and not understandable to most but, have equal security with non-ECC public key
algorithms with smaller key sizes this makes ECC the suitable encryption technique since it

needs small memory and high encryption performance[12].

2.3. Related Work

To securely transfer images across the network, various techniques have been developed in

recent years using ECC.

19

2.3.1. ECC Image Encryption Mechanism

Ali Soleymani et al. [5], was proposed an encryption technique using Elliptic Curve over
Prime Group field. They produced a mapping table with values ranging from 0 to 255 along
each row, with the elliptic curve coordinates in the corresponding row. The pixel value of
the image is mapped onto the elliptic curve coordinate using the table and encrypted with the
public key of the receiver. The map table is simple to grasp and implement in this paper.

However, it requires extra running time due to the map table.

P. Astya et al., in 2014 was proposed an image encryption algorithm using ECC. The image
in the shape of a grid is first transformed on an elliptic curve in this article [55]. However, it

is only for the Bitmap image En/Decryption.

As discussed by [14], elaborately proposed image encryption by using ECC during and
before image compression, and they offered two ECC-based encryption algorithms, i.e.
selective encryption of the quantized DCT coefficients and perceptual encryption based on
selective bit-plane encryption. They apply encryption before compression, so it does not
affect the structure of the ECC encryption, but the compression values for encryption time

aren't more decreased.

Laiphrakpam D. and Khumanthem M. came with ECC to encrypt, decrypt and inclusion of
digitally sign to the cipher image to provide authenticity and integrity [56]. In this paper,
they apply pairing of the grouped pixel instead of mapping it to minimize the En/Decryption
time, ECC, on the other hand, is employed to generate the random sequence that is utilized

to disperse the simple image. However, the cryptographic operations are also very large

X. Zhang and X. Wang in 2018 [20], was proposed a digital image based on an ECC. With
the Diffie-Hellman public key sharing approach, the sender and receiver agree on an elliptic
curve point. Encrypted big integers are used to create the encrypted image. Their algorithm
analysis and testing data show that they have strong security and efficiency. However, the

En/Decryption times are not highly efficient, and the private keys selection is insufficient.

20

2.3.2. Cuckoo Search Algorithm Optimization

We have found two optimization techniques so far, namely Particle Swarm Optimisation
(PSO) and Cuckoo Search algorithm. The PSO is an efficient algorithm for solving static
function optimization for dynamic and noisy environments [c]. However, in many cases, the
CS algorithm is better than PSO. Here are some of them: The CS algorithm is simple, can be
used to adopt solutions to dynamic circumstances, It can be easily combined with others.
The CS outperforms the PSO algorithm concerning the quality of the output produced and

its reliability [d]. Other works related to CS algorithms are discussed as follows:

M. Dash and R. Mohanty (2014) applied a CS algorithm in the field of Speaker Recognition
systems and voice. This algorithm can aim at discovering and shortlisting the features from
the voice which can exclusively recognize them. Following feature extraction with a
threshold to minimize discarded signal or disturbance and just considering the voice sample,
a Fitness Function based on the mean of the individual sample is used to extract a small
number of unique and best features while removing the rest. As a result, there is no require
matching the voice of the speaker through every feature. In the matching phase, to enhance
the security a threshold value is added to the correlation. As only optimized features are

extracted, therefore this cannot only optimize this method but can also save resources [48].

In 2016, D. Manjumdar and S. Mallick proposed a new approach of the population-based CS
algorithm that has been applied to a constraint satisfaction problem. Constraint Satisfaction
and Optimization is a powerful pattern that includes planning, scheduling or configuration
kind of complex combinational optimization problems. A set of variables and constraints are
defining these problems. To satisfy several constraints, course timetabling requires
scheduling rooms, teachers and also the number of subjects to the pre-specified time slots. In
this, few constraints are hard, and they should be satisfied by maximum soft constraints.
They presented an optimal solution namely the CS algorithm, which can solve the above-
mentioned problems. It is evident with their experimental results that CS can be used

effectively to solve the course timetable problem and it produces satisfactory results [18].

21

As proposed by [57], A novel oriented CS algorithm to improve Currently, distance vector-
hop method performance for cyber-physical systems designed an oriented CS, in which, the
local search capability was dominated by the combination of two different random
distributions, and the global search pattern is directed by the historical best position, and the
result shows modification achieves better precision performance when compared with three
other Currently, distance vector-hop method algorithms. It is inspired by the behavior of
cuckoos’ brood parasitism and levy flight. Due to the simple concepts, it has been widely

applied to many applications.

The paper [18, 49, 57], shows the CS performs well for almost all these test problems to
optimize and fitness value in a different area. So we apply the cuckoo search algorithm for

selecting the private keys.

2.3.3. LZW Compression algorithm

Run Length Encoding, Entropy Encoding, Huffman Encoding, Arithmetic Coding, Lempel—
Ziv—Welch, Deflation and Chain Codes algorithms are lossless kinds of compression [58].
From these compression algorithms, the LZW algorithm is better in terms of compression
ratio, the types of data it can compress, and faster computation time [59][60]. Moreover, it is
simple and has good compression, a dynamic codeword table built for each file, and
decompression creates the code word table, so it does not need to be passed [44][61].

2.3.4. CS with ECC

Gnanaprakasam Thangavel and Rajivkannan Athiyappan [19] proposed novel text
encryption using the Optimal ECC method using Cloud Simulator. Experimental results and
security analysis between the existing ECC and the new Optimal ECC are presented. They
used the CS algorithm to find the best key as the input of the Optimal ECC text
En/Decryption process. They also suggest applying CS-based Optimal ECC for Image
encryption, Audio/Video encryption methods [19].

To get fast and secure transmission is by using compression before the encryption of
multimedia data like images. It also increases security because the original image pixel is
converted into a small coded byte, and it also extremely decreases En/Decryption process
[47, 48, 59].

22

2.4. Summary of the Chapter

Many studies show that the standard ECC is effective for image encryption, and CS is also best for
optimal key generation in En/Decryption. However, unless it uses optimization techniques such as
CS for private keys selection, the ECC sometimes encounters failure during public keys generation.
Moreover, the CS with ECC technique is used in encrypting and decrypting texts. But we don’t
found the image so far. In addition, we have seen that the LZW algorithm is better for image
compression by preserving the necessary contents as it is a lossless compression technique. Hence,
using CS and LZW with ECC will give a better image of En/Decryption. Its summarize on the
following table (Table 2.2):

23

Table 2. 2 Summary of related works

Author(s),
Title Publisher Contribution Drawbacks
Year
A new mapping method | Mapping and shared look-u
A Novel Public bping bpine P
to convert each image table need additional cost.
Key Image | o
) A. pixel to a dot on an EC. | Not use any optimization.
Encryption Journal of
| Soleymani This mapping technique | Image compression is not
Based on Elliptic Image and | _ i
etal.,) is very fast with low considered.
Curves over Graphics _)
2013 complexity and Computationally very slow.
Prime Group . _) .
] computation, easy to Pixels into large integers are
Field [5] . .
implement. not considered.
Pixels to EC mapping process
They combined image .) ppiep
)) is more expensive.
compression with
JPEG mage Not use any optimization.
S. Bakhtiari encryption.
encryption with IEEE Only for JPEG.
etal., 2014 Enhance the decryption)
ECC[14] Computationally slow.
and the overall .) .
o Pixels into large integers are
processing time. _
not considered.
_) Not use any optimization.
They group pixels into _
D. Singh) Image compression is not
Image large integers.
) _ and M.) o considered.
Encryption using . Elsevier | They use digital .)
Singh,)) The cryptographic operations
ECC [56] signatures to provide
2015 o) | are also very large.
authenticity and integrity.)
Computationally slow.
o They groups pixel values
Digital Image
) together and convert Not use any optimization.
Encryption X. Zhang
them into big integers. Image compression is not
Algorithm Based and X.
. IEEE | They used the DH considered.
on EC Public Wang,
algorithm for keys and The En/Decryption time is not
Cryptosystem 2018 '
0] necessary parameters efficient.

sharing.

24

Chapter 3. The Proposed Enhanced Image Security Algorithm

3.1. Introduction

This chapter depicts the proposed enhanced image security using LZW compression and
CS-based ECC image encryption and decryption. It encompasses the following components:
LZW image compression, key generation, compressed byte values converted into large
numbers, image encryption, cipher image decryption, and image decompression. It also
deals with which encryption algorithm is selected and how compression and encryption

processes are performed.

3.2. Architecture of LZWC-CS-ECC
The basic idea for the proposed LZWC-CS-ECC is to use LZW coding/decoding and CS
algorithm to improve the security and speed performance of conventional ECC. Figure 3.1
shows the LZWC-CS-ECC algorithm procedures. The overall processes to be computed by
the sender and receiver are as follows: On the sender side: compress the image, receive the
receiver's public key, encrypt the coded image, and then send the encrypted image to the
receiver. Again on the receiver side, receive the cipher image, then decrypt it, finally,
uncompressed on the decrypted image. The detailed description of each step is presented

from subsection 3.2.1 up to 3.2.4.

25

Receiver

Original : o
- Original

A 4

LZW Compression

Algorithm
LZW Decompression
Algorithm
) ; F Y

Compressed E
Image :
: Compressed
) 4 I Image

ECC Encryption |, Public Key | ECC Key Generation A
Algorithm E Algorithm

A

A

3
Private Key
h 4

: Cukoo Search | Private Key | Ecc Decryption
h 4 : Algorithm Algorithm

Cipher / T
Image Cipher Image in the Network Medium

Figure 3. 1 Architecture of the LZWC-CS-ECC

Y

3.2.1. LZW image Compression

To improve speed and security of image in ECC, reduce file size and coded in other formats
using LZW compression. We use the dictionary size of 4096. The LZW compression
process basic steps are as follows: First, read the image, then enter all pixels to the string
table, then initialize the first pixel to string (The coding starts with an initial dictionary,
which is enlarged with the arrival of new symbol sequences from the pixel, initialize table to
contain single byte and then read first input byte, assign string (symbol)), then read the next

input byte and check whether it is the similar byte with the previous one or not, if it exists,

26

assigned the previous symbol, if not, assign new symbol, apply this steps until the end of the
pixel. Finally, the LZW COMPRESSION gives the compressed coded String (byte) file.
Algorithm 3.1 LZW COMPRESSION Algorithm

LZW Compression ()
Input: Image
Read the image
Enter all image pixel to the table
Initialize pixel p to the first byte from the input pixel
While any input left
Read Symbol s
If p + s is in the table
p=p+s
else output codedword (p)
enter p + s to the table

p = s
End if

End while

Output: codedword(p) - sequence of bytes - .lzw file

3.2.2. Key generation

The keys generation process basic steps to be computed by the receiver are as follows: To
define a mathematical curve of a finite prime field equation (1), first select the prime
number p with generator G, the coefficient value of a and b, then select the privet key
(Private Key of Receiver (PRkr)) using CS algorithm, then compute the public key (Public
Key of Receiver (PUkr)) its equal to G*PRkr, finally, sent defined curve and PUkr to
sender. It computes the shared secret key by multiplying PUks and PRkr after getting the
sender's public key (PUks). The generator of the curve G is the point whose point
multiplication with different scalars produces every point on the curve. Further, we define
the order of elliptic curve n as the smallest integer whose scalar point multiplication with
generator G gives us the point at infinity O for the curve, i.e., nG = O. Under key generation
the CS algorithm plays a great role to select the optimized privet key.

At the sender side, the simple keys generations are the following: First, get and hold the
defined curve and PUkr of Receiver, then generate privet key (private Key of Sender
(PRks)) using CS algorithm, then compute the public key (PUks) its equal to G* PRks and
register inside the shared directory, finally compute the shared secret keys PRks multiplying
through PUkr (Shard secret key = PRks * PUkr)

27

3.2.3. Cuckoo Search Algorithm

We use the CS algorithm to select the best and optimized random number for the private key
of sender and receiver. The basic steps used in CS algorithm phases are initialization,
generating a new cuckoo, fitness evaluation, updating, reject worst-case and stopping
criteria. Algorithm 3.2 shows the detailed CS algorithm procedures.

Algorithm 3. 2 Cuckoo Search Algorithm

CS Algorithm ()

Input: Possible random numbers

Generate initial random number location
eval = 0

While termination condition not meet do
For i = 1 to Np do

x; = generate new solution (xj)
f; = evaluate the new solution (x;)
eval = eval + 1
J = [rand(0, 1) * Np + 1]

If f; < f5 then
x5 = x3; fy = f;; // replace j-th
solution

End if

if rand(0, 1) < p., then
init nest (Xyorst)

End if
if f; < fni, then
Xpest = Xi; Imin = fi;
End if
End while

Output: Private Key value of (fpi, = min (f(x))

In this subsection, the main advantage of the CS algorithm is generating the best optimized
random number for private keys and feeding it to the ECC public key generator. Both sender

and receiver generate their private key using the CS algorithm.

3.2.4. Byte to Big Integer Conversion

The compressed LZW file is a sequence of bytes. We apply other good options to speed up
our encryption and decryption process by grouping the compressed bytes. The basic steps to

group bytes to big integer are as follow: First, create two Biglnteger objects, then create
28

two-byte arrays, then create and assign value to byte array b3, then assign byte array
representation of bil, bi2 to b1, b2, then print byte array bl using for loop and finally print
byte array b2 using for loop. Input to encryption is extremely minimized image using
compression and grouping to Big Integer. The reverse process is done in the decryption

process.

3.2.5. Encryption and Decryption Process

Encryption and decryption LZWC-CS-ECC are as follows: when the sender receives the
receiver public key (PUkr), the generator point G and the order n, then compute the cipher
image. During encryption steps: First, read the big integer sequence (bis) and encrypt the
Pbis using a public key. The cipher image (Ci) by splitting two messages (C1 and C2), C1 =
k*G and C2 = (Pbis + k*PUkr). k is the randomly chosen integer. Then it sends to the

receiver.

During decryption step, the receiver received cipher image and decrypt to the big integer
using the private key (PRkr). It received two points C1 and C2. First, multiply the first point
by the private key (PRkr) to get the shared secret key (SSk), then to get the original Pbis to
subtract the shared secret key(SSk) from the second point of cipher image (C2). So Pbis is
equal to k*PUkr - SSk. Finally, to recover the original image apply the reverse order of byte

grouping and decompress it.

Algorithm 3. 3 LZWC-CS-ECC En/Decryption algorithm

LZWC-CS-ECC_ Encryption ()
Input: a,b, n, p, G, PUkr and Coded big integer sequence (bis)
Procedure:
Read big integer sequence on elliptic curve - Pbis
Encrypt Pbis
Obtain the ciphertext C;
Compute ciphertext by splitting two message (Cl and C2),
Cl = k*G
C2 = Pbis + k*PUkr
C represent the encrypted message
Output: Ciphertext C; and C,

LZWC-CS-ECC_ Decryption ()
Input: Ciphertext C; and C,

29

Procedure:
Get the ciphertext C; and C,
Decrypt plainImage,
Pbis = k*PUkr - SSk
Output: big integer sequence

3.2.6. LZW Decompression

On the receiver side the after decryption, the inverse procedure LZW COMPRESSION
process is to be computed by the receiver. During decompression step: First, received
decrypted coded byte file. Then enter it into the table, then read the first byte and generate
the corresponding pixel, then read the next byte if it is not in the dictionary, we just add the
previous byte in the entry, if it is present, we form a word with the previous word and the
first pixel of the current pixel and add it in a new entry, then repeat it until the end of the

table. Finally, it gives the original image. Algorithm 3.4

Algorithm 3. 4 LZW Decompression Algorithm

LZW Decompression ()
Input: sequence of bytes (compressed .lzw file)
Read the codedword bytes
Enter all codedword bytes to the table
Read priorcodedword and output one symbol (byte) corresponding
to it
While codedwords are still left
Read codedword
If codedword is not in the table
// special case: s+p+s+p+s, also if p is null
Enter in table string(priorcodedword)
+ firstchar (symbol (priorcodedword))
Output symbol (priorcodedword)
+ firstchar (symbol (priorcodedword))
else enter in table symbol (priorcodedword)
+ firstchar (symbol (codedword))
output symbol (codedword)
End if
End while
Output: priorcodedword - Original image

30

Chapter 4. Implementation and Performance Evaluation

This chapter presents the implementation of LZWC-CS-ECC, performance analysis and

result discussions are explained.

4.1. Implementation

To conduct our experiment, we have used Net Beans IDE 8.2 Java programming
environment installed on windows 10 that was running on Intel-R, Core-TM 15, CPU 2.3-
GHz, 64-bit processor with 4 GB of RAM. We have chosen six different bit sizes: 28-bit,
128-bit, 256-bit, 512-bit, 1024-bit and 2048-bit for processing time, key generation,
encryption and decryption. The image is first compressed through the LZW algorithm and
then encrypted using ECC with CS private key selection. The decryption algorithm after

decompression correctly recovers the original image.

4.2. Performance Analysis and Discussion

The performance improvement of the LZWC-CS-ECC algorithm is compared to standard
ECC Image by considering speed performance parameters: key generation time, encryption

time, decryption time, and overall processing time of the algorithms.

To simulate the speed performance of the algorithms, we have used five different size
images; 193KB, 258KB, 1,729KB, 3,073KB and 6,913KB, six different bit-sizes; 28, 128,
256, 512, 1024 and 2048, and different combinations of randomly chosen key pairs. To
make our result more reliable for the analysis, we have executed the algorithms five times
for each input and the average execution time is considered as shown from Table 4.8 up to
Table 4.10 in Annex B.1 up to Annex B.5. Then based on these tables, we have plotted

graphs: Figure 4.1, Figure 4.4 and Figure 4.5 shown in this section.
4.1.1 Key Generation Time of Algorithms

For evaluating the key generation performance of algorithms, we have used the six different
bit sizes. By running the simulation 5 times, we have summarized the key generation time of
algorithms as shown in Table 4.1. As shown in Table 4.1, when compared to key generation

time costs, LZWC-CS-ECC is better than standard ECC.
31

Table 4.1 Key Generation Time (in Seconds)

Bit :i‘tzhm "1 28bit 128bit 256bit 512bit 1024bit | 2048bit
ECC 1.0953504 | 1.154155 | 1.15244 | 1389163 | 1.991185 | 2.5065
Eé‘é’c'cs' 1.1939976 | 1.117847 | 0.958987 | 1.179261 | 1.262496 | 1.66351

Based on key generation time Table 4.1, we have organized a comparison table: Table 4.2.

Table 4.2 shows that the key generation performance of LZWC-CS-ECC improves the key

generation performance of standard ECC by 23.6%.

Table 4.2 Key Generation Time Comparison of LZWC-CS-ECC with ECC

(o)
Bit si
. 28bit | 128bit | 256bit | S12bit | 1024bit | 2048bit | Average
gorithm
ECC -8% 3% 20% 18% 58% | 51% 23.6%

We have generated Figure 4.1 from key generation time Table 4.1. From this figure, it is

observed that the key generation time performance of LZWC-CS-ECC is far better than
standard ECC. Therefore, LZWC-CS-ECC key generation complexity is less than ECC

because of using CS algorithm.

KEY Generation Time (seconds)
o N N
t =~ & N 0w

(=}

28

ECC
LZWC-CS-ECC

128

256
Bit Length

512

1024

2048

Figure 4. 1 Analysis of Key Generation Performance (seconds)

32

4.1.2 Encryption Time of Algorithms

For evaluating the encryption performance of algorithms, we have used the six different bit

sizes and 258KB images. By running the simulation 5 times, we have summarized the

encryption time of algorithms as shown in Table 4.3. As shown in Table 4.3, when

compared to encryption time cost, LZWC-CS-ECC outperforms standard ECC.

Table 4.3 Encryption Time (in Seconds)

Bit i 1 2gpit 128bit | 256bit | 512bit | 1024bit | 2048bit
ECC 6.1462471 | 6.1235497 | 6312986 | 6.899473 | 8.030719 | 7.9976935
Eg:vc-cs- 29516911 | 3.1507045 | 3.36389 | 3.713022 | 4.017537 | 4.0345631

Based on encryption time Table 4.3, we have analyzed Table 4.4. From Table 4.4, it is found

that LZWC-CS-ECC has improved the encryption performance of standard ECC by 95.7%.

Table 4.4 Encryption Time Comparison of LZWC-CS-ECC with ECC (%)

Bit size

gorithm

28bit | 128bit

256bit

512bit

1024bit

2048bit

Average

ECC

108% | 94%

88%

86%

100%

98%

95.7%

Based on Table 4.3, we have analyzed Figure 4.2. This figure shows that LZWC-CS-ECC
encryption performance is far better than the standard ECC algorithm.

encryption Time (seconds)
ORNWAUWGON L

ECC
LZWC-CS-ECC

28 128

256

512

Bit Length

1024

2048

Figure 4.2 Analysis of Encryption Performance (in seconds)

33

4.1.3 Decryption Time of Algorithms

For evaluating the decryption performance of algorithms, we have used six different bit
sizes and 258KB images. By running the simulation 5 times, we have summarized the
decryption time of algorithms as shown in Table 4.5. As shown in Table 4.5, when we

compared the decryption time cost, LZWC-CS-ECC is far better than standard ECC.

Table 4.5 Decryption Time (in Seconds)

Bl size 11 agbit 128bit | 256bit | 512bit | 1024bit | 2048bit
ECC 117222402 | 122638626 | 13.72885 | 13.7354 | 13.7354 | 1595815
N CCs 6.6275945 | 5751773 | 5.716506 | 7.210619 | 7.57155 | 7.581441

Based on the decryption time in Table 4.5, we have analyzed Table 4.6. Table 4.6 shows that
the decryption speed of LZWC-CS-ECC is higher 102.1% than the standard ECC which
makes LZWC-CS-ECC more cost-effective than the standard ECC algorithm.

Table 4.6 Decryption Time Comparison of LZWC-CS-ECC with ECC (%)

Bit size—/
orithm
ECC T7% 113% | 140% 90% 81% | 110% 102.1%

28bit | 128bit | 256bit | 512bit | 1024bit | 2048bit | Average

Based on decryption time Table 4.5, we have analyzed Figure 4.3. The Figure shows that the
decryption speed of LZWC-CS-ECC is better than the standard ECC image decryption
algorithm compared with. Especially, as the bit length of keys used and image size increase

our algorithm performance when compared with standard ECC is more significant.

The Figure shows decryption speed of LZWC-CS-ECC is highly better than standard ECC,
due to the LZW COMPRESSION process to improve the encryption and decryption

performance of our algorithm.

34

ECC

—~ LZWC-CS-ECC
g 18
S 16
Q
S 14
Q
§ 12
~ 10
S
'ﬁ 8
g 6
8 4

2

0

28 128 256 512 1024 2048
Bit Length

Figure 4.3 Analysis of Decryption Performance (in seconds)

4.1.4 Overall Processing Time based on Bit Length

For evaluating the overall processing time performance of algorithms, we have used the six
different bit sizes and 258KB images. By running the simulation 5 times, we have
summarized the overall processing time of algorithms as shown in Table 4.7. As shown in
Table 4.7, when we compared the processing time cost, LZWC-CS-ECC outperforms
standard ECC.

Table 4.7 Overall Processing Time based on Bit Length (in Seconds)

Bit lstllzlfn "' 28bit | 128bit | 256bit | 512bit | 1024bit 2048bit
ECC 12,5 13.6 138 138 139 152
LZWC-CS-

BCC 9.4 9.2 9 9 9.6 10.6

Based on the overall processing time in Table 4.7, we have analyzed Table 4.8. Table 4.8
shows that the overall processing speed of LZWC-CS-ECC is 45.9% higher than the
standard ECC which makes LZWC-CS-ECC more cost-effective than the standard ECC
algorithm.

Table 4.8 Overall Processing Time Comparison of LZWC-CS-ECC with ECC
based on Bit Length (%)

Bit size"/| yepic | 128bit | 256bit | 512bit | 1024bit | 2048bit | Average
orithm
ECC 33% | 48% | 53% | 53% | 45% | 43% | 45.9%

35

Based on the overall processing time in Table 4.7, we have analyzed Figure 4.4. The Figure
shows that the overall processing speed of LZWC-CS-ECC is better than the standard ECC

image processing algorithm compared with different bit lengths.

The Figure shows the overall processing speed of LZWC-CS-ECC is highly better than
standard ECC, due to the CS-based key generation process and LZW image compression

process to improve the overall speed performance of our algorithm for different bit lengths.

ECC
—0—LZWC-CS-ECC
16
-~
4 14
<
§ 12
vy
£ 8
~
o 6
S
2 4
3
g 2
0
28 128 256 512 1024 2048
Bit Length

Figure 4.4 Analysis of Overall Speed Performance based on Bit Length (in seconds)

4.1.5 Overall Processing Time Based on Image Size

For evaluating the overall processing time performance of algorithms, we have used the five
different size images and 512-bit length. By running the simulation 5 times, we have
summarized the overall processing time of algorithms as shown in Table 4.9. As shown in

Table 4.9, when we compared the overall processing time cost based on image size, LZWC-

CS-ECC outperforms standard ECC.

Table 4.9 Overall Processing Time based on Image Size (in Seconds)

pie stz 'l 193KB |258KB | 1,729KB | 3,073KB | 6,913KB
ECC 9333 | 14.333 | 179254 | 391.322 | 1766312
LZWC-CS-ECC | 425 9.667 | 79.789 | 179.546 | 709.787

36

Based on the overall processing time in Table 4.9, we have analyzed Table 4.10. Table 4.10
shows that the overall processing speed of LZWC-CS-ECC is 111.9% better than standard
ECC which makes LZWC-CS-ECC more cost-effective than the standard ECC algorithm.

Table 4.10 Overall Processing Time Comparison of LZWC-CS-ECC with ECC
based on Image Size (%)

Bit si /| 193K | 258K 1,729K | 3,073K | 6,913K
orithm B B B B B

ECC 120% 48% 125% 118% 149% | 111.9%

Average

Based on the overall processing time in Table 4.9, we have analyzed Figure 4.5. The Figure
shows that the overall processing speed of LZWC-CS-ECC is better than the standard ECC

image processing algorithm compared with.

The Figure shows overall processing speed of LZWC-CS-ECC for different image sizes is
highly better than standard ECC, due to the LZW image compression process to improve the

overall speed performance of our algorithm.

2000

1800 Ecc

1600 LZWC-CS-ECC

1400

1200

1000
800
600
400
200

Decryption Time (seconds)

193KB 258KB 1,729KB 3,073KB 6,913KB

Image Size

Figure 4.5 Analysis of Overall Speed Performance based on Image Size (in
seconds)

37

4.1.6 Key Space

The size of the key used determines how secure an En/Decryption algorithm is. The larger
the key size, the more difficult it is to carry out a Brute Force attack. Concerning the key
size, ECC gives an exponentially complex Elliptic Curve Discrete Logarithmic Problem. It
is one of the most difficult problems in mathematics, and there is currently no approach that
has been successfully deciphered. We utilized a 512-bit standard Elliptic curve in our
implementation, which has a large enough key size to ensure the required security. In
LZWC-CS-ECC key paces is 2°'%, so it is sufficiently vast to withstand a brute-force attack
[20][56].

4.1.7 Key Sensitivity

Key sensitivity shows the dependence of the encryption scheme on cipher keys. There are
two ways of determining the key's sensitivity. First, a 1-bit change in cipher key must
produce an entirely different cipher image, and the second one is a 1-bit change in cipher
key must decrypt an entirely random image. The original image was recovered from the
cipher image using the correct private key of the receiver only. The decrypted image with
the wrong key is just one digit different from the original key is completely different. As a
result, it's been showed that the proposed LZWC-CS-ECC En/Decryption is highly sensitive
to the key, such that even a near-perfect estimate of the keys yields no information about the
plain image.

4.1.8 Security Strength Analysis

Table 4.11 indicates, the security strength of LZWC-CS-ECC is significantly higher than the
standard ECC and and a new recent variant of ECC because it uses the cuckoo search
algorithm to improve private keys selection and compression, as well as byte to Big integer

conversion.

38

Table 4.11 Security Strength Comparison of Algorithms

. Key Length, Comparative
Algorithm Key Space Speed security level Reason
ECC 12?922’ Slow Moderate DLP only
A Novel Public
Key Image
+
Encryption Based 128, Moderate Moderate fas‘:) nI;: in
on Elliptic Curves 2128 pping
s technique
over Prime Group
Field [5]
JPEG mage 64, DLP +
encryption with 64 Fast Moderate Combression
ECC [14] P
. DLP +
hl?saiie EEré:(r:yF 5‘[16(}n 52;22’ Fast High Compression +
& Byte to Biglnterger
Digital Image
Encryption 510 DLP +
Algorithm Based 2512’ Fast High Compression +
on EC Public Byte to BigInterger
Cryptosystem [20]
DLP +
512, . Optimal key +
LZWC-CS-ECC 512 Very Fast | Very High Compression +
Byte to Biglnterger

39

Chapter 5. Conclusions and Future Work

5.1. Conclusions

In this paper, we have proposed the LZWC-CS-ECC algorithm. We discovered an issue with
the private key selection process and a processing time challenge on hug data encryption
processes, such as image data, as we analyzed existing systems. To address our research
problems, the proposed LZWC-CS-ECC algorithm uses the LZWC and the CS algorithm to
reduce the size of the image for encryption and to select an optimal private key by
minimizing the selection loop for advancing security and speeding up the decryption

process.

From our result analysis, we have found that our LZWC-CS-ECC algorithm has better

performance than the existing ECC image encryption.

Generally, improved algorithm strength, key generation and decryption speed of our LZWC-
CS-ECC algorithm because of CS algorithm, and improved encryption speed of our LZWC-
CS-ECC algorithm because of LZW algorithm makes it more secured and fast. As a result,
our proposed LZWC-CS-ECC algorithm can be implemented in image security demanding

environments like Medical centers and defenses.

5.2. Future Work

As future work, one can extend our algorithm with other multimedia like voice and video
and implementing our algorithm in working environments. Applying both lossy and lossless
compression algorithms to separate regions of a single image can also be done to extend this

work.

40

[11]

References

M. Tayel, G. Dawood, and H. Shawky, “A Proposed Serpent-Elliptic Hybrid
Cryptosystem for Multimedia Protection,” 2018 Int. Conf. Adv. Comput. Commun.
Informatics, ICACCI 2018, pp. 387-391, 2018, doi: 10.1109/ICACCI.2018.8554950.

B. Koziel, R. Azarderakhsh, M. Mozaffari Kermani, and D. Jao, “Post-Quantum
Cryptography on FPGA Based on Isogenies on Elliptic Curves,” IEEE Trans. Circuits
Syst. I Regul. Pap., vol. 64, no. 1, pp. 86-99, 2017, doi: 10.1109/TCSI.2016.2611561.

K. Keerthi and B. Surendiran, “Elliptic curve cryptography for secured text encryption,”
Proc. IEEE Int. Conf. Circuit, Power Comput. Technol. ICCPCT 2017, 2017, doi:
10.1109/ICCPCT.2017.8074210.

J. Stephy and V. Subramaniyaswamy, “Analysis of digital image data hiding techniques,”
Proc. Int. Conf. I-SMAC (lIoT Soc. Mobile, Anal. Cloud), I-SMAC 2018, pp. 140144,
2019, doi: 10.1109/I-SMAC.2018.8653794.

A. Soleymani, M. J. Nordin, and Z. M. Ali, “A Novel Public Key Image Encryption
Based on Elliptic Curves over Prime Group Field,” J. Image Graph., vol. 1, no. 1, pp. 43—
49, 2013, doi: 10.12720/joig.1.1.43-49.

H. Hu, Y. Cao, J. Xu, C. Ma, and H. Yan, “An Image Compression and Encryption
Algorithm Based on the Fractional-Order Simplest Chaotic Circuit,” /IEEE Access, vol. 9,
pp- 22141-22155, 2021, doi: 10.1109/ACCESS.2021.3054842.

Z. Liu, L. Meng, Y. Tan, J. Zhang, and H. Zhang, “Image compression based on octave
convolution and semantic segmentation,” Knowledge-Based Syst., vol. 228, p. 107254,
2021, doi: 10.1016/j.knosys.2021.107254.

W. Khalaf, A. S. Mohammad, and D. Zaghar, “Chimera: A new efficient transform for
high quality lossy image compression,” Symmetry (Basel)., vol. 12, no. 3, 2020, doi:
10.3390/sym12030378.

K. Rajasekaran, P. D. Sathya, and V. P. Sakthivel, “Quasi-lossless based fractal image
compression using krill herd algorithm,” Int. J. Adv. Trends Comput. Sci. Eng., vol. 9, no.
5, pp. 7763-7769, 2020, doi: 10.30534/ijatcse/2020/121952020.

Y. Manjula and K. B. Shivakumar, “Enhanced secure image steganography using double
encryption algorithms,” Proc. 10th INDIACom; 2016 3rd Int. Conf. Comput. Sustain.
Glob. Dev. INDIACom 2016, vol. 7, pp. 705-708, 2016.

C. H. Lin, Y. Xie, and W. Wolf, “LZW-based code compression for VLIW embedded
41

[12]

[13]

[14]

[16]

[19]

[20]

[21]

systems,” Proc. -Design, Autom. Test Eur. DATE, vol. 3, pp. 76-81, 2004, doi:
10.1109/DATE.2004.1269210.

X. Fang and Y. Wu, “Investigation into the elliptic curve cryptography,” 2017 3rd Int.
Conf. Inf. Manag. ICIM 2017, mno. i, pp. 412-415, 2017, doi:
10.1109/INFOMAN.2017.7950418.

S. Behnia, A. Akhavan, A. Akhshani, and A. Samsudin, “Image encryption based on the
Jacobian elliptic maps,” J. Syst. Softw., vol. 86, no. 9, pp. 2429-2438, 2013, doi:
10.1016/j.jss.2013.04.088.

S. Bakhtiari, S. Ibrahim, M. Salleh, and M. Bakhtiari, “JPEG mage encryption with
Elliptic Curve Cryptography,” Proc. - 2014 Int. Symp. Biometrics Secur. Technol.
ISBAST 2014, pp. 144-149, 2015, doi: 10.1109/ISBAST.2014.7013111.

M. Bafandehkar, S. M. Yasin, R. Mahmod, and Z. M. Hanapi, “Comparison of ECC and
RSA algorithm in resource constrained devices,” 2013 Int. Conf. IT Converg. Secur.
ICITCS 2013, pp. 0-2, 2013, doi: 10.1109/ICITCS.2013.6717816.

Shankar K. and Eswaran P., “Australian Journal of Basic and Applied Sciences A Secure
Visual Secret Share (VSS) Creation Scheme in Visual Cryptography using Elliptic
Curve Cryptography with Optimization Technique,” vol. 9, no. December, pp. 150163,
2015.

S. Kota, V. N. R. Padmanabhuni, K. Budda, and K. Sruthi, “Authentication and
Encryption Using Modified Elliptic Curve Cryptography with Particle Swarm
Optimization and Cuckoo Search Algorithm,” J. Inst. Eng. Ser. B, vol. 99, no. 4, pp. 343—
351, 2018, doi: 10.1007/s40031-018-0324-x.

D. Majumdar and S. Mallick, “Cuckoo search algorithm for constraint satisfaction and
optimization,” Proc. - 2016 2nd IEEE Int. Conf. Res. Comput. Intell. Commun. Networks,
ICRCICN 2016, pp. 235-240, 2017, doi: 10.1109/ICRCICN.2016.7813662.

G. Thangavel and R. Athiyappan, “Cuckoo Search based Optimal Elliptic Curve
Cryptography (OECC) for Text Encryption,” IOSR J. Comput. Eng., vol. 18, no. 04, pp.
77-81, 2016, doi: 10.9790/0661-180402778]1.

X. Zhang and X. Wang, “Digital Image Encryption Algorithm Based on Elliptic Curve
Public Cryptosystem,” [EEE Access, vol. 6, pp. 70025-70034, 2018, doi:
10.1109/ACCESS.2018.2879844.

N. A. Wahid, A. Ali, B. Esparham, and M. Marwan, “A Comparison of Cryptographic

42

[22]

[23]

[24]

[25]

[30]

Algorithms: DES, 3DES, AES, RSA and Blowfish for Guessing Attacks Prevention,” J.
Comput. Sci. Appl. Inf. Technol., vol. 3, no. 2, pp. 1-7, 2018, [Online]. Available:
www.symbiosisonline.orgwww.symbiosisonlinepublishing.com.

T. Kumar, Yogesh Bala, “Asymmetric Algorithms and Symmetric Algorithms: A Review
Tannu Bala,” Int. J. Comput. Appl., no. Icaet, pp. 975-8887, 2015.

M. B., G. Holi, and S. Murthy, “An Overview of Image Security Techiques,” Int. J.
Comput. Appl., vol. 154, no. 6, pp. 37-46, 2016, doi: 10.5120/ijca2016911834.

N. S. Abraham and P. Nair, “Survey on Image Encryption , Data Hiding and Secret
Fragment Visible Mosaic Image Creation Techniques,” pp. 115-119, 2015.

A. Hasnat, D. Barman, and S. Sarkar, “Color image share cryptography: A novel
approach,” J. Intell. Fuzzy Syst., vol. 36, no. 5, pp. 4491-4506, 2019, doi: 10.3233/JIFS-
179002.

D. G. Singhavi and P. N. Chatur, “A new method for creation of secret-fragment-visible-
mosaic image for secure communication,” ICIIECS 2015 - 2015 IEEE Int. Conf. Innov.
Information, Embed. Commun. Syst., pp- 04, 2015, doi:
10.1109/ICHHECS.2015.7192929.

M. Ubaidullah and Q. Makki, “A Review on Symmetric Key Encryption Techniques in
Cryptography,” [Int. J. Comput. Appl., vol. 147, no. 10, pp. 43-48, 2016, doi:
10.5120/1jca2016911203.

J. Singh, K. Lata, and J. Ashraf, “Image Encryption & Decryption with Symmetric Key
Cryptography using MATLAB,” Int. J. Curr. Eng. Technol., vol. 5, no. 1, pp. 448451,
2015, [Online]. Available: http://inpressco.com/category/ijcet.

M. Islam, M. Shah, Z. Khan, T. Mahmood, and M. J. Khan, “A New Symmetric Key
Encryption Algorithm Using Images as Secret Keys,” Proc. - 2015 13th Int. Conf. Front.
Inf. Technol. FIT 2015, pp. 1-5, 2016, doi: 10.1109/FIT.2015.12.

M. B. Yassein, S. Aljawarneh, E. Qawasmeh, W. Mardini, and Y. Khamayseh,
“Comprehensive study of symmetric key and asymmetric key encryption algorithms,”
Proc. 2017 Int. Conf. Eng. Technol. ICET 2017, vol. 2018-Janua, pp. 1-7, 2018, doi:
10.1109/ICEngTechnol.2017.8308215.

Z. E. Dawahdeh, S. N. Yaakob, and R. Razif bin Othman, “A new image encryption
technique combining Elliptic Curve Cryptosystem with Hill Cipher,” J. King Saud Univ. -
Comput. Inf. Sci., vol. 30, no. 3, pp. 349-355, 2018, doi: 10.1016/j.jksuci.2017.06.004.

43

[32]

[33]

[34]

[35]

[42]

S. Chandra, S. Paira, S. S. Alam, and G. Sanyal, “A comparative survey of symmetric
and asymmetric key cryptography,” 2014 Int. Conf. Electron. Commun. Comput. Eng.
ICECCE 2014, pp. 83-93, 2014, doi: 10.1109/ICECCE.2014.7086640.

M. H. Abood, “Steganography with RC4 and Pixel Shuffling Encryption Algorithms,”
no. March, pp. 7-9, 2017.

A. Kaur and G. Singh, “A Random Selective Block Encryption Technique for Secure
Image Cryptography Using Blowfish Algorithm,” Proc. Int. Conf. Inven. Commun.
Comput. Technol. ICICCT 2018, no. Icicet, pp. 1290-1293, 2018, doi:
10.1109/ICICCT.2018.8473273.

A. Devi, A. Sharma, and A. Rangra, “A Review on DES, AES and Blowfish for Image
Encryption & Decryption,” Int. J. Eng. Comput. Sci., vol. 4, no. 6, pp. 12646—12651,
2015, [Online]. Available:
https://www.ijecs.in/index.php/ijecs/article/download/3887/3623/.

Mohammad Ali Bani Younes, “Literature Survey on Different Technique of Image
Encryption,” Int. J. Sci. Eng. Res., vol. 7, no. 1, pp. 93-98, 2016, [Online]. Available:
https://www.ijser.org/researchpaper/Literature-Survey-on-Different-Techniques-of-
Image-Encryption.pdf.

R. Tripathi and S. Agrawal, “Comparative Study of Symmetric and Asymmetric
Cryptography Techniques,” Int. J. Adv. Found. Res. Comput., vol. 1, no. 6, pp. 68-76,
2014.

R. S. Jamgekar and G. S. Joshi, “File Encryption and Decryption Using Secure RSA,”
Int. J. Emerg. Sci. Eng., vol. 1, no. 4, pp. 11-14, 2013.

A. Karakra and A. Alsadeh, “A-RSA: Augmented RSA,” Proc. 2016 SAI Comput. Conf.
SAI 2016, pp. 1016-1023, 2016, doi: 10.1109/SAL.2016.7556103.

A. Dua and A. Dutta, “A study of applications based on elliptic curve cryptography,”
Proc. Int. Conf. Trends Electron. Informatics, ICOEI 2019, vol. 0, no. Icoei, pp. 249-254,
2019, doi: 10.1109/ICOEI.2019.8862708.

J. Lin et al., “An Image Compression-Encryption Algorithm Based on Cellular Neural
Network and Compressive Sensing,” 2018 3rd IEEE Int. Conf. Image, Vis. Comput.
ICIVC 2018, pp. 673—677, 2018, doi: 10.1109/ICIVC.2018.8492882.

M. Yang and N. Bourbakis, “An Overview of Lossless Digital Image Compression

Techniques,” pp. 1099-1102.

44

[43]

[44]

[45]

[46]

[51]

C. Paper, “A Survey of Data Compression Algorithms and their Applications A Survey of
Data Compression Algorithms and their Applications,” no. JANUARY 2012, 2015, doi:
10.13140/2.1.4360.9924.

S. Funasaka, K. Nakano, and Y. Ito, “Fast LZW compression using a GPU,” 2015, doi:
10.1109/CANDAR.2015.20.

M. E. Scholar, “A Biometric Iris Image Compression using LZW and Hybrid LZW
Coding Algorithm,” 2017.

Z. Tang, S. Xu, H. Yao, C. Qin, and X. Zhang, “Reversible data hiding with differential
compression in encrypted image,” Multimed. Tools Appl., vol. 78, no. 8, pp. 9691-9715,
2019, doi: 10.1007/s11042-018-6567-3.

A. Razzaque, “Image Compression and Encryption: An Overview,” Int. J. Eng. Res.
Technol., vol. 1,no. 5, pp. 1-7, 2012.

R. Ghose, T. Das, A. Saha, T. Das, and S. P. Chattopadhyay, “Cuckoo search algorithm
for speech recognition,” 2015 Int. Conf. Work. Comput. Commun. IEMCON 2015, vol. 3,
no. 10, pp. 3540-3545, 2015, doi: 10.1109/IEMCON.2015.7344522.

B. M. Ismail, B. Eswara Reddy, and T. Bhaskara Reddy, “Cuckoo inspired fast search
algorithm for fractal image encoding,” J. King Saud Univ. - Comput. Inf. Sci., vol. 30, no.
4, pp. 462469, 2018, doi: 10.1016/j.jksuci.2016.11.003.

S. Amtade and T. Miyamoto, “Cuckoo search algorithm for job scheduling in cloud
systems,” [EICE Trans. Fundam. Electron. Commun. Comput. Sci., vol. €98, no. 2, pp.
645-649, 2015, doi: 10.1587/transfun.E98.A.645.

P. Sekhar and S. Mohanty, “An enhanced cuckoo search algorithm based contingency
constrained economic load dispatch for security enhancement,” Int. J. Electr. Power
Energy Syst., vol. 75, pp. 303-310, 2016, doi: 10.1016/j.ijepes.2015.09.018.

W. H. Yang, J. R. Liu, and Y. Zhang, “A new local-enhanced cuckoo search algorithm,”
Int. J. Comput. Sci. Math., vol. 8, mno. 2, pp. 175-182, 2017, doi:
10.1504/1IJCSM.2017.083756.

K. Gupta and R. Singh, “Enhanced Secured Image Transfer over Internet,” no. April, pp.
112-115, 2015.

S. Anandakumar, “Image Cryptography Using RSA Algorithm in Network Security,”
vol. 5, no. 9, pp. 326330, 2015.

G. Noida, U. Pradesh, G. Noida, U. Pradesh, and U. Pradesh, “IMAGE ENCRYPTION

45

[59]

[60]

[61]

[62]

AND DECRYPTION USING ELLIPTIC CURVE CRYPTOGRAPHY,” vol. 8354, no.
3, pp- 198-205, 2014.

L. D. Singh and K. M. Singh, “Image Encryption using Elliptic Curve Cryptography,”
Procedia Comput. Sci., vol. 54, pp. 472—481, 2015, doi: 10.1016/j.procs.2015.06.054.

Z. Cui, B. Sun, G. Wang, Y. Xue, and J. Chen, “A novel oriented cuckoo search
algorithm to improve DV-Hop performance for cyber—physical systems,” J. Parallel
Distrib. Comput., vol. 103, no. October 2017, pp. 42-52, 2017, doi:
10.1016/j.jpdc.2016.10.011.

F. 1. Khandwani and P. E. Ajmire, “A Survey of Lossless Image Compression
Techniques,” Int. J. Electr. Electron. Comput. Sci. Eng., vol. 5, no. 1, pp. 2348-2273,
2018, [Online]. Available: http://www.ijeecse.com/V5N1-013.pdf.

M. A. Alam et al., “Faster image compression technique based on LZW algorithm
using GPU parallel processing,” 2018 Jt. 7th Int. Conf. Informatics, Electron. Vis. 2nd
Int. Conf. Imaging, Vis. Pattern Recognition, ICIEV-IVPR 2018, no. 1, pp. 272-275,
2019, doi: 10.1109/ICIEV.2018.8640956.

M. R. Hasan, M. L. Ibrahimy, S. M. A. Motakabber, M. M. Ferdaus, and M. N. H.
Khan, “Comparative data compression techniques and multi-compression results,”
IOP Conf. Ser. Mater. Sci. Eng., vol. 53, no. 1, 2013, doi: 10.1088/1757-
899X/53/1/012081.

K. A. Ramya and M. Pushpa, “A Survey on Lossless and Lossy Data Compression
Methods,” Int. J. Comput. Sci. Eng. Commun., vol. 4, no. 1, pp. 1277-1280, 2016.

T. Thulasi and P. Basu, “A lossless joint image compression using wavelet
decomposition and hierarchical tree encoding,” 2019 Int. Conf. Intell. Comput.
Control Syst. ICCS 2019, mno. Iciccs, pp. 533-538, 2019, doi:
10.1109/ICCS45141.2019.9065487.

46

Annexes

Annex A. Implementation Examples

A. LZWC-CS-ECC Implementation Screenshot

) LZW_CS ECC - MetBeans IDE 8.2
File Edit View Navigate Source Refactor Run Debug Profile Team Tools Window Help

FEEW DCE e O TH b BG-

Projects x\ — | [6 tzw_cs Fccava x@ ECC_Image.java x\ L =]
-8 Cuoo s Hoy [BE-H-QATFBL(PE 8
=] @‘.ECCJIHEQE 108 Inage Lo ~u
Source Packages 107 System. out.println(
U TestPadages 108 System.out.println("In
g Libraries 109 Scanner sc = new Scanner (SysTem.in);
[Testlibraries 110 sc.next(): 2
ECC_LZW 11 oy =
ECC_Traiing_old 112 File file = new File(filenams);
@- @8 eccy 113 compress () ; :
& 12w _cs Ecc 114 String[] getFileNameWOExtn = filsh splic (M\\."); =
-8 my_main 115 filepath=getFileNameWOExtn[0].concat(".l ;‘
116 System. out.println ("Conpz 1ew =l
117 ¥ E
118 caten (I0Exception ig) [:‘
118 System.out.println(" g‘
main - Navigator X | ~]| 120 i
Members v [empty= “@ L
plie - L 122
B L2w s ECC T
@ mmWE:TSDuE hess 124 System. out.println("\n I
@ :Z""H SUEREG oty 125 File lzwfile — new File(fileps
® :”;Vp’issg R ek B 126 resdContentIntoByteArray(lzvfile);
] gsmns‘: elyis bl iR sooenn skt -3 127 BigInteger M = new BigInteger(bFils):
§ meinfstingl) args) 128 System.out.println("Plain T mat)="4M) ;
&) readContentintoByteArray(Fi fie) : byte]] i
130 BigInteger C=M.add(k.multiply(zp)):
131 byte[] bt=C.toBytehrray():
= System.out.println("
133
134| | //===============================
135 System.out.println{"\n T
> 136 1 T 1f ("5 3)=" + bt}
& 01alsl w8 e < s
& [output @| 471 | ms

B. ECC Overall Speed Performance evaluation Screenshot
-

File Edit View Mavigate Scurce Refacter Run Debug Profile Team Tools Window Help [Qr search (cul+)
HEHES ot @ T B b BB
Projects X | — || startpage x[[&; ECC_Image PTime.java x@uw,ﬂ;jccyﬁmadava x| G]
8 oo S ooy |[B-5-QBFEPET[Y
-8 ECC_Image_PTime : =
5B §
|5 Source Packages 26 publl @ X
ECC_Image_PTime 7 It
£ e dmoge 2 Output - ECC_Image_PTime (run) X |
ECC_Image_PTime java 28
- e A
fr[f TestPackages "l W
@[Lbraries 30 i o
Key Generating Brocess.
@[TestLbraries 3 B 5
@- & ecc 32 am| pe14327
& 12w cs_Ecc 33 a=14827 =
(- LZw_C5_ECC_Pline 34 B=153439
35 P=(29€5953¢, 10115521¢€)
26 n=€382
37 k=14835
8 DUk =1483%, P(x, y)=(2965953€,)] :
‘ PRE=[k=14839, n=€982, Gix,y)=(4248,)] =
Navigator X | = 39 Tmage BeryBOion .. =
Members || <empty > 40 =
B& r— o 41 i TMagE ERCIYBTASN BEOCEEE. . oo\ttt ot e =
% (N‘T i 5 42 Plain Text Sender Side (BigInteger Format)=14237488785727€53€010559733756070145€544731442749016€252578781231
& mainGtringl args 13 Cipher Sent(Buffer Format): [BRL453£a4
&) readContentintoByteArray(Fie fle) : bytel] ol =
- Tmage Decryption Process. -
1% String Recieved Reciever Side(BigInteger Format)}=14237488789727653€0105973375€0701486844731442749816625257 o
RecoveredText Reciever Side: (BigInteger Format of Image) 14337488789727€53601059733758070148684473144274598 =
2 Successfully written data to the file
48| | syst
49 long K& Time(nano second) 11513535500
50| | int =
51 = Eneryption Time (nanc second) :72€3473300
52 B
53 B: Decryption Time (nano second) :13523€47300
BUILD SUCCESSFUL {total time: 23 séconds) o
54 < [>
- 55 Randdth TERG = AEW SECUTERERACHE(] T o
& =
= A < 5
@) 29:37 |ms

a

C. LZWC-CS-ECC Overall Speed Performance evaluation Screenshot

Projects X | 0
- ECC_Image Output - LZW_CS_ECC_Ptime frun} X |
- ECC_Image PTime >
o ecc1
¥ (8 Lzw CsECC W oy e . L B
E@ LZW_CS_ECC_Ptime | G={844405425215454€735,4855037473409310133)
S0y Source Packsges | pelel4sanIscoaTazel0ey

B L2w.C5.ECC_Piine &=15253357€04655145055

LB Lzw 5 CC_Pume.ava D=16725178213636473205

T TEstPaEkagE_s - B=(355722745923126573440915201£4883824375, 54950 52005743930128)
[Libraries
-l Testlbraries

&

Private Key Generation using Cuckoo Search
n=11310292335700309€25
k=13252523553677155650
PUk=[k=132525235%3877199630, P(x, y)=(95572274592312€973440919201€4882824375,)]
PRE=[k=132525235%3877199630, n=11318292335700309625, G(x, y)=(844405425815454€735,)]
L7 hpsed Toiage. CORBEESSTON v s e R A S A A

&

=

Compressicn complete!Check file barbara.lzwl

main - Navigator X |

Mermbers. || cempty>
=) LZW_C5_ECC_Plime .

@ compress)

o) convertTol bt) : Sting

Cipher Sent(Buffer Format): [BEL453£44

String Recieved Reciever Side(BigInteger Format)=85187791088731€18777057€1535 546749227194361

596070

23400505

{ decompress) RecoveredText Reciever Side:(Biglnteger Format of Image (LZW content)) 95157731085721€1877705761925 749227194361425256889303417€€5075006€97263:
({p getintyalue(pyte b, byte b, boolean disl Successfully written data o the file
@ man{String(] args) L2W based Image Decompression. e R
&) readContentintoByteArray(Fie fle) : byt[] £ilename=cutput_barbara. lzw
extension=bmp
£ilename=cutpuc barbara.lzw
Deccmpressicn complete! Check £ils outpuc barbara.bmp
KG Time(nano second) :1610242000
Zncryption Time(nano second):3420020300
Yﬁ Decryption Time(nano second):6S805018€00
ﬁ D |I % @J ‘ @ ‘ &E 4; BUILD SUCCESSFUL (total time: 15 seconds)
o .
D. ECC Image En/Decryption Input/output Files Screenshot
BOsl Ecc - o xt
|4} = Manage Bz -
Home Share Wiew: Picture Tools 0-
« © 4 | » ThisPC » Documents 5 ECC_lmage v | P
- i
L Mame Date modified Type Size
v ¥ Quick access !
build 972021 1:40 Al Filefolder
[Desktop * ~
nbproject %2027 124 AN File folder
F Downlsts ® | sre 126 AM File folder
Dacuments # test 021 1:24 AN File folder
Pictures b3 @ barbara 792071 1:24 AM BMP File 258°KB
wedase d D build 021 1:24 AM HML Document 4KB H
e [] manifest.mf /2001 1:24 AM ME File 1
= —10/3027 .40 A =
Pl eliait: B 8| output barbara 7/8/2021 2:40 AM BIMP File
R welde 7/9/2021 1:24 AM IPEG Image
LZW_CS5.ECC
MNew Flash
@ OneDrive
~ [This PC
M 3D Objects
I Desktop
| Documents

< Downloads
JS Music

Pictures

B Videos

i Local Disk (C)

s Local Data Disk (D3]
s USB Drive (E:}

= USB Drive (E:)
Sitems 2items selected 514 KB

E. LZWC-CS-ECC Image En/Decryption Input/output Files Screenshot

(-] EE
B B+ | tzwicsEce

& 3 v 4

Share View

Quick access
[Desktop
& Downloads

Documents

Pictures

wedase
ECC_LZW

Flow chart_Edraw
LZW_C5 ECC
Mew Flash

@ OneDrive

[This PC
- 3D Objects
[Desktop

Documents

=
& Downloads
D Music

| Pictures
& videos

‘i Local Disk (1)

wa Local Data Disk (D7)
s WSB Drive (B}

== USE Drive (B}
Mitems 4items selected 818 KB

» ThisPC » Documents » LZW_C5ECC

Narne

| build
nbproject
src

* | test

» & barbara

* |j barbarazw

[7 build

D manifest.mf

& output_barbara

|7 output_barbara.lzw

EH welde

Date modified

T/8/2021 12:30 PM
7/8/2021 12:28 PM
7/8/2021 1:25 AM
T/8/2021 12228 PM
TT/2021 10:23 AM
7/9/2021 3:20 AM
T/B/2021 12:29PM
77872021 1628 PM
7/9/2021 3:20 AM
THG/2027:3:20 AM
02112:28 PM

w | O Search LZV

Type Size

File folder

File folder

File folder

File folder

BAP File 258 KB
LZW File i53K8.
XML Document 4 KB
IMF File 1KB
EMP File 238°KB
LZW Fite T53KE
IPEG Image 9,663 KB

Annex B. Key Generation and En/Decryption Time screenshot

Projects X ‘

je3) @ ECC_Image

-8 ECC_Image_PTime

o @ ecct

- (@ L2W €S ECC

& L2W_C5 ECC _Plime

= .‘3 Source Packages

-] LZw_CS ECC_ptime

[12w _C5_ECT_Ptime.java
0 -E Test Packages

o[Libraries

il Test Ubraries

main - Navigator xl

Members

E- LZW_CS ECC_Pline
@ compress(

(b ronvertTo12Bit(int) : String

({p decompress()

([getintvalue(byte b1, byte b2, boolean diste
@ main{string(] args)

% Q}) readContentintoByteArray(Fie fle) : byte(]

|| cempty>

#0188 sE s

BT e T I P EOOEE S oot s R e i

G=1{844405425815454€735,4855037473405310133)

p=161434379€0379261067

2=15255387684695145055

b=1€725178213€3€473205
P=1{955722745923126973440919201 4882024375, 549507334 24826390€€033595200574993012

Hrivhte. oy Gunsrncion RATHG, CHOE00, SEATCH e o cnu s e s e s s s

n=113182592335700309€25
k=132525235538771595€50
PUk=[1=132525235938771 99690, P(x y)={955722745923126573440919201€4882624375,)]

PRk=[}=13252523533877198630, n=L1313292335700303€25, Gix,y)=(9444054259154534¢€728,)1
T haea Tt CODIRERTON i o A S e s s

Compressicn complete!Check file barbara.lzwl

Image Encryption Process..
Dlain Text Sender Side(BigInteger Format
Cipher Sent(Buffer Format): [BEl453f44

Image Dencryption Process
5157791088731€18777057€1925!

5157751088731€18777057€152554854854€7452171543€142525€€085503417€€507500€€872!

String Recieved Reciever Side(BigInteger Format

Successfully written data to the file

546749227194361
RecoveredTent Reciever Side:(BigInteger Format of Image|LZW content)) 851877351088731€1877705761325

3417€€507500€€872834!
7492371943€14292

83456599€070423884005055042550

99034 1T€€50TE00£€8TIES.

TR DORE DO DR TR S L0 oo oo g s

filename=cutput_barbara.lzu
extension=bmp

filename=gutput_barbara.lzw

Decompression complete! Check file cutput_barbara.bmp

K& Timelnano second):1€10242000

Eneryption Time|nano second) 3420020300

Decryption Time |{nano second):€505012€00
BUILD SUCCESSFUL (total time: 15 seconds)

Annex C. LZWC-CS-ECC Sample Java Code

import
import
import
import
import
import
import
import

/** @au

java.
java.
java.
Jjava.
Jjava.
java.
java.

java.

thor

io.*;

io.File;
nio.charset.StandardCharsets;
nio.file.Files;
io.FileInputStream;
nio.file.Path;
nio.file.Paths;

util.*;

Woldeiyesus Ayele

- Indicates the Remaining jumped codes here

*/

public class LZW CS ECC {

A

publi

HashMap<> () ;

Compression Instace Variables

c static HashMap<String, Integer> dictionary =

// variable declarations here

public static void main(String[] args) {

/ /============= Key Generation ===s=========

int BIT LENGTH = 128;

// Generate random primes

System.out.println ("\nKey

Random rand

= new SecureRandom () ;

new

Generating

BigInteger p= BigInteger.probablePrime (BIT LENGTH/2, rand);

BigInteger xg,yg;

xg= new BigInteger (BIT LENGTH/2,rand);

yg= new BigInteger (BIT LENGTH/2,rand);

BigInteger a,b;

do{

a= BigInteger.probablePrime (BIT LENGTH/2, rand);

b = BigInteger.probablePrime (BIT LENGTH/2, rand);

}while (a.compareTo (one) <1 || b.compareTo (one) <1 ||
a.compareTo (b) == |
((yg.pow(2) .mod (p)) .compareTo ((xg.pow (3) .add (xg.multiply(a)) .
add (b.mod (p)))))==1);

//System.out.println ("p= "+p);

// Generate random primes

System.out.println ("G=("+xg+","+yg+")");
//System.out.println ("K=("+xk+","+yk+")");
//System.out.println ("L=("+x1+","+yl+")");

System.out.println ("p="+p);
//System.out.println("s="+s) ;
System.out.println ("a="+a);

System.out.println ("b="+b) ;

BigInteger n= new BigInteger (BIT LENGTH/2,rand);
BigInteger xp= xg.multiply(n);
BigInteger yp= yg.multiply(n);

System.out.println ("P=("+xp+","+yp+t")");

[[======= Cuckoo Search Based Private Key Generation

BigInteger k;
do

{
k= new BigInteger (BIT LENGTH/2,rand);

}while (n.compareTo (k)==1);

System.out.println ("n="+n);

System.out.println ("k="+k);

System.out.println ("PUk=[k=" +k+ ", P(x,y)=(" +xp+ ",)1");
System.out.println ("PRk=[k=" +k+ ", n=" +n+ ", G(x,y)=(" +xg+
"y 1M
//======= Image Compression ==================
Scanner sc = new Scanner (System.in);
filename = sc.next();
try {
File file = new File(filename);
compress () ;

String[] getFileNameWOExtn = filename.split ("\\.");
filepath=getFileNameWOExtn[0].concat (".lzw");
System.out.println ("Compression complete!Check file
"+getFileNameWOExtn[0] .concat (".lzw")+"!");
}
catch (IOException ie) {
System.out.println("File "+filename+" not

found!") ;

BigInteger C=M.add(k.multiply (xp));
byte[] bt=C.toByteArray();

System.out.println ("Cipher Sent (Buffer Format): "+bt);

System.out.println("\n Image Dencryption ProCessS.............
")
BigInteger Crecieved=new BiglInteger (bt),Mlocal;
System.out.println ("String Recieved Reciever
Side (BigInteger Format)=" + Crecieved);
Mlocal=Crecieved.subtract (n.multiply(k.multiply(xg)))
System.out.println ("RecoveredText Reciever
Side: (BigInteger Format of Image (LZW content)) " + Mlocal);
bt=Mlocal.toByteArray (),
bytel] decryptedMessage = new
BigInteger (bt) .toByteArray () ;
String dmsg= new String(decryptedMessage) ;
Path path = Paths.get ("output ".concat (filepath));

byte[] bytes = decryptedMessage;

String[] getFileNameWOExtn = filename.split ("\\.");

dfilename = "output ".concat (filepath);

System.out.println("filename=" + dfilename);

System.out.println("filename=" + dfilename);
decompress () ;

}
catch (IOException ie) {

System.out.println ("File "+dfilename+" not found!");

// ======= Compression Functions ===========
public static void compress() throws IOException {
int i,byteToInt;
char C;

// Character dictionary

for (1i=0;1<256;i++) {
dictionary.put (Character.toString ((char)i),i);
}
// Read input file and output file
RandomAccessFile inputFile = new
RandomAccessFile (filename, "r") ;

String[] getFileNameWOExtn = filename.split ("\\.");

RandomAccessFile outputFile = new
RandomAccessFile (getFileNameWOExtn[0] .concat (".lzw"),"rw");
try {

if (byteToInt < 0) byteTolInt += 256;
C = (char) byteTolnt;
P = ""+C,’

while (true) {

inputByte inputFile.readByte() ;
byteToInt = new Byte (inputByte) .intValue();
if (byteToInt < 0) byteTolInt += 256;

C = (char) byteTolInt;

// if P+C is present in dictionary
if (dictionary.containsKey (P+C)) {

P = P+C;

else {
BP = convertTol2Bit (dictionary.get (P));
if (isLeft) {
buffer[0] = (byte) Integer.parselnt (BP.substring(0,8),2);
buffer[1] = (byte)
Integer.parselnt (BP.substring(8,12)+"0000",2);
}

else {
buffer[1] += (byte)
Integer.parselnt (BP.substring(0,4),2);
buffer[2] = (byte)
Integer.parselnt (RP.substring (4,12),2);
for (i=0;i<buffer.length;i++) {
outputFile.writeByte (buffer[i])
buffer[i]=0;
b}
isLeft = !isLeft;
if(dictSize < 4096) dictionary.put (P+C,dictSize++);

P=""+4C;

catch (IOException ie) {
BP = convertTol2Bit (dictionary.get (P));
if (isLeft) {
buffer[0] = (byte)
Integer.parselnt (BP.substring(0,8),2);
buffer[1l] = (byte)
Integer.parselnt (BP.substring(8,12)+"0000",2);

}

inputFile.close();

outputFile.close();

public static String convertTol2Bit (int i) {

String tol2Bit = Integer.toBinaryString(i);

while (tol2Bit.length () < 12) tol2Bit = "0" +
tol2Bit;

return tol2Bit;

// ========== Decompression Functions

public static void decompress () throws IOException {
arrayOfChar = new String[4096];

int i;

for (1=0;1<256; 1++) arrayOfChar[i] =

Character.toString((char)i);

// Read input file and output file

RandomAccessFile inputFile = new

RandomAccessFile (dfilename, "r") ;

RandomAccessFile outputFile = new
RandomAccessFile ("output ".concat (filename),"rw");
try A
dbuffer[0] = inputFile.readByte();
}
ddictSize++;
outputFile.writeBytes (arrayOfChar [dpreviousword] +

arrayOfChar [dpreviousword] .charAt (0));

}
/%

If word is present, we form a word with the
previousword and the first character of the

currentword and add it in a new entry

*/
else {
if (ddictSize < 4096) {
arrayOfChar[ddictSize] =
arrayOfChar [dpreviousword] +

arrayOfChar [dcurrentword] .charAt (0) ;

}
ddictSize++;

outputFile.writeBytes (arrayOfChar[dcurrentword]) ;

}

dpreviousword = dcurrentword;

}
catch (EOFException e) {
inputFile.close();

outputFile.close();

/*
public static int getIntValue(byte bl, byte b2, boolean
disLeft) {
String tl = Integer.toBinaryString(bl);
String t2

Integer.toBinaryString (b2) ;

if (disLeft) return Integer.parselnt (tl +
t2.substring (0, 4), 2);

else return Integer.parselnt(tl.substring(4, 8) + t2,

//=========read compressed lzw file for Encryption

private static byte[] readContentIntoByteArray(File file)

FileInputStream fileInputStream = null;
bFile = new byte[(int) file.length()];
try

{

}
catch (Exception e)
{
e.printStackTrace() ;

}

return bFile;

