
DEBRE BERHAN UNIVERSITY

COLLEGE OF COMPUTING

DEPARTMENT INFORMATION SYSTEMS

IMAGE BASED SORGHUM LEAF DISEASE CLASSIFICATION

USING DEEP LEARNING APPROACH

By

DAGIM FIRIDE YIMENU

DEBRE BERHAN, ETHIOPIA

September 3, 2021

II

DEBRE BERHAN UNIVERSITY

COLLEGE OF COMPUTING

DEPARTMENT OF INFORMATION SYSTEMS

IMAGE BASED SORGHUM LEAF DISEASE CLASSIFICATION

USING DEEP LEARNING APPROACH

A THESIS SUBMITTED TO THE DEPARTMENT OF INFORMATION

SYSTEMS OF DEBRE BERHAN UNIVERSITY IN PARTIAL

FULFILMENT OF THE REQUIREMENT FOR THE DEGREE OF

MASTER OF SCIENCE IN INFORMATION SYSTEMS

By

DAGIM FIRIDE YIMENU

DEBRE BERHAN ETHIOPIA

July 2020

III

DEBRE BERHAN UNIVERSITY

COLLEGE OF COMPUTING

DEPARTMENT OF INFORMATION SYSTEMS

IMAGE BASED SORGHUM LEAF DISEASE CLASSIFICATION

USING DEEP LEARNING APPROACH

By
DAGIM FIRIDE YIMENU

Name and signature of members of the examining board

Title Name Signature Date

Advisor Michel Melese (PhD) ------------------ ------------

Chair Person ------------------ ------------

External Examiner Tibebe B.(PhD) ------------------ ------------

Internal Examiner Kinide B. (PhD) ------------------ ------------

IV

DECLARATION

I declare that this thesis entitled “IMAGE BASED SORGHUM LEAF DISEASE

CLASSIFICATION USING DEEP LEARNING APPROACH” was prepared by me, with

the guidance of my advisor. The work contained herein is my own except where explicitly stated

otherwise in the text, and that this work has not been submitted, in whole or in part, for any other

degree or professional qualification.

Dagim Firide Yimenu

July 2021

This thesis has been submitted for examination with our approval as university advisor.

Micheal Melese (Ph.D.)

July 2021

V

DEDICATION

This research work is dedicated to my father Mr. Firide Yimenu, and My mother W/ro Belynesh

Bekele (Mom) for their never-ending love, support, motivation, and guidance for me from the

very beginning of my birth till now. Dear Father May your soul rest in heaven. You are my hero.

VI

ACKNOWLEDGMENTS

First, I would like to express my profound gratitude to Almighty GOD and HOLY VIRGIN

MARY for giving me the moral, psychological, and spiritual strength to accomplish this research

work. Next to Him, I would like to express my sincere gratitude to my mom for all the

indescribable sacrifices she made so that I have become who I am today. Next, my best gratitude

goes to my advisor Dr. Michael Melese, for his, invaluable support and guidance starting from

the beginning to the completion of this research work. His suggestions, ideas, and comments

were invaluable.

I would like to extend my special gratitude to Dr. Negash Hailu (Lecture and plant pathologist

at, DBU), and also thanks to Deber Berhan Agriculture Researcher center workers for their help

in obtaining samples and provide me with information about the leaf diseases.

Finally, I am deeply grateful to my friends, families, and classmates for their endless support and

encouragement throughout this research. In addition, I would like to give my gratitude to people

who are not mentioned by name but whose effort helped me much all along.

Dagim Firide

August 2021

VII

ABSTRACT

Sorghum is a grain crop that is used for human and animal consumption. In areas that are too

hot, sorghum is grown and a minimum average temperature of 25 ° C is required to ensure

maximum grain production. There are many factors in sorghum production and productivity

enhancement, among them crop diseases are the major ones. The early detection of sorghum

diseases is one of the main reasons that can reduce the yield production loss, and this requires a

huge amount of effort, money, and time. To address these problems, the researcher proposed a

deep learning approach for the classification of sorghum diseases based on their leaves. To do

so, the design science research methodology was followed. To conduct this study, a total of 4000

images were collected from shewarobit werda kobo villages, North Shewa zone, and prepared.

After collecting the necessary images, the researcher applies image preprocessing techniques

such as image resizing, normalizing images, and noise removing were performed. And also,

data augmentation techniques were performed. In feature extraction, the researcher applies

Gabor filter on the raw image for texture feature extraction. It is used for detecting and selecting

important features that account for the symptom of the disease. This research work focuses on

classifying three types of sorghum leaf diseases: Anthracnose, leaf blight, and rust. Based on

this, two Convolutional Neural Network frameworks were proposed namely: train the deep

neural network model from the scratch and transfer learning a pre-trained network model.

Finally, the developed classifier model has been through accuracy, precision, recall, and F-

measure. Experimental result shows that the accuracy obtained from transfer learning model

VGG19 and VGG16 achieves an accuracy of 91.5%, and 87.75% respectively. Conversely, the

proposed model achieves an accuracy of 94.91%, while after applying Gabor filter the proposed

model achieves an accuracy of 96.75%. As a result, training from the scratch model with Gabor

was selected for developing an effective and robust model for classifying sorghum leaf disease.

Keywords: Sorghum crop, Deep-learning, Convolutional Neural Network, Transfer learning,

training from the scratch, Gabor filter

VIII

Table of Contents

DECLARATION .. IV

DEDICATION ... V

ACKNOWLEDGMENTS .. VI

ABSTRACT ... VII

LIST OF FIGURES ... XII

LIST OF TABLES ... XIII

LIST OF ALGORITHMS .. XIV

LIST OF ACRONYMS AND ABBREVIATIONS .. XV

CHAPTER ONE ... 1

INTRODUCTION .. 1

1.1 Background of the Study .. 1

1.2 Motivation .. 4

1.3 Statement of the Problem ... 5

1.4 Objectives ... 8

1.4.1 General Objective ... 8

1.4.2 Specific Objectives ... 8

1.5 Scope and Limitation of the Study ... 9

1.6 Significance of The Study .. 10

1.7 Methodology .. 10

1.7.1 Research Design.. 11

1.7.2 Literature Review.. 11

1.7.3 Data Collection ... 11

1.7.4 Tools and Implementation .. 11

1.7.5 Evaluation method .. 12

1.8 Organization of the Thesis ... 12

CHAPTER TWO .. 14

LITERATURE REVIEW AND RELATED WORK ... 14

2.1. Introduction .. 14

2.2. Overview of Sorghum .. 14

2.3. Sorghum in Ethiopia... 15

2.4. Sorghum diseases ... 16

IX

2.5. Computer vision ... 19

2.6. Digital image processing .. 20

2.7. Machine learning .. 30

2.8. Deep Learning Approach ... 32

2.8.1 Autoencoder .. 34

2.8.2 Restricted Boltzmann Machines (RBMs) ... 34

2.8.3 Recurrent Neural Network (RNN) .. 34

2.8.4 Convolutional Neural Network ... 34

2.9. Loss functions .. 45

2.10. Optimization Techniques .. 46

2.11. Regularization of Convolutional Neural Network.. 48

2.12. Convolutional Neural Network Architectures .. 49

2.12.1 AlexNet ... 50

2.12.2 GoogLeNet(Inception) .. 50

2.12.3 VGG-Net ... 51

2.12.4 ResNet ... 52

2.12.5 DenseNet ... 52

2.13. Evaluation technique .. 52

2.14. Related work ... 54

2.14.1 Executive summary ... 59

CHAPTER THREE .. 60

METHODOLOGY ... 60

3.1. Introduction .. 60

3.2. Research methodology ... 60

3.2.1. Problem identification and motivation .. 62

3.2.2. The objective of the solution... 62

3.2.3. Design and development ... 62

3.2.4. Demonstration ... 62

3.2.5. Evaluation ... 63

3.2.6. Communication ... 63

CHAPTER FOUR ... 64

SYSTEM DESIGN ... 64

X

4.1 Introduction .. 64

4.2 Proposed Framework.. 64

4.3 Image Acquisition .. 66

4.4 Image Preprocessing .. 67

4.1.1 Image resizing ... 67

4.1.2 Removing noise .. 67

4.1.3 Label Encoding ... 69

4.1.4 One hot Encoding ... 69

4.5 Feature extraction ... 70

4.6 Data augmentation.. 72

4.7 Normalization ... 73

4.8 Loading the classifier model .. 73

4.8.1 Training the model from the scratch ... 74

4.8.2 Designing CNN models using Transfer Learning .. 77

4.9 Classification .. 77

4.10 Performance evaluation .. 77

CHAPTER FIVE .. 78

EXPERIMENT AND RESULT DISCUSSION ... 78

5.1 Introduction .. 78

5.2 Description and Preparation of Dataset .. 78

5.3 Building the Model... 78

5.4 Experimental Analysis and Result .. 79

5.4.1 Experiments on transfer learning .. 79

5.4.2 Experiments on training from scratch ... 83

5.5 Summary of experimental result .. 87

5.6 Comparing this Study with Related Works .. 88

5.7 Development the Prototype .. 89

5.8 User Acceptance Test ... 91

5.9 Discussion .. 93

5.10 Summary of the experiment ... 94

CHAPTER SIX ... 95

CONCLUSION AND RECOMMENDATION .. 95

XI

6.1 Introduction .. 95

6.2 Conclusion .. 95

6.3 Contribution of the Study ... 96

6.4 Recommendation .. 97

6.5 Future work .. 97

References .. 99

Appendix-I ... 110

Appendix-II ... 111

XII

LIST OF FIGURES
Figure 2. 1 Sample image of sorghum crop .. 15

Figure 2. 2 Anthracnose Sorghum Leaf diseases .. 17

Figure 2. 3 Sorghum leaf blight disease.. 18

Figure 2. 4 Sorghum rust leaf disease ... 19

Figure 2. 5 Fundamental steps of digital image processing .. 21

Figure 2. 6 Image segmentation techniques .. 23

Figure 2. 7 Roberts Cross convolution masks .. 24

Figure 2. 8 Classification feature extraction method .. 28

Figure 2. 9 Typical machine learning approach .. 31

Figure 2. 10 Venn diagram for deep learning ... 33

Figure 2. 11 Overview of CNN architecture ... 35

Figure 2. 12 The operation of the convolutional layer.. 37

Figure 2. 13 Convolution operation with zero paddings... 38

Figure 2. 14 Applying stride to convolve the image ... 39

Figure 2. 15 Sigmoid functions ... 40

Figure 2. 16 Tanh function.. 41

Figure 2. 17 Rectified linear unit (ReLU) activation function .. 42

Figure 2. 18 Max-pooling operations.. 43

Figure 2. 19 Average pooling operation ... 44

Figure 2. 20 The operation of the fully-connected layer .. 45

Figure 2. 21 AlexNet Architecture .. 50

Figure 2. 22 VGG-Net Architecture ... 51

Figure 3. 1 Design Science Research Methodology ... 61

Figure 4. 1 Proposed architecture ... 65

Figure 4. 2 Images (left) before Gaussian noise (right) after applying Gaussian filtering 69

Figure 4. 3 Left: original image Right: image on the left applied with Gabor filter 71

Figure 4. 4 Original images (Left) augmented image (right) .. 73

Figure 4. 5 Proposed CNN classifier model ... 75

Figure 5. 1 Performance comparison of transfer learning .. 83

Figure 5. 2 Performance comparison of training from scratch ... 87

Figure 5. 3 Launch the Flask server and get an IP address ... 90

Figure 5. 4 User interface .. 90

Figure 5. 5 Uploading sorghum leaf image from disk .. 91

Figure 5. 6 Sample result of the model ... 91

XIII

LIST OF TABLES
Table 2. 1 Confusion matrix ... 52

Table 4. 1 Number of collected datasets ... 66

Table 4. 2 Label Encoding .. 69

Table 4. 3 One-hot encoding ... 70

Table 4. 4 Hyper-parameter description ... 77

Table 5. 1 Confusion matrix of VGG19 ... 80

Table 5. 2 Classification report of VGG19 ... 80

Table 5. 3 Confusion matrix of VGG16 ... 81

Table 5. 4 Classification report of VGG16 ... 82

Table 5. 5 Confusion matrix of the proposed model before applying Gabor 84

Table 5. 6 Classification report of the proposed model before applying Gabor 84

Table 5. 7 Confusion matrix of the proposed model after applying Gabor filtering 85

Table 5. 8 Classification report of the proposed model after applying Gabor 86

Table 5. 9 Comparison of all experiment.. 87

Table 5. 10 Comparison of the Proposed System with other researchers' work 89

Table 5. 11 User acceptance evaluation .. 92

XIV

LIST OF ALGORITHMS

Algorithm 4. 1 Image resizing .. 67

Algorithm 4. 2 Algorithm for removing noise .. 68

Algorithm 4. 3 Generating and applying filters on image .. 71

Algorithm 4. 4 Data augmentation.. 72

Algorithm 4. 5 Algorithm for normalizing an image .. 73

XV

LIST OF ACRONYMS AND ABBREVIATIONS

ANN Artificial Neural Network

CNN Convolutional Neural Network

CSA Central Statistical Authority

DSR Design science research

GDP Gross domestic product

GLCM Grey Level Co-occurrence Matrix

HIS Hue Saturation Intensity Color Space

HSV Hue, Saturation, Value Color Space

KNN K-Nearest Neighbors

LUV Luminance chromaticity values of color images

RGB Red Green Blue

WEKA Waikato Environment for Knowledge Analysis

YCbCr Green (Y), Blue (Cb), Red (Cr) (digial video color space)

DNN Deep neural networks

ML Machine learning

DL Deep learning

SVM Support vector machine

ILSVRC ImageNet large-scale visual recognition challenge

VGG Visual Geometry Group

UCI University of California, Irvine

1

CHAPTER ONE

INTRODUCTION

1.1 Background of the Study

Over the 10,000 years since agriculture began to be developed, people everywhere have

discovered the food value of wild plants and animals, and domesticated and bred them. The

word Agriculture is the most comprehensive used to indicate the many ways in which crop

plants and domestic animals sustain the global human population by providing food and other

products [1]. The English word agriculture derives from the Latin Ager (field) and Culture

(cultivation) when they combined, Agriculture is the science and art of farming including the

work of cultivating the soil, producing crops, planting forest plants (trees), raising livestock,

and rearing fisher [2].

Agriculture is diverse and the backbone of the economy for developing countries ranging from

relatively small hunting/fishing to forestry and beyond [3]. Nowadays, in the middle- and low-

income countries, where the world’s farmers are found, agriculture accounts for a much greater

share of national income and employment for income and 54% of employment [4]. Besides,

this sector is also the backbone of the Ethiopian economy, and it determines the growth of all

other sectors and, eventually, of the completely national economy. It accounts for more than

50% of the gross domestic product (GDP), more than 85% of the labor force, and more than

90% of the foreign currency [5], from these crop productions, accounts for 60% of the sector's

output on average, while livestock accounts for 27% and other areas account for 13% of the

overall agricultural benefit.

Over the past decades, Ethiopian agriculture has achieved remarkable growth.. The use of

newer inputs, such as chemical fertilizers and improved seeds, has more than doubled

significantly, accounting for part of that growth. However, significant land expansion, increase

in labor use and growth in total factor productivity (TFP) are also estimated at 2.3% per year

[6].

2

The crops of Ethiopian are complex, involving significant variation in crops grown across the

various regions and agro-ecologies of the country. Smallholders account for 96% of the total

area (central statistics agency of Ethiopia 2004-2005 Ec.) cultivated and, for the main crops,

produce the key share of total production. The Meher Season, with harvests between

September and February, is the key crop season. The center of Ethiopia's agriculture and food

economy are five major bowls of cereal (teff, wheat, maize, sorghum, and barley) accounting

for around three-quarters of the total cultivated area and 29%

of agricultural GDP in 2005/06 (14 % of total GDP) [7].

Sorghum [Sorghum bicolor (L.) Moench] is classified under the family Poaceae (grass family),

tribe and ropogoneae, genus bicolor, species bicolor [8]. Sorghum is a grain crop that is used

for human and animal consumption. In areas that are too hot, sorghum is grown and a

minimum average temperature of 25 ° C is required to ensure maximum grain production. It is

one of the cereals currently grown with the highest drought tolerance due to the morphological

features of the community. It rolls its leaves during the drought to decrease the water loss due

to perspiration. If the drought goes on, instead of dying, it becomes dormant [9].

Sorghum is the third-largest cereal in Ethiopia, after teff and maize in terms of area coverage

and total production. According to, (CSA (Central Statistical Authority, 2018), accounts for

18.53% of the total area allocated to cereals, and 19.3% of the area covered by cereals. After

Sudan, Ethiopia is also the second-largest sorghum producer in eastern and southern Africa

[10]. However, sorghum crop production is affected by various biotic and abiotic constraints.

The biotic stresses, diseases caused by different fungal pathogens play a significant role in

restricting its development. Leaf blight, downy mildew, rust, anthracnose, sorghum smuts,

loose smut, and long smuts are the diseases that affect sorghum crop production [11]. These

diseases are major in Ethiopia that is now considered one of the most damaging sorghum crops

in most of the country's where sorghum is grown. These diseases affect the various sections

and stages of the crop, decreasing its production significantly [11]. Therefore, Identifying and

recognizing these diseases through different methods including manual and computer-based

systems are critical.

Author in [12] stated that in most cases, plant diseases are seen as spots on their leaves that are

more visible to the human eye. However, some diseases do not appear on the leaves and others

are appearing in later stages after they already caused severe effects on the plants. In such a

3

case [13] [14] suggested that use a computerized system that would able to detect the diseases

timely and accurately through computer algorithms and analytical tools.

With the evolution of soft computing and the advancement of image processing techniques, the

very way we are living today is radically changed. Soft computing is a collection of artificial

intelligence-based computational techniques including the fundamentals of the neural

network, fuzzy logic, and genetic algorithms. Artificial intelligence (AI) refers to the

simulation of human intelligence in machines that are programmed to consider like humans

and imitate their actions from the simplest to those that are even more complex. The goals of

artificial intelligence include learning, reasoning, and perception. Image processing is the

method of manipulating an image to either enhance the quality or extract relevant information

from it [15].

AI Image Processing Services combine advanced algorithmic technology with machine

learning and computer vision to process large volumes of pictures easily and quickly. When

applied to image processing, artificial intelligence (AI) can power recognition and

authentication functionality for ensuring security in public places, detecting and recognizing

objects and patterns in images and videos, and so on [16].

AI is making a huge impact in all domains of the industry. Every industry looking to automate

certain jobs through the use of intelligent machinery. Agriculture and farming are one of the

oldest and most important professions in the world. It plays an important role in the economic

sector. Nowadays, this industry is turning to Artificial Intelligence technologies to help

healthier crops, control pests, monitor soil, and growing conditions, organize data for farmers,

help with the workload, and improve a wide range of agriculture-related tasks in the entire food

supply chain [17].

Modernizing conventional practices is an urgent need for developing countries where a large

percentage of the population still relies on agriculture. Furthermore, the manual surveillance of

the disease does not produce a satisfactory result. Therefore, many new techniques for early

detection of plant diseases, image processing has now become a possible method by which not

only the disease can be identified early and accurately, but it can also be quantified

successfully [18].

https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Neural_network
https://en.wikipedia.org/wiki/Neural_network
https://en.wikipedia.org/wiki/Fuzzy_logic
https://en.wikipedia.org/wiki/Genetic_algorithm

4

Therefore, Artificial Intelligence in agriculture is not only helping the farmers to identify the

diseases at early stages but also automate their farming and shifts to precise cultivation for

higher and better-quality crop yield. Companies involved in improving Artificial Intelligence-

based products or services like training data for agriculture, drone, and automated machine

making will get technological advancement in the future will provide more useful applications

to this sector helping the world deal with food production issues for the growing population.

The integration of different technology from AI enables to design of a system with high

performance [15].

1.2 Motivation

Why the researcher was inspired to conduct this study is, agriculture sector contributes to the

daily needs of the Ethiopian population and is also the backbone of the country’s economy.

However, this sector suffers poor cultivation practices and frequent drought. Among this sector

sorghum is one of the most cereal crops used for human and animal consumption. In this

sector, farmers are the main elements, but they are facing complications occurring due to plant

pests and diseases. Most farmers in Ethiopia do not have access to information about pests and

disease types and also their identification mechanism [19]. They have to depend on plant

pathologists to resolve these problems. Examining the plant affected by pests and disease

through a plant pathologist manually is an expensive and time-consuming process. Plants

affected by a disease if not diagnosed within time will result in poor quality and low quantity

of production. On the other hand, one way to reduce this issue is early detection of the diseases

through the current technology, deep convolutional neural networks, which achieve better

results in detecting diseases that consist of related or closed features.

Deep learning simplifies the complex feature extraction problem and hence will be used for

image recognition. Nowadays, by using deep convolutional neural networks, we can diagnose

and detect different leaf diseases which have very similar features. Thus, the researcher

motivated to develop a model that uses a computer vision to recognize and classifies sorghum

leaf disease in its early stage will help the sorghum growers to use the biological pest control

mechanism effectively.

5

1.3 Statement of the Problem

Agriculture is a key for the development of the country while it leads to growth and played an

important role in reducing poverty and transforming the economies of many countries [3].

Hence this sector has recorded remarkable rapid growth in the last decade in Ethiopia. The

sector has five major kinds of cereals namely: teff, wheat, maize, sorghum, and barley are the

core agriculture and food economy of Ethiopia. These cereals comprise 78.23% (8.8 million

ha) of the field crops of which sorghum accounts for 14.41%, this crop is grown in almost all

regions occupying an estimated total land area of 1.6 million ha [20].

Currently, Sorghum production has significantly increased in recent years, from 1.7 million

tons/ha in 2004/05 to nearly 4.0 million in 2010/11. Whereas the national average sorghum

productivity in Ethiopia is 2.1 tons/ha (CSA, 2012) which is far below the global average of

3.2 tons/ha (FAO, 2005), this is because due to the challenge of different factors. These factors

are a hindrance to sorghum production and productivity enhancement. Among these factors,

crop diseases are the major ones. These diseases can affect the quality and quantity of sorghum

production and economic losses in agriculture [20].

Researchers in [20] [21], stated that these diseases are caused by pests, insects, and pathogens,

there are several sorghum leaf diseases, among them, Anthracnose, Leaf blight, and rust are the

major ones and mostly occurred in a too hot area which is sorghum grown. Sorghum

anthracnose, caused by Colletotrichum sublineolum is one of the major widespread, mostly the

disease observed when the weather is hot and humid. In Ethiopia, 93.7% of sorghum fields are

infected by this disease, and 26% of crop yield losses in the susceptible cultivar. In addition,

sorghum leaf blight disease also affects 84.8% of sorghum fields and 35% of sorghum crop

yield losses [22] [23].

Therefore, having an early detection model will help the farmers and extension workers to have

timely treatment and most importantly to prevent the diseases from spreading into the whole

farm which helps to alleviate major damages in crop production losses. Accordingly,

developing a classifier model that can be able to accept a given sorghum leaf and classify the

6

disease based on the characteristics of the leaves through a system becomes very important.

Towards, solving the stated problem there some works previously have been done.

Soni et al., [24], developed a classifier model for detecting and classifying sorghum leaves

diseases. The classifier model was developed through deep learning approaches with a pre-

trained model know as Alex-Net. Thus, the developed classifier model is able to recognize leaf

diseases as leaf blight, Sooty Stripe, and Rough Leaf Spot. However, the developed model

didn’t include one of the serious sorghum leaf diseases such as rust and anthracnose.

Additionally, the study has used only one pre-trained model that means others currently

developed pre-trained models may achieve the best accuracy for classifying sorghum leaf

diseases.

Rahman et al., [25] have proposed a comparative analysis of the machine learning approach for

plant disease identification and classification. To accomplish the study, sorghum, cabbage, and

citrus crops are selected. The main objective of the study was comparative analysis for

identifying sufficient features to classify the selected crop leaf diseases as healthy and non-

healthy. Towards identifying the best feature, the researcher has selected color and statical

features, and test them through traditional machine learning algorithms such as RF, SVM, and

ANN. Conversely, the study was not developed a classifier model rather than identifying the

best features.

Ahmed et al., [26], the researchers have proposed a model that detects and classifies rice leaf

diseases. To develop the model WEKA tool and KNN, decision tree, Naïve Bayes, and logistic

regression classification algorithms are implemented. Thus, the developed classifier model can

recognize leaf diseases as Bacterial leaf blight, Brown spot, and Leaf smut. However, the

researcher didn’t include major sorghum leaf diseases such as anthracnose and rust. In

addition, which diseases are correctly detected and classified by the proposed model is not

mentioned.

As stated in [6], the traditional approach (i.e., visual examination) for the classification of these

diseases is through eye observation by experts, this examination method is prone to error as the

diagnosis is based on their experience of the farmer and extension worker. The method also

takes a great deal of effort and time, is tedious, susceptible to error, and also it is subjective to

7

identify sorghum crop disease. The decision-making capability of a human inspector also

depends on physical conditions such as workload, pressure, tiredness, and eyesight besides the

level of expertise.

Studies in [24] [25] [26], tried to attempt the problem of plant disease detection and

classification using machine learning and datamining. However, the first study didn’t include

major sorghum leaf diseases such as anthracnose and rust, and the researcher used a single

classifier namely Alex-Net. According to [27] this classifier is very less and hence it struggles

to learn features from images and also it takes more time to achieve higher accuracy results

compared to future models. In the second studies the researchers didn’t develop a classifier

model rather they tried to identify which are the best features for recognizing the diseases. In

addition, the researchers extract features manually, whereas the Author in [17], stated that

extracting features manually can affect the performance of the classifier model because the

generated features are not high-level features that describe the disease. Moreover, this learning

algorithm (i.e., machine learning) has suffered some limitations like occlusion and deformation

limitation, which means that if the targeted images were covered by another object and/or the

targeted images captured in different positions this learning algorithm didn’t recognize it as

well.

In this study, the deep-learning approach has been chosen, [28] this approach is the sub-field of

machine learning and has the advantage of the ability to generate new features from the limited

available training datasets and it reduces the time required for feature engineering. Besides, the

approach has several algorithms, the one and the most popular is CNN, [29] this algorithm can

detect important features without stating them explicitly, it has computationally efficient, and

also the algorithm has captures the three-dimensional features from an image. The algorithm

presenting an operative class of models for a better understanding of contents present in an

image, so resulting in better image detection and recognition. CNN's are efficiently and

effectively used in many pattern and image recognition applications [30]. Besides, the

researcher extracts the texture features from an image using GLCM and Gabor filtering rather

than color or shape feature because for this study texture feature can differentiate the different

categories of the diseases whereas there are disease that change the color of one sorghum leaf

into other color sorghum and also the diseases can’t affect the size of the leaf. Since, the

8

researcher used two CNN architectures namely: training from scratch and transfer learning. In

training from the scratch model the researcher setting different hyper-parameter values and

trained the network from scratch. In transfer learning the research selects two pre-trained

models namely VGG19 and VGG16. These pre-trained networks are more effective for image

classification and have high classification accuracy than other pre-trained models [31].

Therefore, accurate detection and classification of sorghum leaf disease using deep learning are

very crucial to control the diseases as well as to increasing agricultural productivity. The latest

improvements in deep learning have increased its capability to solve complex visual

recognition tasks. Thus, there is a need to detect and classify sorghum leaf diseases using deep

learning techniques. Therefore, the purpose of this research work is to build a model for

sorghum leaf disease using a deep learning approach which will be crucial for the sorghum

producer and agricultural extension worker to draw up plans and policies for enhancing

sorghum crop production. Besides, this study attempts to obtain answers for the following main

research questions:

 Which training methods are more appropriate for classifying sorghum leaf diseases?

 Which features extraction techniques is the best for classifying sorghum leaf diseases?

 To what extent does the developed model correctly classify sorghum leaf diseases?

1.4 Objectives

1.4.1 General Objective

The general objective of this research is to design and develop a model that detects and

classifies sorghum leaf diseases using a deep convolutional neural network.

1.4.2 Specific Objectives

To achieve the general objectives, the following specific objectives are formulated.

 To conduct a literature review of previous studies to understand the domain.

 To identify and collect the required datasets for the Sorghum disease.

 To make the data cleaned and smooth using pre-processing techniques.

 To apply an appropriate features technique.

 To identify the right training.

9

 To design the architecture of sorghum leaf diseases classifier.

 To develop the classifier model.

 To evaluate the performance of the developed model.

 To develop a prototype of the proposed system.

 To forward appropriate recommendations for future research based on the finding.

1.5 Scope and Limitation of the Study

As detection and classification of leaf disease is a very vital area of study to deal with, it is

important to make some sort of boundary of task coverage for having better outcomes. The

study is conducted based on the data obtained from Shewa Robit worda kobo village, North

Shewa zone. Therefore, pre-processing techniques were implemented to make the data smooth

and cleaned. The main objective of this study is to develop sorghum leaves disease classifier

model. To do so, a deep learning-based approach with training from scratch (i.e., setting

different parameters and hyper-parameter from the beginning of building the model), and

transfer learning (i.e., reusing previously trained model). Hence, these methods automatically

extracting the representative features from the images and identifying the features of image

elements that are given to a convolutional neural network classifier. In addition, the researcher

extracts texture features using Gabor filtering. Finally, the researcher has developed a graphical

user interface for the developed model to be suitable and applicable for the end-users. Besides,

the following are the major limitation of this study.

 As a result, this research work here is limited to only classifying an input sorghum leaf

image into either of four different classes i.e., Healthy (uninfected leaf), Rust,

Anthracnose, and leaf blight, neither stem nor head and other parts of the crop.

 This study was limited to developing a classifier model for sorghum leaf disease using

two pre-trained models, namely VGG-16 and VGG19. However, other pre-trained

models might show better accuracy. This was happened due to time and resource

constraints.

 After the identification and detection of the disease, recommending the appropriate

treatment for the identified disease, classifying the sorghum leaves damaged due to

https://en.wikipedia.org/wiki/Shewa_Robit

10

nutrient deficiencies, and estimating the severity of the detected disease is beyond the

scope of this research work.

1.6 Significance of The Study

It is a viable fact that artificial intelligence has come to make the life of a human being easier

and there is no way to eliminate its use. It is therefore left to the users to utilize it appropriately

to improve their living conditions. At the end of the study, this study will help pathologists,

agricultural extension workers, farmers, and the government to understand the significance of

artificial intelligence in general. In addition, the developed classifier model will have the

following significance.

 It will help pathologists and agricultural workers to easily classify the disease at the

beginning stage. And also, the developed model provides reliable, less time-consuming,

coast effective, and effective way of classifying sorghum diseases from their leaves,

and also it avoids subjectivity. In addition, Speed up the detection and diagnosis

process and reduce the time and effort of farmers and pathologist. Hence, it improves

the effectiveness of disease control mechanisms.

 For the government, the annual production of sorghum crops will increase, hence the

crop will not only be for local consumption rather the opportunities for exporting the

crop this can increase foreign currency.

 The study also will help the farmers to increase the sorghum yield

production/productivity of the crops, which means that the income also will be

increased. In addition, it will reduce the cost of production that brings huge losses due

to the excessive use of fungicides on their plants.

 Finally, this study would serve as an input for other researchers who interesting to

conduct further studies into the problems related to image processing and plant disease.

1.7 Methodology

The following methods and procedures are incorporated in the advancement of the study to

achieve the objective of this research work.

11

1.7.1 Research Design

Design science is seen as a research activity that builds new or invents, innovates artifacts for

problem-solving or improvement attainment such new innovative artifact creates a new reality,

rather than the existing reality been explain [32]. For the completion of this study, design

science research methodology has been followed.

1.7.2 Literature Review

To accomplish the objective of the study and to gain a deeper understanding of the problem,

different works of literature such as thesis, articles and conference papers, and books that are

related to the research topic have been reviewed and communicated with domain experts.

1.7.3 Data Collection

The required data is collected and prepared by the researcher from the Amhara region with the

help of the domain expert. The data is from the Shewarobit Woreda Kobo village, North Shewa

zone. The digital camera has used to collect the required images, and 4000 images were

collected.

1.7.4 Tools and Implementation

For this study, the experiments and related analysis processes are done on a computer with

Intel® CoreTM i5-5200U CPU @ 2.70 GHz 2.20GHz Speed, 8.00 GB RAM, and 1 TB hard

disk space with 64-bit Microsoft Windows 10 operating system. For software, python 3.9

programming language, the main reason for selection of this language is mainly, it’s simple to

use, efficient, code readability and flexible [33]. Python utilizes different libraries like,

OpenCV (Open-Source Computer Vision) is a library of python programming functions mainly

designed to solve computer vision problems, NumPy is the fundamental package for scientific

computing with Python that contains a powerful N-dimensional array object this library is

needed to treat images as matrices, and Scikit-learn is a free machine learning library for

Python. It features various classification, regression and clustering algorithms and is designed

to interoperate with NumPy and SciPy.

Keras is a modular neural network library written in Python capable of running on top of either

TensorFlow (TF) or Theano. The library was conceived to let the users start experimenting as

12

fast as they could, being able to go from idea to result with the least possible delay. The reason

TF was selected as a backend is that both TF and Keras were optimized to perform deep

learning tasks. Both systems are implemented in Python which allows the user to work with

them compactly without having to use multiple files. With Keras, the model has to be first

defined, either a Sequential model or a Graph model. In a Sequential model, the layers are

stacked and the output from a layer feeds the input of the next layer until it reaches the output

layer. On the other hand, the Graph model allows the users to get the output from the desired

layer and feed that output to the desired layer, permitting the generation of multiple output

networks or getting the output in an intermediate layer of the model [34].

For this researcher work, the Sequential model is selected. Finally, the researcher has used the

flask micro-framework to develop a final prototype. Flask is a micro web framework written

in Python. It does not require particular tools or libraries and it has no database abstraction

layer, form validation, or any other components where pre-existing third-party libraries provide

common functions

1.7.5 Evaluation method

The researcher has used performance evaluation metrics to measure the developed classifier

model performance for sorghum leaf diseases before applying final deployment in real-world

use, it has to be tested because it is important to evaluate the model, and review the steps

executed to construct the model and to be certain it properly achieves the business objectives

[35]. Therefore, for this study, the developed classifier model is evaluated through different

performance evaluation metrics such as accuracy, precision, recall, and F-measure.

1.8 Organization of the Thesis

This research work is organized into five chapters. The first chapter mainly Dealt with

background of the study, motivation, statement of the problem objective of the study,

significance of the study, scope, and limitation, and research methodology of the study.

Chapter two deals with the literature review and related work. The literature review section

tries to give an introduction to sorghum production in Ethiopia, sorghum leaf disease, computer

vision, digital image processing, machine learning, and deep learning concepts in general.

13

Under the related work section, studies previously done by different authors which is relevant

to this study and more related to leaf disease detection using image processing and machine

learning algorithms are included, and finally an executive summary of the related work.

Chapter three deals with the selected methodology for conducting this study and the process

model of the methodology. Chapter four discuss about the proposed framework development,

and the process flow in detail of this study. It discloses the technique and the algorithms that

the researcher used to accomplish this study.

Chapter five provides research findings, analysis, and discussion obtained through the

proposed and pre-trained model. The final chapter, deals with conclusions, the contribution of

the study, and recommendations for future work that will need to be done.

14

CHAPTER TWO

LITERATURE REVIEW AND RELATED WORK

2.1. Introduction

This chapter is concerned with the overview of sorghum in section 2.2. Next to this, total

sorghum production and major sorghum leaf disease are covered in sections 2.3 and 2.4

respectively. Then section 2.5 tries to give details about what a computer vision is all about.

Section 2.6 raises a detailed discussion of what digital image processing is, following this,

what are the basic digital image processing steps are raised in section 2.7 in line with this

section 2.8 discusses machine learning. Then Section 2.9 tries to list out some deep learning

approaches. In addition, in this chapter, the different hyper-parameters, the architecture of

CNN, evaluation techniques, related works, and executive summaries are discussed.

2.2. Overview of Sorghum

Sorghum is also known as Sorghum bicolor is one of the most cultivated tropical cereal grass.

Originated from North Africa, possibly in the Nile or Ethiopian regions as recently as 1000 BC

[36]. The cultivation of sorghum played a crucial role in the spread of the Bantu (black) group

of people across Sub-saharan Africa. Nowadays, sorghum is cultivated across the world in

warmer climatic areas. It is recognized as a significant crop throughout the arid tropical and

sub-tropical regions of Africa, Asia, and Central America. This crop is the world’s fifth major

important cereal grain, after wheat, maize, rice, and barley [21].

Sorghum is still mainly a survival food crop and also the main food for millions of people in

the semiarid regions of Africa and Asia where it is used to make food products such as

‘tortillas’, ‘bread’, ‘cakes’, ‘noodles’, ‘couscous’, ‘beer’, and ‘porridgee’ [37]. In Ethiopia, this

crop is used for making ‘injera’, ‘kitta’, ‘kollo’, and locally made beverages (local drinks such

as Tela and Areke) [20]. Hence, the crop is mostly cultivated in drier areas, particularly on

shallow and heavy clay soils. It is a broadly adapted species capable of growing in semiarid,

subtropical, tropical, and temperate climates. It has a widespread root system and the ability to

become dormant during water stress make refined sorghum drought-resistant typically

15

requiring only one-half to two-thirds the amount of rainfall [38]. Figure 2.1 shows that

sorghum crop varieties.

Figure 2. 1 Sample image of sorghum crop adopted from [38]

As shown in Fig 2.1, Food-grade sorghum varieties are defined by several key traits including

white pericarp color, thin mesocarp, normal endosperm type, low tannin content, and tan-plant

necrotic lesion color.

2.3. Sorghum in Ethiopia

Sorghum is cultivated on 44.4 million hectares worldwide with an average of 1314 kg/ha while

the average from developed and developing countries is 1127 kg/ha. Ethiopia is the third-

largest producer of sorghum in Africa after Nigeria and Sudan with a contribution of about

12% of yearly production [20] [39]. According to [20] sorghum production in Ethiopia is

improved by both land expansion and yield improvement, which means that the yield increased

from an average of 1.4 tonnes/ha to 2.1 in 2004/05 and 2010/11 respectively, meanwhile, land

16

expansion increased by 50 percent, while the area under sorghum production increased by 51

percent (from 1.2 million ha in 2004/05 to 1.9 million ha in 2011. The crop is grown in almost

all Ethiopian regions occupying an estimated total land area of 1.6 million (ha).

Sorghum is produced in different parts of Ethiopia including, East and West Hararge, Amhara,

Tigray, Southern Nations Nationalities and Peoples' Region (SNNPR), and others, are

contributing 39.9%, 38.7%, 11.8%, 4.4%, and 5.2% of the national production, respectively

[40]. From the total production of sorghum crop, 11.5% of the crop is wholesaled, 74.4% being

consumed at the local level, 9.2% retained as seed, 1.2% of the crop used as payment of wages

in kind, and 0.9% used as animal feed [41]. With the diverse nature of the farming systems and

climatic conditions under which sorghum is grown, the production of sorghum in Ethiopia is

adversely affected by different biotic and abiotic diseases. The most constraint sorghum

diseases are such as (anthracnose, leaf blight, gray leaf spot, Rust, and downy mildew). These

diseases have become increasingly constrained to sorghum production [42] [43].

2.4. Sorghum diseases

Sorghum leaf disease reduces crop production and affects the agricultural economy, the

diseases are caused by three types of attacks including viral, bacterial, or fungal. During the

past decade, sorghum improvement has been important in eastern Africa [44]. Several diseases

affect grain sorghum grown such as Anthracnose, Rust, Leaf blight, sooty stripe, sooty stripe,

Downy Mildew, and Smut are the diseases with the greatest potential to yield losses,

widespread and economically impactful [39]. These diseases are primarily caused by fungi and

are incline to be problematic just before or during the reproductive stages of development.

2.4.1 Anthracnose sorghum leaf disease

Sorghum anthracnose, caused by Colletotrichum sublineolum is one of the major diseases

throughout the world wherever sorghum is grown and is considered one of the most damaging

leaf diseases of grain sorghum production. Mostly observed when the weather is hot and humid

and on susceptible hybrids can be severe and cause tremendous yield losses [45] [46]. This

occurs in all sorghum-growing regions of the globe. Sorghum anthracnose happens worldwide

but is more typically observed in tropical and subtropical regions where frequent rainfalls and

17

high humidity contribute to the development and spread of the disease. This disease can also

cause of reduction in kernel number and size. In Ethiopia, this disease can cause yield loss that

ranges from 26-35% in vulnerable cultivars [47] [43].

 Figure 2. 2 Anthracnose Sorghum Leaf diseases

As shown in Fig 2.2, Fungus is the cause of Anthracnose (Colletotrichum graminicolum) leaf

diseases. This disease appears as small red-colored spots on both surfaces of the leaf. The

center of the spot is white encircled by a red, purple, or brown margin.

2.4.2 Leaf blight sorghum leaf disease

Leaf blight disease has been found or observed in all of the major sorghum-growing areas of

the world this disease is caused by the fungus called Exserohilum turcicum [48]. In our

content, leaf blight is considered a widespread and major disease of productive cultivars. this

disease reduces or delays plant growth and development and as a consequence reduces the

yield of both grain and fodder. Leaf blight occurs before flowering, leading to yield loss

reaching up to 50% [46] [47].

18

Figure 2. 3 Sorghum leaf blight disease

As illustrated in figure 2.3, sorghum Leaf blight is caused by the fungus. The disease is most

readily identified by large cigar-shaped lesions on the leaf with purple margins. The straw-

colored center becomes darker during sporulation, and the lesions can be several centimeters

long and wide. Many lesions may develop and combine on the leaves, destroying large areas of

leaf tissue, giving the crop a burnt appearance [49].

2.4.3 Rust sorghum leaf disease

Sorghum rust is caused by the obligate fungal pathogen, Puccinia purpurea Cooke. This disease

is widely distributed and occurs in almost all sorghum-growing areas of the world, particularly

East Africa, India, and South and Central America [46]. Loss of grain yield from leaf rust can

be up to 50 % in susceptible varieties, mostly due to reduced seed weight. In addition, severe

rust infection also reduces the sugar content of the juice in sweet sorghum. It has also been

reported that rust is conducive to the occurrence of other diseases, such as anthracnose [49]

[50]. This fungus affects the crop at all stages of growth. The first symptoms are small flecks

on the lower leaves (purple, tan, or red depending upon the cultivar). Pustules (uredosori)

appear on both surfaces of the leaf as purplish spots which rupture to release reddish powdery

masses of uredospores. An example of sorghum rust leaf diseases is shown in Figure 2.4.

19

 Figure 2. 4 Sorghum rust leaf disease

As shown in Figure 2.4, Rust is caused by the obligate fungal pathogen. The fungus affects the

crop at all stages of growth. The first symptoms are small flecks on the lower leaves (purple,

tan, or red depending upon the cultivar). Pustules appear on both surfaces of the leaf as

purplish spots which rupture to release reddish powdery masses of pustules [42].

Present agriculture technologies are mostly diverted to machine learning (ML) algorithms, the

algorithm enables the farmer to enhance crop selection and crop yield prediction, crop disease

prediction, weather forecasting, minimum support price, and smart irrigation system [51].

Likewise, computer vision is applicable in agricultural sectors to recognize and visualize a leaf

image.

2.5. Computer vision

In the past few decades, computer vision inspection systems have become important tools in

agricultural operations, and their use has significantly increased. The application of computer

vision technology in different areas can improve the efficiency of production to a certain extent

[52]. This technology can also continuously improve the efficiency and accuracy of production

in the image processing process, achieve non-destructive construction, and promote the

continuous development of various fields such as industrial, agricultural, medical, electric

power automation systems [53].

20

Expert and intelligent systems based on computer vision algorithms are becoming a common

part of agricultural production management, and computer vision-based agricultural

automation technology is increasingly used in agriculture to increase productivity and

efficiency [54]. The ability of computer vision technology has been greatly improved, and the

improvements in resource efficiency have provided many suggestions and insights for decision

support and practices for farmers, ensuring the efficiency of agricultural production [55] [51].

It facilitates the development of precision agriculture by observing, measuring, and responding

to inter and intra-field variability in crops. There are numerous applications of computer vision

technology in agricultural automation, such as yield estimation, disease detection, weeds

identification, and quality control [56].

Compared with manual operations, the real-time monitoring of crop growth by applying

computer vision technology can detect the subtle changes in crops due to malnutrition much

earlier than human monitoring and can provide a reliable and accurate basis for timely

regulation [56]. Therefore, computer vision technology will be increasingly applied to the field

of agricultural automation and will steadily promote the development of agriculture to the era

of intelligent agriculture [52]. It has a combination of concepts, techniques, and ideas from

digital image processing, pattern recognition, artificial intelligence, and computer graphics.

Nowadays, most of the tasks in computer vision are related to the process of obtaining

information on events or descriptions, from digital images to automate tasks that the human

visual system can do [57].

2.6. Digital image processing

For mathematical analysis, an image may be defined as a two dimensional function 𝑓(𝑥, 𝑦)

where x and y are spatial (plane) coordinates, and the amplitude of 𝑓 at any pair of coordinates

(𝑥, 𝑦) is called the intensity or gray level of the image at that point [58]. When𝑥, 𝑦, and the

amplitude values of f are all finite, discrete quantities, we call the image a digital image.

Digital image is a matrix representation of a two-dimensional image using a finite number of

point cell elements, usually referred to as pixels (picture elements), each pixel is represented by

numerical values [59].

21

In imaging science, Image Processing is the processing of images using mathematical

operations by using any form of signal processing for which the input is an image, a series of

images, or a video, such as a photograph or a video frame [60]. Accordingly, image processing

is categorized into two types namely Analog and Digital Image Processing. Analog image

processing can be used for hard copies like printouts and photographs. Image analysts use

various fundamentals of interpretation while using these visual techniques [61]. Digital image

processing refers to processing digital images utilizing a digital computer. Note that a digital

image is composed of a finite number of elements, each of which has a particular location and

value. These elements are referred to as picture elements, image elements, and pixels [58].

However, one useful model is to consider three types of computerized processes, these are:

low-level, intermediate-level (middle-level), and high-level processing. The Basic Digital

Image Processing Steps will discuss in the following subsection.

There is a different step in digital image processing. For the complete implementation of an

application using digital image processing, various image processing, and neural network

approaches can be applied for the identification of the leaf diseases on the plant. Fig 2.5 shows

the fundamental steps involved in the plant leaf disease identification process.

 Figure 2. 5 Fundamental steps of digital image processing adopted from [62]

As we have seen in figure 2.5, in digital image processing collecting the necessary images is

the first step which is called image acquisition. Then the next step preprocesses the collected

images so this phase is smoothing the collected images to get high-quality images through

22

various methods like resizing, color conversion, noise removing, and so on. Then image

segmentation comes, in this phase, the images divide into several regions or objects. The

segmentation is used to increase the chance of representation of an image. Following this, the

next step is extracting the relevant information from an image, different types of image features

are used to represent an image for object recognition and/or identification like color, shape, and

texture of an image. Finally, the last step is to predict the class labels for given images.

A. Image acquisition

Image acquisition is the first step in any image processing work, in which an original input

image is acquired from the initial source. Image can be acquired differently, either capturing an

image from the actual environment or can browsing already existed image files from an

electronic source [60] Whereas, the acquired images were unprocessed.

B. Image preprocessing

Pre-processing of an image involves the removal of distortion, which has a major effect on

accuracy for identification and classification. The major task of this phase is to improve the

image quality by removing unnecessary distortions or enhancing the image quality for future

processing. The techniques have various methods like image resizing, image enhancement,

image restoration, removing noise, and soon [63].

C. Image segmentation

After preprocessing an image the next step is image segmentation. In this phase, an image

divides into several objects or regions. The segmented image features are robust for the

identification and classification of diseases. Segmentation is used to improve the chance of

representation of an image, by analyzing the image data and extract useful information for

further processing [62]. The image segmentation can be done in two ways based on similarities

and discontinuities. In similarities, the images are partitioned based on some specific

predefined criteria. But in discontinuities, the images are partitioned based on the sudden

changes in the intensity of values [48]. The popular techniques used for image segmentation

are shown in Figure 2.6, the Threshold method, edge detection-based techniques, region-based

23

techniques, clustering-based techniques, watershed-based techniques, partial differential

equation-based, and artificial neural network-based techniques, etc.

Figure 2. 6 Image segmentation techniques

Region-based method

In this technique pixels that are related to an object are assembled for segmentation. Also, this

technique is termed similarity-based segmentation, partitioning an image into regions that are

similar according to a set of predefined criteria. There won’t be any gap due to missing edge

pixels in this region-based segmentation [64]. The different types of region-based segmentation

are discussed below:

A. Region growing

The region growing based segmentation methods are the methods that segment the image into

various regions based on the growing of seeds or initial pixels. These seeds can be selected

manually (based on prior knowledge) or automatically (based on a particular application) [65].

B. Region split

This segmentation method uses two basic techniques splitting and merging for segmenting an

image into various regions. Splitting stands for iteratively dividing an image into regions

having similar characteristics and merging contributes to combining the adjacent similar

regions.

24

Edge-based method

This segmentation locates the edges, in either the first derivative of intensity is greater than a

particular threshold or the second derivative has zero crossings. In edge-based segmentation

methods, first of all, the edges are detected and then are connected to form the object

boundaries to segment the required regions [66]. Edges are detected to identify the

discontinuities in the image. Edges on the region are traced by identifying the pixel value and it

is compared with the neighboring pixels. The most well-known edge base detection techniques

are discussed below:

A. Roberts Edge Detection

This technique performs a simple, quick to compute, 2-D spatial gradient measurement on an

image. It is a simple approximation of the first derivative. It marks edge points only; it does not

return any information about the edge orientation. The simplest way of edge detection operator

and works well in binary images. Equation 2.1 shows that the Robert operators

 √[𝐼(𝑟, 𝑐) − 𝐼(𝑟 − 1, 𝑐 − 1)]2 + [𝐼(𝑟, 𝑐 − 1) − 𝐼(𝑟 − 1, 𝑐)]2 2. 1

 Where I(r,c) is image pixel at r (row) and c (column).

It performs a simple, quick to compute, 2-D spatial gradient measurement on an image. This

method emphasizes regions of high spatial frequency which often correspond to edges. The

operator consists of a pair of 2×2 convolution masks as shown in Figure 2.7 One mask is

simply the other rotated by 90°.

Figure 2. 7 Roberts Cross convolution masks

These kernels are designed to respond maximally to edges running at 45° to the pixel grid, one

kernel for each of the two perpendicular orientations. The kernels can be applied separately to

25

the input image, to produce separate measurements of the gradient component in each

orientation (call these Gx and Gy). These can then be combined to find the absolute magnitude

of the gradient at each point and the orientation of that gradient. The gradient magnitude is

given by:

|𝐺| = √𝐺𝑥2 + 𝐺𝑦2 2. 2

Although typically, an approximate magnitude is computed using:

 |𝐺| = |𝐺𝑥| + |𝐺𝑦| 2. 3

B. Sobel Edge Detection

The Sobel operator is mainly used for edge detection, and it is technically a discrete differential

operator used to calculate the estimation of the gradient of the image luminance function. The

Sobel operator is a typical edge detection operator based on the first derivative [65]. As a result

of the operator in the introduction of a similar local average operation, so the noise has a

smooth effect, and can effectively eliminate the impact of noise. The operator consists of a pair

of 3×3 convolution masks.

It works by calculating the gradient of image intensity at each pixel within the image. It finds

the direction of the largest increase from light to dark and the rate of change in that direction.

The Sobel operator uses two 3 x 3 kernels. One for changes in the horizontal direction, and one

for changes in the vertical direction. The two kernels are convolved with the original image to

calculate the approximations of the derivatives. If we define Gx and Gy as two images that

contain the horizontal and vertical derivative approximations respectively, the computations

are:

 𝐺𝑋 = [
1 0 −1
2 0 −2
1 0 −1

] ∗ 𝐴 𝑎𝑛𝑑 𝐺𝑦 = [
−1 −2 −1
0 0 0
1 2 1

] ∗ 𝐴 2. 4

Where A is the original image.

C. Prewitt Edge Detection

It will be estimated in the 3x3 neighborhood for eight directions. We have to calculate all eight

convolution masks. One complication mask is then selected, namely with the purpose of the

26

largest module [66]. It is slightly simpler to implement computationally than the Sobel

detection, but it tends to produce somewhat noisier results. This operator uses two 3×3 kernels

which are convolved with the original image to calculate approximations of the derivatives -

one for horizontal changes, and one for vertical. If A define as the source image, and 𝐺𝑥and

𝐺𝑦 are two images which at each point contain the horizontal and vertical derivative

approximations, the latter are computed as:

 𝐺𝑥 = [
+1 0 −1
+1 0 −1
+1 0 −1

] ∗ 𝐴 𝑎𝑛𝑑 𝐺𝑦 = [
+1 +1 +1
0 0 0

−1 −1 −1
] ∗ 𝐴 2. 5

 Where * here denotes the 2-dimensional convolution operation.

Threshold-based method

These methods divide the image pixels concerning their intensity level. These methods are

used over images having illumination objects than the background. The selection of these

methods can be manual or automatic (i.e., can be based on prior knowledge or information of

image features). The method split an image into smaller segments, by using one color or

grayscale value to define their boundary in image processing. Besides, this segmentation

method is generating only two classes, based on this, this technique is not applicable for

complex images.

A. Global thresholding

This technique is used when the pixel values of the components and that of the background are

fairly consistent in their respective values over the entire image. This is done by using any

appropriate threshold value/T. The value of T will be constant for the whole image. Based on T

the output image 𝑔(x, y)can be obtained from 𝑓(x, y)original image as:

 𝑔(𝑥, 𝑦) = {
1, 𝑖𝑓 𝑓(𝑥, 𝑦) ≥ 𝑇

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 2. 6

There are different global thresholding techniques some of them are: iterative thresholding,

maximum correlation thresholding, Otsu thresholding, optimal thresholding, histogram

analysis thresholding, and clustering thresholding.

https://en.wikipedia.org/wiki/Convolution
https://en.wikipedia.org/wiki/Convolution

27

B. Local thresholding

This method divides the input image into several subregions and each subregion selects a

different Threshold value. When we have illumination that comes from shadows or the

direction of illumination, a single threshold will not work well. Threshold function T(x, y) is

given by

𝑔(𝑥, 𝑦) = {
= 0, 𝑖𝑓𝑓(𝑥, 𝑦) < 𝑇(𝑥, 𝑦)

= 1, 𝑖𝑓𝑓(𝑥, 𝑦) ≥ 𝑇(𝑥, 𝑦)
 2. 7

Where 𝑇(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) + 𝑇

C. Adaptive Thresholding

This technique will take a grayscale or color image as input and, outputs a binary image

representing the segmentation. The drawback of this method is that it is computationally

expensive and, therefore, is not appropriate for real-time applications.

Watershed based method

The watershed segmentation algorithms are based on the representation of an image in the

form of a topographic relief, where the value of each image element characterizes its height at

this point. These algorithms can process not only 2D images but also 3D images, so the term

element is used to combine the terms pixel and voxel [67]. For a better outcome, watershed

segmentation is often applied to the result of the distance transform of the image rather than to

the original one. Accordingly, there are two main approaches of watersheds: by flooding and

by rain falling [64]. Segmentation using the watershed transform works well if we can

identify, or "mark," foreground objects and background locations. Marker-controlled watershed

segmentation follows this basic procedure [68]:

1. Compute a segmentation function. This is an image whose dark regions are the

objects you are trying to segment.

2. Compute foreground markers. These are connected blobs of pixels within each of the

objects.

3. Compute background markers. These are pixels that are not part of any object.

28

4. Modify the segmentation function so that it only has minima at the foreground and

background marker locations.

5. Compute the watershed transform of the modified segmentation function.

D. Feature Extraction

After segmenting the images the next phase is extracting the necessary features. Feature

extraction is a special form of dimensionality reduction, extract the most relevant information

from the original data and represent that information in a lower dimensionality space. It is

concerned about the extraction of various attributes of an object and thus associates that object

with a feature vector that characterizes it [62] [63]. Feature extraction is most important

because the specific features made available for discrimination directly influence the efficiency

of the classification task. Therefore, features can be classified into two categories: local

features which are typically geometric (such as number of endpoints, joint, branches, etc), and

global features which are typically for topological or statistical (e.g., number of holes,

connectivity) [69]. Figure 2.8 illustrates different types of image features are used to represent

an image for object recognition and/or identification.

 Figure 2. 8 Classification feature extraction method

A. Color features

Color is one of the most important features of an image and it is defined as a particular color

space or model. Several color spaces have been used such as RGB, LUV, HSI, YCbCr, HSV,

and HMMD. Once the color space is identified, the color feature can be extracted from the

images or regions [70]. Color features are represented using Color Histogram, Color

Correlogram, Dominant Color Descriptor, and Color Co-occurrence Matrix.

29

B. Texture features

The texture is an important element of human visual perception and is used in many computer

vision systems. There is no precise definition of texture has been adopted yet, in addition,

different authors define it as a measure of roughness, contrast, directionality, line-likeness,

regularity, and roughness. Texture describes how the patterns of color are scattered in the

images. This feature also describes the physical composition of the surface [69]. Texture

features can be extracted by using various methods. Grey Level Co-occurrence Matrix

(GLCM), Gabor filter, Histogram of Oriented Gradients, and Haar Wavelet Decomposition are

examples of popular methods to extract texture features.

Gabor filter

Gabor filter is one of the most established texture descriptors introduced by Gabor in 1946

[71]. It extracts texture features by analyzing the frequency domain of the image. It is a

Gaussian function modulated by complex sinusoidal frequency and orientation. It can perform

both in the spatial and frequency domain and can be in any number of dimensions [69]. This

filtering technique is broadly used to extract features for image classification because of the

nature of the spatial locality, orientation selectivity, and frequency characteristic. Gabor filter

or wavelets characterize an image by obtaining the center frequency and orientation parameter.

The frequency and orientation representation, are useful for texture representation and

discrimination and the same concept is used in the human visual system. The Gabor features

are never changing to illumination, rotation, scale, and translation [72, 73]. Gabor filter is

defined as in equation 2.4.

𝑔(𝑥, 𝑦, 𝜆, 𝜃𝜓, 𝜎, 𝛾) = 𝑒𝑥𝑝 (−
𝑥′2

+𝛾2+𝛾′2

2𝜎2) 𝑒𝑥𝑝 (𝑖 (2𝜋
𝑥′

𝜆
+ 𝜓)) 2. 8

Where, 𝑥, = x cos θ + y sin θ

 𝑦, = -x sin θ + y cos θ

λ: represents the wavelength of the sinusoidal factor,

θ: represents the orientation of the normal to the parallel stripes of a Gabor function,

ψ: phase offset,

σ: Sigma or standard deviation of the Gaussian envelope,

30

γ: spatial aspect ratio

C. Shape features

The shape is one of the most important features in feature extraction. They are usually

described when the image has been segmented into different regions or objects. Shape

description can be categorized into either region-based or boundary-based. A good shape

representation feature for an object should be invariant to translation, rotation, and scaling [74].

The most well-known shape techniques are the Shape moment invariant and binary image

algorithm.

E. Classification

Classification of the image consists of a database that holds re-defined patterns that are

compared with detected objects to classify them in the right category. Classification will be

executed based on spectral-defined features such as density, texture, etc. Classification has a

two-step process training and testing. In the training steps, a classification algorithm builds the

classifier by analyzing and learning from a training dataset and its associated class labels. In

the testing step, the model is used to predict class labels for given data. Machine learning and

deep learning techniques are uses for classification algorithms.

2.7. Machine learning

Machine learning (ML) is the subfield of artificial intelligence that is dedicated to the design

and development of algorithms and techniques that allow computers to learn. It provides

techniques that can automatically build a computational model for complex relationships by

processing the available data and maximizing a problem-dependent performance criterion [17].

According to [75] ML can determine patterns and correlations and discover knowledge from

datasets. The models need to be trained using datasets, where the outcomes are represented

based on experience. The predictive model is built using several features, and as such,

parameters of the models are determined using historical data during the training phase. For the

testing phase, part of the historical data that has not been used for training is used for

performance evaluation purposes.

31

Machine learning applies in more and more scientific fields including, bioinformatics,

biochemistry, medicine, meteorology, economic sciences, robotics, aquaculture, and food

security, and climatology, chemical informatics, social network analysis, stock market analysis,

robotics, fraud detection, credit analysis, fault prediction models, image recognition patterns,

intelligent spam filters and product quality analysis [15].

Figure 2. 9 Typical machine learning approach adopted from [76]

Figure 2.9 shows that Data in machine learning consists of a set of examples. Usually, an

individual example is described by a set of attributes, also known as features or variables. After

the end of the learning process, the trained model can be used to classify, predict, or cluster

new examples (testing data) using the experience obtained during the training process. The

performance of machine learning models and algorithms, various statistical and mathematical

models are used [76]. Machine learning techniques can be broadly classified into four main

categories that are supervised, unsupervised, semi-supervised and reinforcement learning

depending on the learning signal of the learning system.

Supervised learning algorithms are trained using labeled examples, such as an input where the

desired output is known. As a result, each training sample comes in the form of a pair of input

and output values. The algorithm then trains a model that predicts the value of the output

variables from the input variables using the defined features in the process. If the output

variables take a discrete set of values, then the predictive model is called a classifier. For

Classification and regression algorithms, common algorithms are used including random

forests, decision trees, and support vector machines, logistic regression, neural networks, and

so on [17].

32

Unsupervised learning techniques require only the input feature values in the training data and

the learning algorithm discovers hidden structures in the training data based on them. There is

no distinction between training and test sets with data being unlabeled [77]. The learner

processes input data to discover hidden patterns. In bioinformatics, these techniques are used

for problems such as microarray and gene expression analysis Clustering algorithms, such as

K-means, nearest-neighbor are often used in unsupervised machine learning [17] [76].

Reinforcement learning uses a system of reward and punishment to train the algorithm. The

algorithm or an agent learns from its environment, the agent gets rewards for correct

performance and penalties for incorrect performance. In reinforcement learning, the algorithm

is not told how to perform the learning; however, it works through the problem on its own [16].

In semi-supervised learning, it uses both labeled and unlabeled data for training typically a

small amount of labeled data with a large amount of unlabeled data (because unlabeled data is

less expensive and takes less effort to acquire). This type of learning can be used with methods

such as classification, regression, and prediction. Common algorithms include graph theory

inference algorithms, Laplacian support vector machines, and so on [17].

2.8. Deep Learning Approach

Deep learning is a subfield of machine learning which attempts to learn high-level abstractions

in data by utilizing hierarchical architectures. Deep learning takes a new on learning

representations from data that emphasizes learning successive layers of increasingly

meaningful representations. The deep in deep learning isn’t a reference to any kind of deeper

understanding achieved by the approach; rather, it stands for this idea of successive layers of

representations [16] [78].

Deep learning is making major advances in solving problems that have resisted the best

attempts of the artificial intelligence community for many years. It has turned out to be very

good at discovering complicated structures in high-dimensional data and is therefore applicable

to many domains of science, business, and government intricate structures in high-dimensional

data and is therefore applicable to many domains of science, business, and government [79].

It contains a quite large number of processing layers. These models have revolutionized sectors

such as image recognition, voice recognition, semantic parsing, transfer learning, natural

33

language processing, computer vision, and other complex processes such as analysis of large

volumes of data, self-driving vehicles, machine translation, interpretation, sentiment analysis,

question answering, language translation and many more [16] [80].

 Figure 2. 10 Venn diagram for deep learning

Modern deep learning often involves tens or even hundreds of successive layers of

representations and they have all learned automatically from exposure to training data.

Meanwhile, other approaches to machine learning tend to focus on learning only one or two

layers of representations of the data. These layered representations are (almost always) learned

through models called neural networks, the term neural network is a reference to neurobiology.

but some concepts in deep learning were developed in part by drawing inspiration from our

understanding of the brain deep-learning models are not models of the brain, there’s no

evidence that the brain implements anything like the learning mechanisms used in modern

deep-learning models. [78].

Authors in [16] stated that the most popular deep learning methods that have been widely used

are Convolutional Neural Networks (CNNs), Recurrent Neural Network (RNN), Restricted

Boltzmann Machines (RBMs), Autoencoder, and Sparse Coding. Among them, Convolutional

Neural Network is the most popular emerging technology, as many scholars in [29] [30] [81]

prove that convolutional neural networks (CNNs) have achieved impressive results in the field

of image classification, hence from this point of view the researcher tried to implement this

architecture for sorghum leaf diseases classification. The next subtopics will discuss the most

widely used deep learning architecture.

34

2.8.1 Autoencoder

The deep autoencoder is a special form of the DNN (with no class labels), whose output

vectors have the same dimensionality as the input vectors. It is mainly used to process complex

high dimensional data, and it is often used for learning a representation or effective encoding

of the original data, in the form of input vectors, at hidden layers. Note that the autoencoder is

a nonlinear feature extraction method without using class labels. As such, the features extracted

aim at conserving and better-representing information instead of performing classification

tasks, although sometimes these two goals are correlated [82].

2.8.2 Restricted Boltzmann Machines (RBMs)

A Restricted Boltzmann Machine (RBM) is a generative stochastic neural network that comes

from the Boltzmann machine and was proposed in 1986. RBM is different from the Boltzmann

Machine, with the restriction that the visible units and hidden units must form a divided graph.

Even though RBM has inherited the two-layer neuron structure of the Boltzmann machine,

there is no connection between neurons in the same layer with only the whole connection

between the visual layer and the hidden layer. Restricted Boltzmann Machines (RBM) is used

to train layers of the Deep Belief Networks (DBNs) [83].

2.8.3 Recurrent Neural Network (RNN)

Recurrent neural networks (RNNs) are a type of artificial neural network. This structure allows

the information to be circulated in the network. RNN is the ability to recognize and predict

sequences of data such as text, genomes, handwriting, spoken word, or numerical time series

data. They have loops that allow a constant flow of information and can work on sequences of

random lengths. The RNNs attempts to address the necessity of understanding data in

sequences. RNN can be used for time series prediction because it can remember previous

inputs also, which is called Long-Short Term Memory (LSTM).

2.8.4 Convolutional Neural Network

Convolutional neural network (CNN) is one of the main learning mechanisms to do images

recognition, images classifications, objects detections etc. It is based on learning levels of

35

representations. The higher lever concepts are defined from lower-lever ones, and the same

lower lever concepts can help to define many higher lever concepts. It learn multiple levels of

representation and abstraction which helps to understand dataset such as images, audio and

text. It is advantageous of simple structure, less training parameters because of shared weights

and adaptability [84].

Their multistage architectures are inspired by the science of biology, through these models,

invariant features are learned hierarchically and automatically. They first identify low-level

features and then learn to recognize and combine these features to learn more complicated

patterns [31]. CNN's constitute one of the most powerful techniques for modeling complex

processes and performing pattern recognition in applications with large amounts of data [80].

According to [75] machine learning classifiers algorithms, such as random forests, Naïve

Bayes, support vector machines, and decision tree uses hand-crafted feature extraction

techniques to extract color, size, and texture. Whereas CNN does not require hand-crafted

feature extraction, it has better accuracy, it does not require image segmentation by experts and

it has millions of learnable parameters to estimate [85]. Figure 2.11 shows the architecture of

the convolutional neural network.

Figure 2. 11 Overview of CNN architecture adopted from [86]

36

Figure 2.11, shown that the overview of convolutional neural network architecture and the way

of its process to train the network with the help of input data. This architecture has two

building blocks feature extraction learning block and classification block. The first stage (i.e.,

feature extraction block) consists of convolutional layer, pooling layer, and fully connected

layer, the first two, convolution and pooling layers, perform feature extraction, whereas the

third, a fully connected layer, maps the extracted features into final stage (i.e., classifier block)

this stage contains classifier algorithms such as soft mask [86] [85].

There are two stages for training the network: forward propagation and backward propagation.

The forward propagation is to represent the input image with the current parameters (weights

and bias) in each layer. Then the prediction output is used to compute the loss cost with the

ground truth labels. Based on the loss cost, the backward propagation computes the gradients

of each parameter with chain rules. All the parameters are updated based on the gradients and

are prepared for the next forward computation. After sufficient iterations of the forward and

backward stages, the network learning can be stopped [16]. As described in [86] [85], deep

learning can extract features from the images automatically, and classify them into a certain

class label. There are three feature extraction blocks: convolution layer, pooling layer, and a

fully connected layer including activation function.

Convolution layer

Convolution is a special type of linear operation which is used for extracting features from an

image, with a small array of numbers called a kernel. The kernel is applied to the image, which

is an array of numbers called a tensor. This plays a significant role in how CNN operates it

forms the fundamental unit of a ConvNet wherever most of the computation is concerned [87].

The layer served as a feature extractor, and thus they learn the feature representation of their

input images.

The neurons in the convolutional layers are arranged into feature maps. Each neuron in a

feature map has a receptive field, which is connected to a neighborhood of neurons in the

previous layer via a set of trainable weights, sometimes referred to as a filter bank [81].

According to [16], There are three main advantages of the convolution layer over just fully

connected layers: the weight sharing mechanism in the same feature map reduces the number

37

of parameters, local connectivity learns correlations among neighboring pixels, and invariance

to the location of the object. In the convolutional layers, a CNN utilizes various kernels to

convolve the whole image as well as the intermediate feature maps, generating various feature

maps, as shown in figure 2.12.

Figure 2. 12 The operation of the convolutional layer adopted from [16]

Figure 2.12, shows an example of a convolution operation with a kernel size of 3*3, no

padding, and a stride of 1. A kernel is applied across the input tensor, and an element-wise

product between each element of the kernel and the input tensor is calculated at each location

and summed to obtain the output value in the corresponding position of the output tensor,

called a feature map (Activation map).

Hyper-Parameters of Convolution Layer

Different setups of hyper-parameters such as learning rate, learning max-iterations, and mini-

batch for CNN would lead to different performances. Convolutional layers are also able to

significantly reduce the complexity of the model through the optimization of its output. These

are optimized through hyper-parameters, depth, filter size, stride, and setting zero-padding

[88].

A. Filter size

The size of the filter concerning the size of the image (or activation layer), determines what

features can be detected by the filters. Each filter length, on the side, comprises only 4.3% of

the (square) image-side length. These filters in the first layers cannot extract features that span

more than 0.24% of the input image area [89].

38

B. Padding

The convolution operation illustrated in Figure 2.13, one of the drawbacks of the convolution

step is the loss of information that might exist on the border of the image. Padding is a

technique that addresses this issue, where rows and columns of zeroes are added on each side

of the input tensor, to fit the center of a kernel on the outermost element and keep the same in-

plane dimension through the convolution operation. Zero paddings, as shown in Figure 2.13,

can have the effect of canceling dimensional reduction, and maintaining the input dimension at

the output. This hyper-parameter is the straightforward method of padding the border of the

input and an efficient technique to provide additional management on the dimensionality of the

output volumes [89] [87].

Figure 2. 13 Convolution operation with zero paddings Adopted from [87]

As illustrated in figure 2.13 Let with N=5, F=3, and stride 1, the output will be 3×3 (which

shrinks from a 5×5 input). However, by adding one zero paddings, the output will be 5×5,

which is the same as the original input.

C. Stride

CNN has more options which provide a lot of opportunities to even decrease the parameters

more and more, and at the same time reduce some of the side effects. One of these options is

stride. Stride is the distance between two successive kernel positions [90].

39

 Figure 2. 14 Applying stride to convolve the image adopted from [90]

Figure 2.14, shows a given 7×7 image. If we move the filter to one node every time, we can

have a 5x5 output only. However, if we move and make every stride 2, then the output will be

3x3. Put simply, not only overlap but also the size of the output will be reduced.

D. Activation Function

The relation between image class and image data is non-linear. For a neural network to

construct the non-linear relation between the data and image class, the activation function must

have a nonlinearity. Without non-linearities, a neural network would be capable of only linear

classification [89]. The activation function is applied to the last fully connected layer which

can activate the feature of neurons to solve nonlinear problems [91].

The activation function is used to increase the expression ability of the neural network model,

which can be either linear or non-linear depending on the function it represents and is used to

control the outputs of neural networks. Moreover, using activation functions seems essential

while dealing with complex problems like face recognition, image processing, or computer

vision [92]. A few commonly nonlinear activation functions are discussed below.

1. Sigmoid function

The sigmoid function is shown in Figure 2.17, which is a common non-linear activation

function. The output of this function is bounded, and it was widely used as the activation

function in deep neural networks during the early age of deep learning. That is, the slope of the

graph tends to be zero when the input is very large or very small. When the slope of the

function is close to zero, the gradient that passed to the underlying network becomes very

small, which will make network parameters difficult to be trained effectively. Meanwhile, the

40

direction of weight update only to one direction due to the output of this function is always

positive, which will affect the convergence rate [92]. The formula of the sigmoid function is

presented in Eq 2.9.

 𝑓(𝑥) =
1

1+𝑒−𝑥
 2. 9

Sigmoid is still very popular in classification problems, especially in the output layer of binary

classification, where the result is either 0 or 1, as value for sigmoid function lies between 0 and

1 only so, the result can be predicted easily to be 1 if the value is greater than 0.5 and 0

otherwise.

 Figure 2. 15 Sigmoid functions adopted from [92]

2. Hyperbolic Tangent Function (Tanh)

Like Sigmoid, this function is also continuous as well as differentiable on all the points. The

range of tanh is -1 to 1 [91], thus makes the mean of the outputs come to be 0 or very close to

0, furthermore, makes the data more concentrated, and makes the learning much easier, thus it

is usually used in hidden layers of ANNs [93]. The tanh function is the updated version of the

sigmoid function on the range, which is an asymmetric function centered on zero. Its output is

bounded, and it brings nonlinearity to the neural network. The curve of this function can be

seen in Figure 2.16. The convergence rate is higher than the sigmoid function. The formula of

tanh function is presented in Eq 2.16.

 𝑓(𝑥) =
1−𝑒−2𝑥

1+𝑒−2𝑥
 2. 10

41

Figure 2. 16 Tanh function adopted from [85]

The tanh function became the preferred function compared to the sigmoid function in that it

gives better training performance for multi-layer neural networks. However, the tanh function

could not solve the disappear gradient problem suffered by the sigmoid functions as well. The

main advantage provided by the function is that it produces zero centered output thereby

aiding the back-propagation process [94]. Hard hyperbolic or Hardthanh is an extension of tanh

activation function, this activation is a cheaper and more computational efficient version of

tanh.

3. Rectified Linear Unit (ReLU)

ReLU is commonly used as an activation function in convolutional networks due to the

advantage of the speed of unsaturated nonlinear functions when the training gradient descends.

the function form of ReLU is shown in equation 2.11, where x is the input of the activation

function [86].

 𝑓(𝑥) = 𝑚𝑎 𝑥(0, 𝑥) 2. 11

Where ‘X’ is the input data to a neuron. ReLu returns the positive value calculated by a neuron

and ignores the negative values. So, if the calculated value at any node is negative; ReLu will

return 0 otherwise it will forward the calculated value [91].

The disadvantage of this function is if the value of the input is positive, it will not change

anything and will simply forward the value to the next layer’s node. However, the major

advantage considered is that if the ReLu function receives a negative value, it stops the neuron

to stimuli by making it 0 and hence preventing the neuron to fire [91]. The shape of the Relu

function is shown in figure 2.17.

42

 Figure 2. 17 Rectified linear unit (ReLU) activation function

Leaky ReLU

When a large number of neurons have a negative value and are restricted to fire (dead neurons)

by the ReLu function, the contribution to the overall model is dependent on a smaller number

of neurons and may not be accurate. Leaky ReLu is an extension of the ReLU activation

function. If any neuron's value is negative in the ReLu function, it is simply converted to 0

regardless of how much negative value the neuron has. However, Leaky ReLu argues that even

if a neuron has a negative value, it should still play a role in action prediction. As a result, each

input value must be multiplied by a constant term [91].

 𝑦 = 𝑎𝑥 2. 12

if and only if Χ < 0. The constant value ‘a’ could be a small value like .01 as per the

requirements. Y= x, if x>0, where x contains the input value to Leaky ReLu function.

4. SoftMax

The SoftMax function is another type of activation function used in neural computing. It is

used to compute probability distribution from a vector of real numbers. The SoftMax function

produces an output which is a range of values between 0 and 1, with the sum of the

probabilities been equal to 1 [94]. In [93] states that, SoftMax function is used in multi-class

models where it returns probabilities of each class, with the target class having the highest

probability, mostly appears in almost all the output layers of the deep learning architectures.

This function is differing from Sigmoid in that Sigmoid is used in binary classification while

SoftMax is used for multivariate classification tasks.

43

Pooling Layer

A Pooling layer is frequently inserted between successive Convolution layers in a ConvNet

architecture. Its purpose is to gradually shrink the spatial dimension of the representation to

reduce the number of parameters and computations in the network, as well as to prevent

overfitting. A pooling layer with 2x2 filters applied with a stride of 2 down samples every

depth slice in the input by 2 along both width and height, removing 75% of the activations, and

is the most frequent variant [90].

Pooling operators consist of a fixed-shape window that is slid over all regions in the input

according to its stride, computing a single output for each location traversed by the fixed-shape

window (also known as the pooling window). However, the pooling layer contains no

parameters (there is no kernel), instead, its operations are typically calculating either the

maximum or the average value of the elements in the pooling window. These operations are

called maximum pooling (max pooling for short) and average pooling [28].

A. Maximum-Pooling

Max-pooling is one of the most common types of pooling methods. It partitions the image into

sub-region rectangles, and it only returns the maximum value of the inside of that sub-region.

One of the most common sizes used in max-pooling is 2×2 [90]. Figure 2.18 shows the

operation of max pooling.

Figure 2. 18 Max-pooling operations adopted from [85].

44

As illustrated in Figure 2.18, an example of max pooling operation with a filter size of 2 × 2,

no padding, and a stride of 2, which extracts 2 × 2 patches from the input tensors, outputs the

maximum value in each patch, and discards all the other values, resulting in downsampling the

in-plane dimension of an input tensor by a factor of 2 [85]. The intuition of what max pooling

is doing is that the large number means that there may be detected a feature [95].

B. Average Pooling

The idea of average or mean for pooling and extracting the features that are the first

convolution-based deep neural network. As shown in Figure 2.19, the average pooling layer

performs down-sampling by dividing the input into rectangular pooling regions and computing

the average values of each region [96].

Figure 2. 19 Average pooling operation adopted from [96].

Fully Connected Layer

After several convolution and pooling layers, the CNN generally ends with several fully

connected layers, also known as dense layers, in which every input is connected to every

output by a learnable weight. Once the features extracted by the convolution layers and down

sampled by the pooling layers are created, they are mapped by a subset of fully connected

layers to the final outputs of the network, such as the probabilities for each class in

classification tasks [95] [85].

45

 Figure 2. 20 The operation of the fully-connected layer [adopted from [16]]

As shown in figure 2.20, fully connected layers possess a large number of parameters and so

require powerful computational resources.

Epochs

An epoch is a term used in machine learning that indicates the number of passes of the

entire training dataset the machine learning algorithm has completed. Datasets are usually

grouped into batches (especially when the amount of data is very large).

2.9. Loss functions

A loss function, also referred to as a cost function, measures the compatibility between output

predictions of the network through forwarding propagation and given ground truth labels.

Depending on the study and CNN model there are several loss calculation functions. Some of

them are the Binary Cross-entropy class, Categorical Cross-entropy class, Sparse Categorical

Cross-entropy class, Poisson class binary cross-entropy function. Based on this, for this study,

categorical cross-entropy was used as calculating the loss function.

Categorical cross-entropy

Also called logarithmic loss, log loss, or logistic loss. This loss calculation function is widely

used when there are two or more label classes (i.e., in this study there are four label classes

namely: Anthracnose, healthy, leaf bight, and rust), and also if the activation function is

Softmax. The expected label is provided in a one-hot representation [85]. Cross-entropy will

calculate a score that summarizes the average difference between the actual and predicted

https://radiopaedia.org/articles/machine-learning-1?lang=us
https://radiopaedia.org/articles/training-testing-and-validation-datasets?lang=us
https://keras.io/api/losses/probabilistic_losses/#binarycrossentropy-class
https://keras.io/api/losses/probabilistic_losses/#categoricalcrossentropy-class
https://keras.io/api/losses/probabilistic_losses/#sparsecategoricalcrossentropy-class
https://keras.io/api/losses/probabilistic_losses/#sparsecategoricalcrossentropy-class
https://keras.io/api/losses/probabilistic_losses/#poisson-class
https://keras.io/api/losses/probabilistic_losses/#binary_crossentropy-function

46

probability distributions for all classes in the problem. The score is minimized and a perfect

cross-entropy value is 0 [97].

2.10. Optimization Techniques

During the training process, we change the parameters (weights, learning rate) of the model to

try and minimize the loss function, and make our predictions as correct and optimized as

possible. To do this, optimizations come in, this method ties together the loss function and

model parameters by updating the model in response to the output of the loss function [97].

All the optimizers have parameters that can also be modified, each optimizer has its

parameters, but there is one that is shared between all of them, the Learning Rate. This

parameter will define how much the weights are updated after each epoch. For a high Learning

Rate, the weight change will be higher than for a small Learning Rate, after each epoch. Also,

another important parameter is the weight decay which is an additional term in the weight

update rule that causes the weights to exponentially decay to zero if no other update is

scheduled. Some of the most well-known optimization techniques are Nadam, Gradient

Descent (GD), Stochastic Gradient Descent (SGD), Adaptive Moment Estimation (Adam),

RMSprop, Adagrad, and Adadelta.

A. Nadam

Nadam (Nesterov-accelerated Adaptive Moment Estimation) is an extension of the Adam

algorithm by combining RMSprop and momentum: RMSprop contributes the exponentially

decaying average of past squared gradients, while momentum accounts for the exponentially

decaying average of past gradients. Namam update rule are illustrated in the following

equation.

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√𝜈𝑡 + 𝜖
(𝛽1𝑚𝑡 +

(1 − 𝛽1)𝑔𝑡

1 − 𝛽1
𝑡)

B. Gradient Descent

Gradient descent is an optimization algorithm that is used when training a deep learning model.

This optimization algorithm finding a local minimum of a differentiable function. Gradient

47

descent is simply used to find the values of a function's parameters (coefficients) that minimize

a cost function as far as possible it’s fast, robust, and flexible. This algorithm is iterative, which

starts from a random point on the function and traverses down its slope in steps until the loss

function gets as low as possible. The weight is initialized using some initialization strategies

and is updated with each epoch according to the update equation.

The magnitude and direction of the weight update is computed by taking a step in the opssosite

direction of the cost gradient.

∆𝑤𝑗 = −𝜂
𝜕𝐽

𝜕𝑤𝑗

Where 𝜂 is the learning rate. The weights are then update after each epoch via the following

rule:

𝑤 ≔ 𝑤 + ∆𝑤,

Where ∆𝑤a vector that contains the weight is updates of each weight coefficient 𝑤,

C. Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent (SGD) is an extension of Gradient Descent, where it overcomes

some of the disadvantages of the Gradient Descent algorithm. SGD tries to overcome the

disadvantage of computationally intensive by computing the derivative of one point at a time.

The design of stochastic gradient descent is using one sample randomly to update the gradient

per iteration, instead of directly calculating the exact value of the gradient. The cost of the

stochastic gradient descent algorithm is independent of sample numbers and can achieve

sublinear convergence speed. SGD reduces the update time for dealing with large numbers of

samples and removes a certain amount of computational redundancy, which significantly

accelerates the calculation. SGD in contrast performs a parameter update for each training

example 𝑥(𝑖) and label 𝑦(𝑖)

𝜃 = 𝜃 − 𝜂. ∇𝜃𝐽(𝜃; 𝑥(𝑖); 𝑦(𝑖))

48

D. Adaptive Moment Estimation (Adam)

Adaptive Moment Estimation is the combination of RMSprop and Stochastic Gradient Descent

with momentum. Adam computes adaptive learning rates for each parameter. In addition to

storing the previous decaying average of squared gradients, it also holds the average of past

gradients similar to Momentum.

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)ℊ𝑡

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)ℊ𝑡
2

𝑚𝑡and 𝑣𝑡are estimates of the first moment (the mean) and the second moment (the uncentered

variance) of the gradients respectively, hence the name of the method. As mtmt and vtvt are

initialized as vectors of 0's, the authors of Adam observe that they are biased towards zero,

especially during the initial time steps, and especially when the decay rates are small

(i.e. β1β1 and β2β2 are close to 1).

2.11. Regularization of Convolutional Neural Network

Deep neural networks are complex learning models that are exposed to overfitting. Overfitting

refers to a situation where a model learns statistical regularities specific to the training set, i.e.,

ends up memorizing the irrelevant noise instead of learning the signal, and, therefore, it

performs less well on a subsequent new dataset. To overcome this issue, the regularization

technique is used. Regularization refers to a set of different techniques that lower the

complexity of a neural network model during training and thus prevent overfitting. Studies in

[85] [16], suggest that the better solution for decreasing overfitting is obtaining more training

data, hence if the model trained through large data typically generalizes better. and also, other

overfitting solutions are batch normalization, data augmentation, early stopping, dropout, and

soon.

A. Early stopping

The idea behind early stopping is that when we’re fitting a neural network on the training data

and model is evaluated on the unseen data after each iteration. When we see that the

performance on the validation set is getting worse, the network immediately stops the training

49

on the model. This is known as early stopping. If the performance of the model on the

validation data is not improving i.e., a validation error is increasing or remaining the same for

certain iterations, then there is no point in training the model further. This process of stopping

model training before it reaches the lowest training error.

B. Dropout

This is one of the most particular types of regularization techniques. This technique produces

very good results and is consequently the most frequently used regularization technique in the

field of image classification.

C. L1 and L2

This regularization technique makes the Weight Penalty that is quite commonly used to train

models. It works on an assumption that makes models with larger weights more complex than

those with smaller weights. The role of the penalties in all of this is to ensure that the weights

are either zero or very small. The only exception is when big gradients are present to

counteract. Weight Penalty is also referred to as Weight Decay, which signifies the decay of

weights to a smaller unit or zero.

D. Data augmentation

Augmentation is a process of generating data artificially from the existing training data by

doing slight changes such as rotation, flips, adding blur to some pixels in the original image, or

translations. Augmenting with more data will make it harder for the neural network to drive the

training error to zero. By generating more data, the network will have a better chance of

performing better on the test data. Depending on the task, we might use all the augmentation

techniques and generate more training data.

2.12. Convolutional Neural Network Architectures

With the recent developments of CNN schemes in the computer vision domain, some well-

known CNN models have emerged. This section presents the most efficient and widely used

architectures of convolutional neural networks for classifying [98].

50

2.12.1 AlexNet

The first famous CNN architecture is AlexNet, which popularizes the convolutional neural

network in Computer vision, developed by Alex Krizhevsky, Ilya Sutskever, and Geoff Hinton.

As shown in figure 2.21, this architecture has five convolutional layers starting from an 11 * 11

kernel. It was the first architecture that deploys max-pooling layers, ReLu activation function,

and dropout for the huge linear layers. After inputting one fixed-size image, the network would

repeatedly convolve and pool the activations, then forward the results into the fully-connected

layers. The network was trained on ImageNet and integrated various regularization techniques,

such as data augmentation, dropoutNetwork had similar architecture to LeNet; however, it was

the most profound, most significant architecture with all convolution layers stacked together

rather than the altering convolution and pooling layers as it was in LeNet [87].

Figure 2. 21 AlexNet Architecture

2.12.2 GoogLeNet(Inception)

This architecture was developed by Google; it was the winner of the ImageNet Large Scale

Visual Recognition Challenge ILSVRC in the 2014 competition. Its main contribution to this

architecture was the development of an inception module that dramatically reduced the number

of parameters in the network in its onset module known as inception-v1. It had only 4 million

parameters compared to AlexNet with 60 million [98]. GoogLeNet has twenty-two layers of

the Inception module; however, it has fewer parameters as compared to AlexNet. Later several

enhancements had been done on Inception-v1, the key being an introduction of batch

normalization and RMSprop that led to Inception-v2. There are several subsequent versions of

51

GoogleNet with added refinements, such as Inception-v3, and most presently Inception-v4

[87].

2.12.3 VGG-Net

Visual Geometry Group Network (VGGNet) was the runner-up in the ILSVRC in 2014. It

improves AlexNet and has 19 layers in total. Its main contribution was in showing that the

depth of the network or the number of layers is a critical component for good performance.

Although VGGNet achieves a phenomenal accuracy on the ImageNet dataset, its deployment

on even the most modest-sized Graphics Processing Units (GPUs) is a problem because of

huge computational requirements, both in terms of memory and time. It becomes inefficient

due to the large width of convolutional layers [98]. It is currently the most preferred choice in

the community for extracting features from an image. The weight configuration of the

VGGNet is publicly available and has been used in many other applications and challenges as a

baseline feature extractor. This architecture has two different versions namely: VGG16 and

VGG19 (the number represents the number of layers in the network). VGG19 managed to win

the challenge. This was a new deeper model than what had previously been used, which led to

deeper networks becoming prominent within the field.

 Figure 2. 22 VGG-Net Architecture

52

2.12.4 ResNet

The winner of the ImageNet large scale visual recognition challenge (ILSVRC) 2015

competition with a top-5 error of 3.57% was an ensemble of six networks of the ResNet

(Residual Network) type, which was developed by Microsoft. ResNet is a 152-layer network,

which was ten times deeper than what was usually seen when it was invented It features special

skip connections and heavy use of batch normalization [98] [99]. It uses a global average

pooling followed by the classification layer. ResNets are currently by the far state of the art

Convolutional Neural Network models and are the default choice for using ConvNets in

practice [98].

2.12.5 DenseNet

DenseNet was published by Gao Huang and his teammate in 2017. It has each layer directly

connected to every other layer in a feed-forward fashion. The DenseNet has been shown to

obtain significant improvements over previous state-of-the-art architectures on four highly

competitive object recognition benchmark tasks (CIFAR-10, CIFAR-100, SVHN, and

ImageNet) [98].

2.13. Evaluation technique

Confusion Matrix provides a complete overview by summarizing the classification results. It

shows the individual results for each of the categories by tabulating the predicted and actual

categories. In addition, in this study, the performance of the classifier model is evaluated

through accuracy, true positive rate, false-positive rate, precision, recall, and f-measure. Table

2.1 shows the confusion matrix.

 Table 2. 1 Confusion matrix

Actual class Predicted class

Positive Negative

Positive True positive False-negative

Negative False positive True negative

53

Where:

True positive (TP): Represents the number of images that are correctly classified as positive

by the developed classifier model.

False-positive (FP): Represents the number of images that are classified as positive in the

predicted class but they are negative.

False-negative (FN): Represents the number of images that are classified as negative in the

predicted class but they are positive.

True negative (TN): Represents the number of images that are correctly classified as negative

in both actual and predicted classes.

Accuracy: is calculating the samples of which are classified correctly among the whole

samples of the dataset. It is calculated using the formula as follow:

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 × 100 3. 1

Precision: It measures the positive predictive value of the classifier model and is given by the

formula as follows:

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 3. 2

Recall: It measures the positive instance which is predicted as positive and is defined as

follows:

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 3. 3

F-measure: is a combination mean for both recall and precision as in the following:

 𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑠𝑖𝑠𝑖𝑜𝑛 +𝑅𝑒𝑐𝑎𝑙𝑙
 3. 4

False-positive rate (FPR): The false-positive rate (FPR) measures the rate of the falsely

recognized samples.

 𝑭𝑷𝑹 =
𝑭𝑷

𝑭𝑷+𝑻𝑵
 3. 5

54

2.14. Related work

Several research efforts have been conducted and proposed for automatic plant disease

identification. However, each work is designed to address different plants or parts of a plant.

So, in this section, related works of different researchers in the area of automatic plant disease

identification using machine vision systems are reviewed.

In paper [24], the researchers proposed a machine learning approach for crop yield

improvement using plant leaf disease detection. Detecting and classifying sorghum leaf

diseases as Leaf blight, Sooty Stripe, Zonate Leaf Spot, and Rough Leaf Spot are the main

objectives of the proposed model. The necessary data were collected by the researcher. Hence,

to get the quality data different preprocessing techniques were applied. Towards creating a

classifier model, the researchers have used the Alex-Net classification algorithm. The

developed classifier model, Alex-Net consists of the first 5 Convolutional layers and the last 3

fully connected layers, in between, there is a pooling and activation layer. However, in this

study, the researcher concludes that the selected algorithm is the better classifier without any

justification may other classifiers will achieve better accuracy. Nothing was reported on the

accuracy of their classifier model. In addition, what kind of test options are implemented, and

the number of images is not stated.

In [25], machine learning approach for plant disease identification. The proposed model is

detecting and classifying plant leaf diseases as sorghum, cabbage, citrus, damaged sorghum,

damaged cabbage, and damaged citrus. In this study, color-based information, statistical

information was extracted from colors such as mean, median, max, and HOG. From the total of

1183 images, 60% were used for training and the remaining 40% was used for testing. Based

on this, the developed classifier model accuracy of random forest 95.4%, ANN 94.9, and SVM

80.5% were achieved. Towards identifying the best feature, the researcher has selected color

and statically features, and test them through traditional machine learning algorithms such as

RF, SVM, and ANN. Conversely, the main aim of this study was not developing a classifier

model rather than identifying which is the best features for representing the images.

In [26], the researchers proposed a model that classifies rice leaf diseases into Bacterial leaf

blight, Brown spot, and Leaf smut using machine learning. For their experimentation, 480

55

images were collected from the University of California, Irvine (UCI) machine learning

repository. Different preprocessing techniques were used using the WEKA tool. In addition,

for attribute selection, CorrelationAttributeEval technique and classification algorithms KNN,

decision tree, Naïve Bayes, and Logistic regression are implemented. In this study, color

features are used for identifying the infected leaves. From the collected instance 90% are

assigned for training and the remaining 10% for testing. Accordingly, the developed classifier

model achieves an accuracy of 97.91% with the decision tree classifier algorithm. However,

which diseases are correctly detected and classified by the proposed model is not mentioned. In

addition to that, the researchers used only 480 image datasets for conducting their study which

is a small amount for building a machine learning model.

Detecting and classifying maize leaf as gray leaf spot, common rust, northern leaf blight, and

healthy using machine learning is proposed by [62]. Based on this experimentation total

number of 3823 instances were collected from the public machine learning repository. Based

on this, Python tools were for preprocessing the instance, and different classification

algorithms such as SVM, Naïve Bayes, KNN, Decision tree, and RF are implemented. From

the collected data 90% were assigned for training and the remaining 10% for testing.

Accordingly, the developed classifier model achieves an accuracy of SVM 77.56%, Naïve

Bayes 77.46%, KNN 76.16%, Decision tree 74.35%, and RF79.23%. However, in this study,

there were imbalanced datasets between classes.

In [100], the researchers proposed detection of the three common rice leaf diseases namely:

Bacterial blight, Brown spot, Rice blast by using image processing. A total number of 60

images were collected from the public image database. In this study, different processing

techniques such as remove background and irrelevant portion, cropping the small region of leaf

were done using the MATLAB tool. In addition, Naïve Bayes classification algorithms are

implemented. The researchers have used the percentage split test option 75% of the data are

assigned for training and the remaining 25% for testing. Therefore, for each rice leaf disease

the developed classifier model achieves an accuracy of 89%, 90%, and 90% for Rice blast,

Bacterial blight, and Rice brown spot respectively. But the researchers used only 60 image

dataset for conducting their study which is too small for building a machine learning model.

56

In paper [101], the authors develop a deep learning model for the detection of leaf disease for

rice crops. The model classifies the diseases into Rice stacburn, Leaf Scald, Leaf Smut, Rice

Blast, Rice Kernel Smut, Rice Stem Rot, and so on. The required data were collected from two

different sources; 600 images are collected from the public UCI machine learning repository

and 500 images were captured from the agricultural field. Hence, the MATLAB tool used for

preprocessing the collected image and also different pre-trained classification algorithms such

as VGGNET-19, ResNet50, DenseNet-201, Inception-V3, and VGG19-SVM are implemented.

The proposed architecture has a fully connected dense layer and 3 convolution layers. The first

convolution layer had 28 filters, the second layer had 56 filters and the third layer had 112

filters. Rectified Linear unit (ReLu) activation function is used for all layers as well as

researchers used filter size 3×3 for all layers. They used only one Maxpooling layer and had a

1×1 pool size. The experimental findings on the proposed model are an average accuracy of

98.63% was achieved.

Detecting and classifying maize leaf disease using CNN along with machine learning proposed

by [102]. The model classifies the leaf diseases as Cercospora, common rust, northern leaf

blight as well as healthy. For their experimentation, the required data was collected from a

public image database, a total number of 200 images were collected. Towards creating the

classifier model python was used as a tool, and KNN, SVM, and decision tree classification

algorithms were implemented. The 10-fold cross-validation was used for training and testing

data. In this study, they used seven CNN architectures (AlexNet, VGG16, VGG19, ResNet50,

ResNet110, GoogleNet, and Inception-V3). While AlexNet architecture has twenty-five layers:

Input layer, 5 convolutional layers, the first convolutional layer has an 11×11 filter, the second

layer has a 5×5 filter, and the third, to fifth layer has 3×3 filters. 7 ReLU activation function

layer layers, 2 normalization layers, 3 max-pooling layers, 3 fully connected layers, 2 dropouts

0.5, Softmax, and output layer. Finally, the developed classifier model achieves an accuracy of

SVM 82.7%, KNN 88.33%, and decision tree 74.51%. However, they only used 200 image

datasets for conducting their study which is too small for building a machine learning model.

In paper [103], the proposed model identifies corn leaves diseases using a convolutional neural

network. The researchers focused on three types of diseases namely: Common Rust, Late

Blight, and Leaf Spot. The necessary data were collected from UCI public machine learning

57

repository; a total of 2000 images are collected. Different processing techniques were applied

using the python tool, and Softmax, Random Forest, and SVM classification algorithms are

implemented. The researchers used four pre-trained convolutional neural network

architectures, VGG-16 with 8 layers, ResNet-50 with 50 layers, Inception-v2 and MobileNet-

v1. For the experimentation 10-fold cross-validation testing option was implemented. Finally,

the proposed model accuracy of 98% with precision 97%, recall 98% and f1-score 97%

achieved.

In paper [104], the researchers developed a model for the detection and classification of maize

leaf diseases. The model classifies the leaf disease as Common rust, Gray leaf spot, Northern

leaf blight, and Healthy leaves. For the experimentation, 3852 images were collected from the

public image database. Hence different processing techniques were performed using the

Python tool. A deep convolutional neural network (CNN)-based architecture (Modified

LeNet) has been used for classifying the leaf diseases. CNN LeNet architecture has a five-layer

network consists of 2 convolutional layers, 3 fully connected layers, 2 * 2 Max pooling, and

ReLU activation function to backpropagate the errors. The learned way of this model is

through a back-propagation algorithm. The researchers were used the percentage split test

option 80% of the data are assigned for training and the remaining 20% for testing. After all,

the result shows LeNet performs an accuracy of 97.89% achieved.

In paper [105] the researchers proposed an automatic identification of plant diseases by using

CNN. The necessary data have been collected from a public machine learning repository and

captured using different mobile phones. In this study, different classification algorithms such

as Baseline Triple network and Deep Adversarial Metric Learning (DAML) are implemented.

Accordingly, three CNN models were used namely, ResNet18, ResNet34, and ResNet50. All

residual architectures have the same structure but have a different number of blocks and layers,

they used a fully connected layer with ReLU activation function. All the models were trained

using the entire dataset resource each model was fine-tuned small set of target images ranging

from 5 of 50 increments by 5. The evaluation demonstrates shows that transfer learning using

the baseline model achieves an accuracy of 99% for the data that are collected from a public

machine learning repository and 81% of accuracy for the dataset that is captured under

58

different conditions. However, there is a limitation in the collected datasets such as illumines

light, shadow, and background image.

Recognizing plant disease using multichannel CNN is proposed by [106]. For the

experimentation purpose, the necessary data were collected from UCI. Towards creating a

classifier model different classic CNNs architecture are used namely AlexNet and GoogleNet

are implemented. The designed Multichannel CNN (M-CNN) architecture has two input

channels, each channel receives one different type of dataset, and late-fusion techniques were

used to merge separated channel networks in the fully connected layer. To handling, overfitting

in neural networks was drop-out layer was inserted between the pooling layer. The researchers

used the percentage split test option 80% of the data are assigned for training and the

remaining 20% for testing. After all, M-AlexNet V1 has achieved an accuracy of 99.59% and

M-GoogleNet V1 achieved an accuracy of 99.55%. Even this study tries to develop a model for

14 plant species. However, they didn't incorporate sorghum leaf diseases.

Leaf disease detection and classification using neural networks is proposed by [107]. The

proposed model is classifying the images as affected and unaffected leaves. For this, the

necessary 169 images were collected by the researchers. Towards creating a classifier model

Backpropagation Neural Network classification algorithm is implemented. Hence to handling

the data different processing techniques were used. After all, the developed classifier model

achieves an accuracy of ranges between 88% and 92%. However, the researchers didn’t specify

which plant leaf is used for conducting this study. In addition, the researchers used a small

number of datasets.

Recognition and classification of maize leaf diseases using convolutional neural networks are

proposed by [108]. The proposed model recognizing three different types of diseases namely:

Northern Corn Leaf Blight, Common Rust, and Gray Leaf Spot, out of healthy leaves. The

necessary data collected by researchers using Samsung smartphone camera in the maize field,

the total number of 300 images are collected. Towards creating a classifier model, Python 3.3

was used as a tool, and CNN for classification algorithms was implemented. From those

images, 70% of assigned for training, and the remaining 30% were for testing. Finally, the

developed classifier model achieves an accuracy of 92.85%. However, the researchers used a

small number of datasets.

59

2.14.1 Executive summary

As observed in the above studies in [24] [25], were carried on sorghum leaf disease

classification and studies in [26], [62], [100], [102], [103], [104], [106], [107], [108], were

carried on rice leaf disease using machine learning. However, the researchers didn’t include

major sorghum leaf diseases such as anthracnose and rust, for their extermination they test the

model with a single classifier, and also, they used a small amount of data.

Using image processing and machine learning techniques selecting the best minimum set of

features is a challenge especially when more variations exist in the data [109]. According to

[74] using manual feature extraction can reduce the classification tasks because the researcher

specifies restrictions on what features represent the input data. In addition, the author in [17]

stated that this learning approach (i.e., machine learning) has some limitations like the machine

wants to see the object, but can’t see the object due to occludes by other objects, in this case,

this technique can’t properly extract features, mostly called occlusion. And also, deformation

limitation, when the images are captured in under various positions and lastly lighting

condition. Because of this, the detection of these features is really difficult.

Therefore, in this study, the researcher collects a greater number of datasets collects to develop

an effective model, this study also includes basic sorghum leaf diseases such as anthracnose

and rust. In addition, to remove the stated limitation related to machine learning techniques the

researcher used a convolutional neural network (CNN). Because this technique avoids hand-

crafted feature extraction rather automatically extracts the necessary features from the given

input images. Also, the presence of a large amount of dataset suitable candidates for the current

application.

The work was done in [101], [103], [105], a deep learning-based via CNN, however, the

researchers used only transfer learning (pre-trained model) classifiers, the other classifier will

obtain better performance. Whereas, in this study, the researcher uses two CNN algorithms

namely: training from the scratch and transfer learning.

60

CHAPTER THREE

METHODOLOGY

3.1. Introduction

These sections give a detailed discussion about the selected research methodology, the

proposed framework and its process, the developed classifier model with transfer learning and

training from the scratch, and finally the performance evaluation metrics are discussed.

3.2. Research methodology

In this research work, the researcher follows design science research methodology. This

approach aims to create and evaluate the artifacts to solve the identified problems by enabling

the transformation of the current state into the desired state. It is increasingly recognized as an

equal companion to Information System (IS) behavioral science research and the novel

paradigm that can tie all the other Information System paradigms together [110].

Hence, design science research is so far another lens or set of analytical techniques and

perspectives for performing research. The design-science paradigm has its roots in engineering

and the sciences of the artificial. It seeks to create innovations that define the ideas, practices,

technical capabilities, and products through which the analysis, design, implementation,

management, and use of information systems can be effectively and efficiently accomplished

[111].

Based on this the researcher has some reasons why DSR is chosen to conduct this study: firstly,

this methodology mainly emphasizes developing knowledge and/or solution, in the building

and application of the designed artifact that supports practically the specialist can use to solve

the real-world problem [32]. Secondly, DSR centered on practical problem solving, includes

prescriptive or solution-oriented knowledge where the outcome from scientific justification

(such as predicting) can be used in designing solutions to complex and relevant field problems

[110] [112]. Finally, DSR targets attaining knowledge and understanding of a problem and

develop a solution for the needs of the business and its environment in the field of information

systems (IS) [32].

61

This study follows DSRM. DSRM has its process model that we follow in conducting this

study. There are many DSR process models recommended by different researchers. Among

them for this study, Peffers DSR process model is chosen, because other process models such

as Archer, Takeda, Nunamaker, and others miss the important phase like objectives of a

solution, demonstration, evaluation, and communication. However, Peffers process model is

complete and it improves the suggestion of different process models by different scholars.

Figure 3.1 shows that the conceptual framework of the Peffers design science research

methodology.

 Figure 3. 1 Design Science Research Methodology adopted from [112]

As shown in Figure 3.1, this study is grown from relevance by identifying the problems that

exist in the environment which is consists of people, organization, and technology. On the

other hand, rigor provides appropriate applicable knowledge. The provided applicable

knowledge allows to build and evaluate the artifact activities of the design itself. Therefore, the

above framework is iterative until the developed artifact are added to the knowledge base thus

provide the basis for future research and the designed artifact satisfies the business needs in

terms of ability. This framework has six steps namely: problem identification and motivation,

the objective of the solution, design and development, demonstration, evaluation, and

communication. Each design step will discuss in the next section.

IS research

Business

needs

Build

 Artifact

R
efin

e

Evaluate

 Experimental

A
ss

es
s

Rigor

Applicable

knowledge

Foundation

 Model

Methodologies

 Python 3.9 as

tool

 Keras as back

end.

 Deep learning

techniques for

classification

Knowledge base

Contribution knowledge to knowledge base

Environment

People

 Domain expert

 Agricultural extension

worker

 Sorghum producer

Organization

 Agriculture research

institution

Technology

 Application program

Relevance

Application in the appropriate environment

62

3.2.1. Problem identification and motivation

In this phase, the researcher has been reviewed different literature and related works previously

done related to this research work, to identify practical problems in an actual application

environment and also the researcher informally interviewed farmers and agricultural extension

workers to know the gap between existing disease identification and the state-of-the-art. After

identifying and formulated the gaps, the researcher was inspired to fulfill the gap by designing

an artifact.

3.2.2. The objective of the solution

The objectives of a solution are inferred from the problem definition. The objectives of the

study that are inferred from the problem specification are explained. Various resources have

been reviewed to know the state of the problem, the state of current solutions, and their

efficacy. Besides the developed artifact is mainly used by a domain expert. Based on this, the

study is iterative until it satisfies the users in terms of ability.

3.2.3. Design and development

In this section, designing the actual artifact using a deep-learning approach, among deep-

learning approaches CNN has been chosen for different reasons. Keras (using TensorFlow as

backend) is used for designing the CNN model. Python is used for writing the required source

codes. Keras is a modular neural network library written in Python capable of running on top

of TensorFlow (TF). In addition, the researcher develops a web-based graphical user interface

using Flask. Flask which is a python framework for web application development, HTML,

CSS, and JavaScript were used as backend (Flask) and frontend (HTML, CSS, and JavaScript).

3.2.4. Demonstration

The developed system is demonstrated by simulating how the developed system detects and

classifies sorghum leaf disease. Window 10pro 64-bit Operating system, Python development

environment, is used to implement the model of the system. The window is an open-source

cross-platform IDE for scientific programming in Python.

63

3.2.5. Evaluation

The developed system is evaluated to measure how well it supports a solution to the problem.

To evaluate the system in a rational method, testing datasets were fed into the developed

model. Subsequently, the developed artifact evaluate through different performance evaluation

metrics such as precision, recall, F-score, and accuracy.

3.2.6. Communication

In this section, the researcher presents a research work report for the defense to get feedback

and to evaluate the importance and effectiveness of the designed artifact.

64

CHAPTER FOUR

SYSTEM DESIGN

4.1 Introduction

In this chapter, detailed description of the proposed system or model for the classification of

sorghum leaf disease is discussed. It requires to pass via a series of steps starting from

preprocessing of images, feature extraction and learning to classification into predefine classes.

Classification mainly encompasses two major phases; these are training phase and testing

phase. In section 4.2, general description about the proposed system architecture is presented.

4.2 Proposed Framework

The proposed system architecture for sorghum leaf disease consists of four components,

namely: image preprocessing, feature extraction, loading the model, and data augmentation.

The system architecture for the proposed model is diagrammatically depicted in Figure 3.2.

The first component of the proposed model is image preprocessing. This component performs

tasks including image resizing and removing noise. In addition, this component does the initial

task of making the input image ready for the feature extraction component. In feature

extraction, the researcher used Gabor filtering to extract texture features. The third component

of the proposed architecture is loading the CNN pre-trained model. In this study, two CNN

models were used namely: training from scratch and transfer learning. Following this, the next

component is data augmentation, this technique applies during training to make the system see

a given image in a different dimension and to overcome model over-fitting. Finally, the

convolutional neural network classifier models are trained and create a model. Therefore, the

developed model can classify the leaves as anthracnose, healthy, leaf blight, and rust.

65

Figure 4. 1 Proposed architecture

Labeled Sorghum leaf

image Sorghum leaf image

Training phase

Image preprocessing

Load pre-trained models

Feature extraction

Per-trained Training from scratch

Image resizing Removing noise

Data augmentation

Testing phase

Trained model

Training the CNN classifier

Predicted class label

66

Generally, this architecture shows the overall process followed to classify a particular input

image in either of four classes. As shown in figure 3.1, there are two separate phases in the

proposed architecture. The training phase and the testing phase with a slight difference in

appearance. The training phase starts from importing a lot of input images, which means

several images are started to be processed at a given time in one after the other manner. In the

testing phase, a single image is imported for the process. After image is imported the training

phases pass through a different process like preprocessing, feature extraction, loading the pre-

trained, and data augmentation techniques then it outputs the trained model. Besides, The

testing phase provides a SoftMax classifier for labeled returns from a model that is trained

previously.

4.3 Image Acquisition

In this study, the image data samples were taken from Shewarobit wereda kobo village, North

Shewa zone and from each class of sorghum leaf images, 1000 samples were taken.

Accordingly, the mobile phone Samsung J8 camera was used in automatic mode with

autofocus and the camera was approximated to 40 cm above the surface of the leaf. Besides,

All the taken images are in JPEG (Joint Photographer Expert Group) file format. During the

image acquisition, both the front and back sides of the leaf images are taken. The images were

manually labeled to the Anthacranose, Healthy, Leaf blight, and Rust with the help of domain

experts. To avoid the external effects of sunlight and other environmental conditions as much

as possible the researcher was taken the images under the same controlled environment. The

total number of samples collected for this study is presented in the following Table 3.1.

 Table 4. 1 Number of collected datasets

Image type Number of datasets

Anthracnose 1000

Healthy 1000

Leaf blight 1000

Rust 1000

Table 3.1 shows that the total number of samples that were collected for this study experiment.

Therefore, 1000 images were collected for Anthracnose leaf disease, 1000 leaves for healthy,

67

1000 leaves for leaf blight disease and the remaining 1000 has assigned for the rust. Therefore,

a total of 4000 images were collected and utilized for this study.

4.4 Image Preprocessing

In the preprocessing task, the input image passes through different filtering techniques to get a

quality image. The preprocessing task is the basic step in image processing application that can

help to get a more meaningful interpretation of an image. In addition, the preprocessing tasks

can affect the overall performance of a classifier model. Consequently, in this classifier model

the following sub-tasks are can be used one or more times during the process of

implementation.

4.1.1 Image resizing

Image resizing is the first image pre-processing task. Image resizing defines preserving an

important region of an image, minimizing distortions, and improving efficiency. Hence the

state-of-the-art models take as input an image size of 224*224 [113]. Therefore, image resizing

helps to reduce the training of time a neural network as more is the number of pixels in an

image more is the number of input nodes that in turn increases the complexity of the model.

This fixed size is used for all imported images because the accuracy of the feature extraction

process is affected if the images are in different sizes. Algorithm 4.1 shows an algorithm that is

implemented in this study to resizing an image.

Algorithm 4. 1 Image resizing

4.1.2 Removing noise

Input: RGB image

 Begin

For each Image in Dataset

 resized_image=resize (image, target_size= (height, width)

return image

 End

Output: resized image

68

During the acquisition of an image, using capturing media, noise is expected. The noise comes

from the camera flash, environmental conditions. Noise refers to variation in an image [101].

Accordingly, for this study Gaussian noise is occurred. Hence, to remove this noise, the

researcher has used the Gaussian filtering technique because for most noise that is appearing

on the images, there are recommended filtering techniques that work better that is why the

Gaussian method has been selected from the other filtering algorithms. So removing this noise

from an image is an advantage of enhancing the quality of the input image, getting a maximum

accurate result and good efficiency. The implemented algorithm for smoothing the images is

shown in algorithm 4.2.

Algorithm 4. 2 Algorithm for removing noise

The Gaussian filter works by using the 2D distribution as a point-spread function. This is

achieved by convolving the 2D Gaussian distribution function with the image. We need to

produce a discrete approximation to the Gaussian function. This theoretically requires an

infinitely large convolution kernel, as the Gaussian distribution is non-zero everywhere.

Fortunately the distribution has approached very close to zero at about three standard

deviations from the mean. Gaussian kernel coefficients are sampled from the 2D Gaussian

function

𝐺(𝑥, 𝑦) =
1

2𝜋𝜎2
ℯ

−
𝑥2+𝑦2

2𝜎2

Input: RGB image

Begin

 Image= original image I

For I in rage (0,3999)

 Read the RGB image

 Convert the RGB image to image in the gray color model

 Gaussian filter the components gray of the converted image

 Convert the image to RGB image

 return image

End

Output: Noise removed and enhanced image

69

Where σ is the standard deviation of the distribution. The distribution is assumed to have a

mean of zero. We need to discretize the continuous Gaussian functions to store it as discrete

pixels.

Figure 4. 2 Images (left) before Gaussian noise (right) after applying Gaussian filtering

4.1.3 Label Encoding

In this study, the images have collected four class labels namely: Healthy, anthracnose, rust,

and leaf blight. However, the collected images are in the form of string. Based on this, for

machine-readable and understandable these string values should convert in the form of numeric

values. Table 4.2 shows the corresponding values of each class.

 Table 4. 2 Label Encoding

Class Numeric value

Anthracnose 0

Healthy 1

Leaf blight 2

Rust 3

4.1.4 One hot Encoding

After the labels are encoded, the next step is One-Hot Encoding. The One-Hot Encoding is

used to avoid confusion of the model, that a model thinking a column has data with some sort

70

of order. This (i.e., One-Hot Encoding) takes a column with categorical data and then splits the

column into multiple values. Therefore, the numbers were replaced by 1s and 0s, depending

on which column has which value, a particular class has a value of one and the remaining have

zero. Table 4.3 describes the encoded image concerning their values.

 Table 4. 3 One-hot encoding

Anthracnose Healthy Leaf blight Rust

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

4.5 Feature extraction

As is described in Chapter 2 Section 2.7.4, images have different features like shape, texture,

and color features. These features can be used to represent an image. For this study, texture

features are used to represent an image for the identification of the normal and diseased

sorghum leaf. The researcher used these features because the texture feature of an image can

differentiate the different categories of the disease. To extract the texture feature of an image

the researcher used GLCM and Gabor filtering. These extraction techniques are one of the

most popular techniques for texture feature extraction or analysis [69]. Textural features within

images can be used for the accurate detection and classification of images. For extracting

textural features (orientation and frequency) from the image, a set of Gabor filters with

different frequencies and orientations are used.

71

Algorithm 4. 3 Generating and applying filters on image

Figure 4. 3 Left: original image Right: image on the left applied with Gabor filter

Input: RGB image

Begin

 // Initialize an array, which holds the generated filters. e.g: filters = []

 // initialize the kernel size so that one filter can cover. e.g: ksize = 31

 for θ in range of (0, pi, pi / 16) // pi = 3.14

 // initialize or assign a value to the parameter sigma; θ; lambda; gamma; and psi

 // example: sigma = 4.0; lambda = 10.0; gamma = 0.5; psi = 0;

 // generate list of Gabor kernel

 kern = getGaborKernel(params)

 filters = kern //Assign or append kern to filters array

 Apply the filters list on image I

Return image filtered by the filter list, filters

End

Output: image filtered by the generated filter list

72

4.6 Data augmentation

For this study, the data augmentation technique has been applied to the collected images, to

generate a larger dataset and more varied for training. To do this, Keras deep learning neural

network library has been utilized to transform, randomly shift, randomly rotate, and randomly

scale and it provides the capability to fit models via the ImageDataGenerator class The

ImageDataGenerator built-in function in the python library is used for experimenting with the

data augmentation technique. To augment the input image the following algorithm is applied:

Algorithm 4. 4 Data augmentation

During augmentation, images are not stored in a disk and don’t require storage memory rather

the transformed images are generated at run-time. This technique will overcome the over-

fitting problem and also increase training performance. In addition, Data augmentation is a

regularization method used to generate additional training data and improve the model’s ability

to generalize, using this the model to see new, slightly and modified forms of the input image

and the network can learn more robust features.

Input: preprocessed image

Start

 Initialize rotation range,

 Width shift range,

 Height shift range,

 Shear range,

 Zoom range,

 Horizontal flip,

 Vertical flip

Return aug; //augmented images

End

Output: augmented image

73

 Figure 4. 4 Original images (Left) augmented image (right)

4.7 Normalization

Normalizing is also used to pre-process an input image before further processing.

Normalization is used to scale down the feature values in the range between 0 and 1. Image

pixel values are an integer between the ranges of 0 to 255. Although these pixel values can be

presented directly to the model, they can result in slower training time and overflow. Overflow

happens when numbers get too big and the machine fails to compute correctly. Using algorithm

4.5 the researcher normalizes the data values down to a decimal between 0 and 1 by dividing

the pixel values by 255.

Algorithm 4. 5 Algorithm for normalizing an image

4.8 Loading the classifier model

As stated in chapter one section 1.6.5, in this study two methods are developed training from

the scratch and transfer learning. In the next sub-section discuss in detail.

Input: resized image

Start

 Divide_By=255.0

 For each data in dataset

 Image=float32(image)

 Image=image/Divide_By

End

Output: normalized image

74

4.8.1 Training the model from the scratch

As stated in chapter one section 1.6.5, in this study two methods are developed training from

the scratch and transfer learning. The proposed model (i.e., training from the scratch) consists

of three layers namely: convolutional layers, max-pooling layer, and activation function and

fully connected layers. The input to the first convolution layer is 224 x 224 x 3 images. The

convolution operation requires four parameters. The first parameter is the number of filters that

are used to control the depth of the output volume. In this model, the researcher has used 32,

64, 64, 128, and 256 filters. Different numbers of convolution layers and different numbers of

filters are tested and those that achieve higher accuracy are selected. The second parameter is

the receptive field size, which determines the size of each filter (kernel) and is nearly always

square. The researcher has used 3 x 3, and 5 x 5 filter sizes at a single layer. A characteristic

feature that cannot be detected by a 3 x 3 filter size can be detected by a filter size of 5 x 5. The

third parameter is stride size, which determines the number of pixels skipped (horizontally and

vertically) each time we make a convolution operation. So, the researcher has used a stride size

of one (1, 1). The last (fourth) parameter is the amount of zero padding, which is used to

control the size of the output. The researcher has used “same” padding, which means the size

of the output is equal to the size of the input if the stride size is one.

75

Figure 4. 5 Proposed CNN classifier model

76

Figure 4.4, shows that the architecture of the proposed network consists of convolution,

pooling, and activation functions. Accordingly, In the proposed method the researcher has used

the LeakyReLU activation function as described in chapter two section 2.9.1.1, it is an

extension of ReLU activation function, in ReLu activation function if the neuron value is

negative it changes into 0 irrespectively, whereas in LeakyReLU if the neuron has negative it

believes that neuron contributes the prediction of some action.

Optimizers are algorithms or methods used to change the attributes of your neural network

such as weights and learning rate to reduce the losses during the training phase. Based on this,

for this study, Adam optimizers with a 0.0001 learning rate value were implemented in the

proposed method. As discussed in the previous chapter, Adam combines the advantages of two

other extensions of stochastic gradient descent and solving vanishing gradient descent

problems, this optimization is better computational than stochastic gradient descent and has

higher convergence speed by the adaptive learning rate. The learning rate parameter defines

how much the weights are updated after each epoch. To reduce overfitting, dropout

regularization method is used at fully each convolution layer and fully connected layer. It

enables multiple, redundant nodes to activate when given with similar patterns (inputs), which

also helps our model to generalize. The value of the dropout layer is determined using

experimentation hence researcher has started with the value of p (dropping probability) = 0.25.

To stable the network during the training phase of the model, there need to be normalized or

standardize the input and adjusting the scale since it used to speed up the training process and

allows each layer of the network to learn by itself, hence the researcher used a batch size of 64

and the network will train in 100 epochs. The method trained with a back-propagation, Back-

propagation trainer trains the parameters of a module according to a supervised dataset by

back-propagating the errors. SoftMax is often used as the activation for the last layer of a

classification network because the result could be interpreted as a probability distribution. And

finally, the researcher was used categorical cross-entropy to calculate the loss. Categorical

cross-entropy calculates a score that summarizes the average difference between the actual and

predicted probability distributions for all classes in the problem. This loss function appropriates

when there are two or more label classes, the labels to be provided in a one-hot representation.

77

4.8.2 Designing CNN models using Transfer Learning

In this study, VGG19, and VGG16 architectures are chosen from others pre-trained networks.

These pre-trained networks are more effective for image classification and have high

classification accuracy than other pre-trained models. These are the way to retrain the CNN

networks, which are previously trained on more than a million images and able to classify

images into 1000 object categories then classify new images. Whereas for this study the last

layer and weights are updated to obtain the desired response. The different hyper-parameters

and their values used for the pre-trained model are well shown in the following table.

 Table 4. 4 Hyper-parameter description

Hyper-parameters Values Description

Optimizer LeakyReLU These are applied during training

the model for the fully connected

layer.

Batch size 64

Epoch 100

Loss function Categorical cross-entropy

4.9 Classification

Classification performs classifying the sample images of sorghum leaf into their types of

disease (i.e. normal, anthracnose, leaf blight, and rust) based on the features of the image. It is

done after the distinctive features are extracted and learned. Based on their origin using

SoftMax classifier into four classes.

4.10 Performance evaluation

After building the classifier model the upcoming process is to evaluate the effectiveness of the

models. As described in chapter 2 section 2.13, the performance of the models is evaluated by

accuracy, precision, recall, and FP rate.

78

CHAPTER FIVE

EXPERIMENT AND RESULT DISCUSSION

5.1 Introduction

In this chapter, the experimental evaluation of the proposed model for automatic classification

of sorghum leaf disease is described in detail. The dataset used and the implantation of the

proposed model are thoroughly described. The effect of the Gabor filter is evaluated and

compared with CNN. In addition, the test results are presented and compared with other

researchers' work.

5.2 Description and Preparation of Dataset

The process used for getting data ready for the classification model can be summarized in:

collect dataset, preprocess data, extracting features and transform data. This process is iterative

with many loops to prepare the dataset required. The datasets were partitioned randomly into

training and testing sets. In the training, the dataset is repeatedly presented to the pattern

recognizer, while weights are updated to obtain the desired response, and the testing dataset is

then provided a standard used to evaluate the model performance. For this experiment, the

researcher used a percentage split test option such that splitting the dataset into training and

testing. Therefore, 70% of the data is assigned for training the model, and the remaining 30% is

assigned for testing. Assigning 2/3rd of the dataset for more than 100 images to training is

close to optimal for reasonably sized datasets [114].

5.3 Building the Model

For this study, the researcher used the Jupyter IDE (Integrated Development Environment)

coding tool for writing, testing, and debugging our code more easily. The program is done

using Python 3.9 language with OpenCV and deep learning framework, Keras. OpenCV (Open

Source Computer Vision) is a library of programming functions mainly aimed at real-time

computer vision. On the other hand, Keras is a built-in python, it provides high-level user-

friendly APIs for building and training the models. And finally, the research design graphical

user interface using flask. In this study, the classification of a sorghum image based on its leaf

79

has developed using one of the deep learning-based approaches with convolutional neural

networks. Besides, the researcher applies two distinct convolutional neural network methods

were applied to develop classification models namely training from scratch and transfer

learning. The experimentation is done on Intel Core ™ i5-5200 CPU, 8 GB of RAM, and a 64-

bit window operating system.

5.4 Experimental Analysis and Result

In this study, the researcher has conducted four experiments. The model is trained for 100

epochs, a batch size of 64, and a starting or initial learning rate of 0.001 (1e-3).

5.4.1 Experiments on transfer learning

In the process of model building, the first CNN architecture was using training from scratch

(i.e. the researcher setting different hyper-parameters into the network from scratch as

discussed in chapter three section 3.9.1). Transfer learning technique (i.e. through-loading

VGG16 and VGG19 pre-trained model), then fine-tuning these networks, finally build a model.

5.4.1.1 Experiment I using VGG19 (Visual Geometry Group19)

The first selected transfer learning model is VGG19. VGG19 is a variant of the VGG model

which in short consists of 19 layers (16 convolution layers, 3 fully connected layers, 5

MaxPool layers, and 1 SoftMax layer). The model uses 3*3 kernel size with stride size of 1,

spatial padding was used to preserve the spatial resolution of the image, 2*2 max-pooling with

the stride of 2 followed by a Rectified linear unit (LeakyReLu). Implemented three fully

connected layers from which the first two were of size 4096 and after that, a layer with 1000

channels and the final layer is a softmax function. However, for this study, the last layer was

changed into 4 classes. This model has around 57 million trainable parameters. When training

the model the datasets split into 70% for training the model and 30% for testing the model. So,

the researcher trained the model with 2800 sample images and 1200 sample images for testing

the trained model. Whereas in this experiment the misclassification of the model between each

class label has also a little different. As the researcher observed in this experiment also model

overfitting occurred and the researcher tried changing different overfitting methods and their

80

values and gotten a little change. The following tables show that the confusion and matrix and

classification report of the VGG19 model.

Table 5. 1 Confusion matrix of VGG19

As it is shown in table 5.1, 270 images are correctly classified as anthracnose disease, while 30

images were incorrectly classified as healthy, leaf blight, and rust disease. Besides, 280 images

were correctly classified as healthy, and the remaining 20 images were incorrectly classified as

Anthracnose, leaf blight, and rust disease. Also, the model 265 images were correctly classified

as Leaf blight disease and 35 images are incorrectly classified as Anthracnose and rust disease.

Finally, 285 images are correctly classified as Rust disease while the remaining 15 images are

incorrectly classified as Anthracnose, healthy, and late blight disease.

 Table 5. 2 Classification report of VGG19

 Class Performance metrics

Precision Recall F1-score False Positive Rate

Anthracnose 0.93 0.90 0.91 0.1

Healthy 0.98 0.93 0.95 0.07

Leaf blight 0.91 0.88 0.89 0.12

Rust 0.84 0.95 0.89 0.05

Weighted avg 0.91 0.91 0.91 0.08

Table 5.2 depicted that the developed classifier model was able to correctly classify 90% of

anthracnose disease the remaining 10% were incorrectly classified as healthy leaf blight and

 Predicted class

A
ct

u
a
l

cl
a
ss

Diseases type Anthracnose Healthy Leaf blight Rust Total

Anthracnose 270 2 8 20 300

Healthy 3 280 13 4 300

Leaf blight 5 0 265 30 300

Rust 10 1 4 285 300

 Total 288 283 290 339 1200

81

rust disease. Besides the model correctly classified 93% as Healthy but the remaining 7% were

incorrectly classified as anthracnose, leaf blight, and rust disease. Similarly, in the model, 88%

were correctly classified as leaf blight disease, and 12% were incorrectly classified as

anthracnose and rust disease. Finally, in the model, 95% were correctly classified as rust

disease but 16% were incorrectly classified as healthy, leaf blight, and anthracnose disease.

Therefore, the classifier model can correctly classify an accuracy of 91.5%.

5.4.1.2 Experiment II using VGG16 (Visual Geometry Group16)

The first experiment, conducting with the VGG16 network. This model has 16 layers deep, the

model trained on more than a million images from ImageNet datasets can classify images into

1000 objects. VGG16 is that instead of having a large number of hyper-parameter they focused

on having convolution layers of 3x3 filter with a stride 1 and always used the same padding

and a max-pool layer of 2x2 filter of stride 2. In the end, it has 2 FC (fully connected layers)

with the LeakyReLU activation function. In the last layer, a Softmax activation function is

used for output. This model is pretty large and it has about 17 million trainable parameters. An

experiment is conducting by splitting total datasets 70% of images are assigned for training,

and the remaining 30% is for testing. As we can see in the following Table 4.1, in this

experiment the misclassification of the model between each class label has a difference. As the

researcher observed this indicates that the model well not recognize the leaf diseases image and

also model overfitting occurred but the researcher tried changing different hyper-parameter to

mitigate overfitting whereas nothing changed. In addition, the researcher also changes the

percentage split test options to 80% for training and 20% for testing but nothing is changed.

Table 5.3 shows the confusion matrix of the VGG16 model.

Table 5. 3 Confusion matrix of VGG16

 Predicted class

A
ct

u
a
l

cl
a
ss

 Diseases type Anthracnose Healthy Leaf blight Rust Total

Anthracnose 249 0 26 25 300

Healthy 0 256 28 16 300

Leaf blight 6 27 261 6 300

Rust 6 0 5 289 300

 Total 261 283 320 336 1200

82

As it is shown in table 5.3, 249 images are correctly classified as anthracnose disease, while 51

images were incorrectly classified as leaf blight and rust disease. Besides, 256 images were

correctly classified as healthy, and the remaining 44 images were incorrectly classified as leaf

blight and rust disease. Also, the model correctly classifies 261 images as Leaf blight disease,

and the remaining 39 images were incorrectly classified as Anthracnose, Healthy, and rust

disease. Lastly, 289 images are correctly classified as Rust disease while 11 images are

classified incorrectly as Anthracnose and leaf blight disease.

Table 5. 4 Classification report of VGG16

 Class Performance metrics

Precision Recall F1-score False Positive Rate

Anthracnose 0.95 0.83 0.89 0.17

Healthy 0.90 0.85 0.88 0.15

Leaf blight 0.82 0.87 0.84 0.13

Rust 0.86 0.96 0.91 0.04

weighted avg 0.88 0.88 0.88 0.12

Table 5.4 depicted that the developed classifier model was able to correctly classify 83% of

anthracnose disease the remaining 17% were incorrectly classified as leaf blight and rust

disease. Besides the model correctly classified 85% as Healthy leaf and the remaining 15%

were incorrectly classified as leaf blight and rust disease. Similarly, in the model, 87% were

correctly classified as leaf blight, and 13% were incorrectly classified as anthracnose, healthy,

and rust disease. Finally, the model 96% were correctly classified as rust, and the remaining

4% were incorrectly classified as leaf blight and anthracnose disease. In addition, the classifier

model can correctly classify with an accuracy of 87.75%.

Finally, in this experiment, the researcher applies different percentage split test options such as

80:20 and 70:30 to get the desired result. However, the better results were gotten in the 70:30

percentage split. Based on this the experimental result shows that VGG19 has gotten better

accuracy than VGG16. This is because of different reasons. The first one is the number of their

trainable parameters VGG19 has 57 million and VGG16 has 16 million parameters which have

a big difference and this might affect the performance of their model. The second one, there

83

was model overfitting in both models. Nevertheless, in VGG19 after changing the value of the

parameter (i.e. the default value was 0.5 whereas the researcher changes the value into 0.25 up

to 0.5) the model overfitting has decreased.

 Figure 5. 1 Performance comparison of transfer learning

5.4.2 Experiments on training from scratch

The second method was training from scratch (i.e. the researcher setting different hyper-

parameters into the network from scratch as discussed in chapter 3 section 3.3.9).

5.4.2.1 Experiment III before applying Gabor filtering

For this experiment, the researcher setting different parameters, and hyper-parameters were

considered and applied as mentioned in chapter 3 section 3.9.2. The proposed convolutional

neural network model experiment has been tested using percentage split, the whole dataset split

into 70% of training and 30% testing. In this experiment, the misclassification of the model

between each class label has also a little different. But as compared to transfer learning models

the misclassification between each class is few. In addition to this, the researcher observed that

in this experiment the occurrence of model overfitting is low. The following tables show that

the confusion matrix and classification report of the proposed model.

84

 Table 5. 5 Confusion matrix of the proposed model before applying Gabor

A
ct

u
a
l

cl
a
ss

Diseases type

Predicted class

Anthracnose Healthy Leaf blight Rust Total

Anthracnose 280 0 13 7 300

Healthy 2 290 6 2 300

Leaf blight 5 0 285 10 300

Rust 6 0 10 284 300

 Total 293 290 314 303 1200

As shown in Table 5.5, 280 images are correctly classified as anthracnose disease, while the

remaining 20 images were incorrectly classified as leaf blight and rust disease. Besides, 290

images were correctly classified as healthy, and the remaining 10 images were incorrectly

classified as Anthracnose, leaf blight, and rust disease. Also, the model correctly classified 285

images as Leaf blight disease, and the remaining 15 images are incorrectly classified as

Anthracnose and rust disease. Finally, 284 images are correctly classified as Rust while 16 of

the images are classified incorrectly as Anthracnose and late blight disease.

 Table 5. 6 Classification report of the proposed model before applying Gabor

 Class Performance metrics

Precision Recall F1-score False Positive Rate

Anthracnose 0.95 0.93 0.93 0.07

Healthy 1.00 0.96 0.97 0.04

Leaf blight 0.90 0.95 0.92 0.05

Rust 0.93 0.94 0.93 0.06

Weighted avg 0.94 0.94 0.93 0.05

Table 5.6 depicted that the developed classifier model was able to correctly classify 93% of

anthracnose disease the remaining 7% were classified incorrectly as leaf blight and rust

disease, besides the model correctly classified 96% as Healthy leaf the remaining 4% were

classified as anthracnose, leaf blight and rust disease. Similarly, the model 95% were correctly

85

classified as leaf blight, and 5% were incorrectly classified as anthracnose and rust disease.

Finally, the model 94% were correctly classified as rust disease, and 6% were incorrectly

classified as anthracnose and leaf blight disease. Therefore, the developed classifier model was

able to correctly classify an accuracy of 94.5%.

5.4.2.2 Experiment IV after applying Gabor filtering

In the previous chapter, the researcher explained how the texture features were computed.

After extraction of these features, the features were used to identify the different types of

disease in the sorghum image. The researcher setting Gabor filter parameters such as lambda,

gamma, psi, orientation, frequency, kernel size. Poorly set parameters impact the result of

feature extraction. The more we have features that represent the leaf image, the more accurate

our classification result will be. As clearly shown in the following tables the gap between the

training accuracy and testing accuracy is much lower as compared to the previous experiments.

This is due to the application of the Gabor filter, the model performs very well as compared to

in the training and testing phase. Training accuracy is increased nearly linearly and passes over

above 95 after epoch 60.

 Table 5. 7 Confusion matrix of the proposed model after applying Gabor filtering

 Predicted class

A
ct

u
a
l

cl
a
ss

Diseases type Anthracnose Healthy Leaf blight Rust Total

Anthracnose 290 0 2 8 300

Healthy 0 295 5 0 300

Leaf blight 5 0 287 8 300

Rust 2 0 3 295 300

 Total 297 295 297 311 1200

As shown in Table 5.7, 290 images are correctly classified as anthracnose disease, while 10

images were incorrectly classified as leaf blight and rust disease. Besides, 295 images were

correctly classified as healthy, and the remaining 5 images were incorrectly classified as leaf

blight disease. Also, the proposed model 287 images were correctly classified as Leaf blight

and 13 images are incorrectly classified as Anthracnose and rust disease. Finally, 295 images

86

are correctly classified as Rust disease while 5 of images are classified incorrectly as

Anthracnose and late blight disease.

 Table 5. 8 Classification report of the proposed model after applying Gabor

 Class Performance metrics

Precision Recall F1-score False Positive Rate

Anthracnose 0.97 0.96 0.96 0.04

Healthy 1.00 0.98 0.98 0.02

Leaf blight 0.96 0.95 0.95 0.05

Rust 0.94 0.98 0.95 0.02

Weighted avg 0.96 0.96 0.96 0.03

As shown in table 5.8 the developed classifier model was able to correctly classify 96% of

anthracnose disease the remaining 4% were classified incorrectly as leaf blight and rust

disease. Besides the model correctly classified 98% as Healthy leaves were the remaining 2%

classified as leaf blight. Similarly, in the model, 95% were correctly classified as leaf blight,

and 5% were incorrectly classified as anthracnose, and rust disease. Finally, in the proposed

model 98% were correctly classified as rust, and 2% were incorrectly classified as leaf blight

and anthracnose disease. Finally, after applying Gabor filtering the developed classifier model

was able to correctly classify an accuracy of 96.75%.

Finally, in this experiment, the researcher applies different percentage split test options such as

80:20 and 70:30 to get the desired result. However, the better results were gotten in the 70:30

percentage split. Based on this the experimental result shows that the proposed model with

Gabor filtering has gotten better performance accuracy than the proposed model without Gabor

filtering. This is due to applying Gabor filtering application on the CNN classifier model might

has a great effect on model performance.

87

Figure 5. 2 Performance comparison of training from scratch

5.5 Summary of experimental result

As illustrated in table 5.9 this study has been done using both training from scratch and transfer

learning. The table summarizes the result of the training and testing accuracy of the study. The

model is trained for 100 epochs for each experiment with a 70:30 test option. The proposed

model architecture was achieved better accuracy after applying Gabor filtering.

 Table 5. 9 Comparison of all experiment

Performance metrics Training from scratch Transfer learning

Proposed CNN model

before applying Gabor

filtering

Proposed CNN

model after applying

Gabor filtering

VGG19 VGG16

Tested images 1200 1200 1200 1200

Accuracy (%) 94.5 96.75 91.5 87.75

Precision (%) 94.5 96.75 91.5 88.25

Recall (%) 94.5 96.5 91.5 87.75

F-measure (%) 93.75 95.5 91 88

False-positive rate (%) 5.5 3.5 8.5 12.25

92

92.5

93

93.5

94

94.5

95

95.5

96

96.5

97

Accuracy Presicion Recall F-measure

Performance comparison

Proposed model without Gabor filtering Proposed model with Gabor filtering

88

As shown in table 5.9, the proposed model has 3.9 million parameters, which is much smaller

than the VGG16 model, which has 17.3 million parameters, and the VGG19 model, which has

57.1 million parameters. The proposed model after applying the Gabor filtering algorithm

achieves a training accuracy of 96.5%. In addition, the proposed model has no model

overfitting compared to the pre-trained model and proposed model without Gabor filtering. On

the other hand, in terms of test accuracy VGG16 and VGG19 achieve an accuracy of 91.5%

and 87.75% respectively.

5.6 Comparing this Study with Related Works

The performance of the developed model of this study result has compared with the previously

published method and results. Therefore, an attempt has been made to discuss the results of this

study and comparison with previous work. As the researcher has discussed in the literature

review in chapter two, there are two published studies were conducted on sorghum leaf disease

classification. The discussion has focused on the major findings of previous works to compare

the findings of this study. However, Study in the first row, the researchers used AlextNet with

the size of 224*224 sorghum leaf images. The total number of datasets and the performance of

the classifier model isn’t mentioned. In the second row study, the researchers used machine

learning approaches such as ANN, RF, and SVM. For their experiment, a total number of 1183

images were used. Whereas in this study the researcher used two CNN models namely transfer

learning and training from the scratch. A total number of 4000 sorghum leaf images were used

to conduct the study. Besides, the researcher resize the images into the input size of the CNN

model which is 224*224. The model is trained with the LeakyReLU activation function with

64 batch sizes and 100 epochs. When training the model it takes two and half days with Dell

Intel core i5 -5200U CPU. Table 5.10 shows the detailed results of the comparison.

89

 Table 5. 10 Comparison of the Proposed System with other researchers' work

No. Author Title Proposed method Accuracy Remark

1. Soni et al.

2020

Crop Yield Improvement

Using Plant Leaf Disease

Detection

AlexNet -

2. Rahman

et al. 2017

A comparative analysis of

machine learning approaches

for plant disease identification

Random forest

ANN

SVM

95.4%,

94.9,

80.5%

*

Proposed method 96.75%

Note the symbol (*) in Table 5.10 indicate the study in the second row the main aim of the

researchers was trying to identify which features are better for classifying the diseases rather

not for developing a classifier model. The performance of the proposed system for sorghum

leaf disease recognition and classification showed a substantial result, which is 96.75% of

detection accuracy.

5.7 Development the Prototype

Finally, based on the results of this study the researcher developed a user interface for the

proposed research work. This user interface was mainly used for domain experts or end-users

to classify sorghum leaf diseases. The user interface is designed with python using Flask. As

already discussed in chapter one Flask is used for developing web applications in python. It

does not require particular tools or libraries and it has no database abstraction layer, form

validation, or any other components where pre-existing third-party libraries provide common

functions. The end-user of the system can lunch a system by writing the URL of the system on

any web browser, after that the web browser sends HTTP request to the webserver and then the

webserver gives back an HTTP response to the browser. As shown in figure 5.3 the user enters

the http://127.0.0.1:5000/ to get the home pages.

http://127.0.0.1:5000/

90

Figure 5. 3 Launch the Flask server and get an IP address

The following figure 5.4, shows the Illustration Design of the Classification model after the

user enters the URL of the sorghum leaf disease detection and classification system.

 Figure 5. 4 User interface

As shown in figure 4.4, after the end-user entering the URL the requested home page is

displayed. Then the end-user must upload a sorghum leaf image to know which disease affects

the leaf. Once the user clicks the choose file button the system displays the file upload window,

and the users can upload the images from local disk or external disk. Figure 5.5 illustrates

uploading the sorghum leaf images.

91

 Figure 5. 5 Uploading sorghum leaf image from disk

As shown in figure 5.5, the user uploads the images from local or external disk by clicking the

choose file button then after uploading the required image the users click the predict button as

shown in figure 5.6.

 Figure 5. 6 Sample result of the model

5.8 User Acceptance Test

The user acceptance testing ensures how the users or domain experts view the system on the

bases of the rules and performance to classify sorghum leaf disease.

92

The entire proposed system is evaluated by 5 people, the researcher select randomly from

different profession 3 of them are form Debre Berhan University plant science department and

the remaining 2 from Deber Berhan Agricultural research center. The selection is based on the

assumption that those with plant science background can see and evaluate the applicability,

accuracy and importance of the system. Before starting the evaluation process, the system was

explained in detail to the evaluators. Therefore, for this study, the evaluation criteria has been

used such as Excellent = 5, Very Good =4, Good =3, Fair =2 and Poor =1. Therefore,

evaluators were allowed to the following closed ended questions. Table 5.11 shows the

feedbacks obtained from the evaluators on system interactions.

 Table 5. 11 User acceptance evaluation

No Criteria evaluation

P
o
o
r

F
ai

r

G
o
o
d

V
er

y
 G

o
o
d

E
x
ce

ll
en

t

A
v
er

ag
e

1 The prototype system user friendly 1 1 3 4.4

2 The attractiveness of the system 3 2 4.4

3 Response time of the system 1 3 1 4

4 The correctness of the prototype in the
classification of sorghum leaf

 1 2 2 4.2

5 Applicability of the system 3 2 4.4

6 How do you rate the significance of the system

in the domain area?
 1 4 4.8

 Average 4.36

As illustrated in Table 5.11, 20% of evaluators replied Good for user friendly of the prototype

and 20% of respondents, replied Very good and the remaining 60% are replied Excellent.

Concerning the second question, that is Attractiveness of the system 60%, 40% of evaluators

replied Very Good and Excellent respectively. The third question is about the response time of

the system 20% of evaluators scored Good, 60% of evaluators scored Very Good and the

remaining 20% of evaluators scored Excellent. The fourth evaluation criteria are about the

correctness of the prototype 20% of evaluators scored Good, 40% of evaluators scored Very

93

Good and 40% of them as excellent. The fifth criteria are the applicability of the system among

the evaluators 60% of evaluators scored Very Good and 40% of evaluators scored Excellent.

Finally the last criteria is how do you rate the significance of the system. Among the

evaluators, 20% replied very Good and 80% of them replied excellent.

5.9 Discussion

Based on the conducted research, in this section, the researcher will discuss insight into the

result concerning the research objectives stated in chapter one. As described, in chapter one

section 1.3 the major objective of this proposed work was to develop a model for sorghum leaf

disease recognition and classification this study work attempts to answers the below-listed

questions:

 Which training methods are more appropriate for classifying sorghum leaf diseases?

In this study, the researcher applies two convolutional neural network training methods

namely, training from scratch and transfer learning models (i.e., reusing the previously trained

model). Comparatively, training from the scratch with Gabor filtering algorithm achieves an

accuracy of 96.75% whereas training from the scratch without Gabor filtering, VGG19, and

VGG16 achieve an accuracy of 94.5, 91.5%, and 87.75% respectively. Therefore, the proposed

model with Gabor filtering is the most suitable classifier for sorghum leaf diseases.

 Which features extraction techniques are the best for classifying sorghum leaf diseases?

In this study, the researcher applied two different image feature extraction algorithms to make

the convolutional neural networks easily learn the important features from the given images.

Currently, different researchers applied Gabor filtering and GLCM feature extraction algorithm

to extract the texture feature and to minimize computation time and space in deep learning.

Based on this experimental result shows that Gabor filtering achieves an accuracy of 96.75%

whereas GLCM achieves an accuracy of 87.5%. For this study, Gabor achieves better results

than GLCM. Therefore, the researcher recommends that applying the Gabor filtering algorithm

on a convolutional neural network will help the model to easily identify the high-level features

from the given images.

94

 To what extent does the developed model correctly classify sorghum leaf diseases?

After developing a classifier model, always requires to determine whether the developed model

is a correct predictor or not. In this study, the performance of the developed classifier model

was evaluated using a confusion matrix test. Besides, the most widely used classifier model

performance evaluation metrics of precision, recall, and F-measure were also applied.

Somewhat, training from the scratch with Gabor filtering achieves an accuracy of 96.75% has

given promising results for the detection and classification of the sorghum leaf disease than

transfer learning.

5.10 Summary of the experiment

In this chapter, we have seen the experimental results of this research work from dataset

collection, dataset preparation, building the model, and the performance of each classifier

model. However, the challenge in the experiments is overfitting and oscillation in the training

and validation loss or accuracy. It is due to a random sample from our dataset: the dataset at

each evaluation step is different, so is the validation loss. In addition, at each epoch, there are

18 (70% of the training dataset, 1200 divided by the batch size, 64) iterations. At each

iteration, different samples are taken, trained, and tested, thereby oscillation or overfitting

occurred. The other challenge in this experiment is a computational resource as stated in

comparison to the study each experiment has to take two and half days. So, when the research

changes each hyper-parameter value and re-runs it takes a lot of time to execute.

95

CHAPTER SIX

CONCLUSION AND RECOMMENDATION

6.1 Introduction

In this chapter, the study highlights conclusions based on the findings on the experimentation

of the thesis work is carried out and reported. Similarly, a suggestion for future research and

contribution of the study is forwarded.

6.2 Conclusion

Sorghum is one of the heavily cultivated grains in the world. Governments and farm owners

invest their arable land, energy, time, and money to cultivate this crop. Countries, including

Ethiopia, produce sorghum for domestic consumptions. The grain is used as a major food item

around the world and especially in sub-Saharan Africa. This crop production is damaged due to

different factors, among them, diseases are the major ones. These diseases reduce the quality

and quantity of sorghum crops. Diseases such as anthracnose, rust, and leaf blight are among

the fungal groups, which are now considered as one of the most destructive diseases of

sorghum in most of the major growing regions of the country. These diseases affect different

parts and stages of the crop that significantly reduce its productivity. Hence, the

identification of these diseases through a system is critical. Therefore, artificial intelligence

with Image processing techniques are plays important role in the field of agriculture research.

This study aimed to develop a classifier model for sorghum leaf disease using a deep-learning

approach. To do so, the researcher followed a design science research methodology. In this

research work, the required 4000 sorghum leaf images were collected from Shewarot woreda

kobo village North Shewa zone. After collecting the required images the researcher applies

different image pre-processing techniques such as image resizing, noise removing, and

normalization. Then the researcher extracts texture features from images using Gabor filtering.

Accordingly, two deep CNN architectures were used to conduct this study. Specifically,

training from scratch (i.e. the researcher settings different hyper-parameters and trained the

model from the scratch) and transfer learning convolutional neural network methods were used

96

to build a model that can classify the sorghum leaf disease. During training the model the

researcher applies image augmentation techniques in both CNN architecture to mitigate the

overfitting. Additionally, to develop a classification, model 70%:30% percentage split test

options have been utilized and a confusion matrix and classification report to visualize the

model performance.

Experimental results show that after applying Gabor filtering the overall success rate for the

classification of sorghum leaf is 96.5%. The success rates for classifying anthracnose, healthy,

leaf blight, and rust are 97%, 100%, 97%, and 92% respectively. Moreover, these results show

that the proposed CNN model with Gabor filtering is effective in classifying sorghum leaf

diseases. From the result achieved, the researcher can conclude that the use of texture features

is an excellent choice for automatic plant leaf classification. Also, the proposed model can be

used to help monitor the changes in sorghum leaf disease over time, to ensure healthy growth.

Overall, the system devised is very user-friendly and can successfully classify detect and

measure disease of sorghum leaf while saving time and effort.

6.3 Contribution of the Study

As a contribution to the new knowledge, this research work has contributed the following.

 The researcher designed a classifier using CNN that can successfully classify sorghum

leaf diseases.

 Gabor filter application: CNNs were trained with an input of raw (image) data. The

researcher has changed this trend by the application of the Gabor filter. This makes the

model train on the already distinguished texture (orientation and frequency) features.

This enables the proposed model to have higher training and testing accuracy than CNN

applied on the raw image data.

 Performance improvement: the proposed model achieves better results in terms of

accuracy, the classifier has gotten 96.5% testing accuracy that are far above state-of-

the-art models. The proposed model weighs very little and trains faster as compared to

pre-trained models. The application of Gabor filter on the raw image was also used to

improve the performance of state-of-the-art models as well by 5% (VGG19) and 8%

(VGG16).

97

 This research work can be used as a reference for the recognition of objects from

images as the basic underlying principle is the same concerning disease recognition and

classification.

6.4 Recommendation

As we know Agriculture is the backbone of the Ethiopian economy no matter how well it is

developed. Therefore, there is the need to pay much attention to it so that the right output will

come from it. In our part of the globe where there is limited application of technology in

Agriculture, farmers find it very difficult to produce up to their maximum strength due to

factors like plant diseases. It is therefore recommended that much attention will be given to the

treatment of plant diseases to avoid much loss in agriculture. In addition, the government

should have a focus on training agricultural extension worker, users, and pathologists to use

and apply the non-destructive way of detecting and classifying plant disease early. Moreover,

the government also thinks about it implementing this kind of research work for early detection

and classification of plant leaf disease and reducing the production loss from plant leaf

diseases.

6.5 Future work

The primary objective of this study has been achieved and the research questions have been

answered. Although, the researcher has tried the best to get the desired output and the accuracy

value is quite good for this method, yet there is still room for improvement as long as the

accuracy is not exactly 100% few works remain unsolved. The following are the possible

future works.

 In this work, the researcher has built a system that identifies which type of disease

attacks sorghum. Nevertheless, the system does not estimate the severity of the

identified disease and does not recommend the appropriate treatments. Thus, another

research direction.

 In this study, only texture features especially for the CNN training from scratch have

been extracted. In future work, other researchers should try to use Meta features so that

they can be optimized to achieve a higher recognition accuracy.

98

 This research work addresses three diseases for sorghum crops, however, due to lack of

dataset (images), the remaining Downy Mildew disease. Therefore, future studies can

extend this research work to include other diseases as a fifth class.

99

References

1. Harris, David R., and Dorian Q. Fuller. "Agriculture: definition and overview." New York:

Springer, 2014.

2. Price, T. Douglas, and Ofer Bar-Yosef. "The origins of agriculture: new data, new ideas: an

introduction to supplement 4." Current Anthropology , Vol. 52, No. 4, Pp. 163-174, 2011.

3. Diao, Xinshen, et al. The role of agriculture in development: Implications for Sub-Saharan

Africa. Vol. 153, Intl Food Policy Res Inst, 2007.

4. Alston, J.M. and Pardey, P.G., 2014. Agriculture in the global economy. Journal of

Economic Perspectives, 28(1), pp.121-46, 2014.

5. Ministry of Economic, Development and Cooperation, survey of the ethiopian economy

(1992/93 - 1997/ 98), Addis Ababa, Ethiopia, September 1999.

6. Bachewe, Fantu Nisrane, Guush Berhane, Bart Minten, and Alemayehu Seyoum

Taffesse. Agricultural growth in Ethiopia (2004-2014): Evidence and drivers. No. 81.

International Food Policy Research Institute (IFPRI), 2015.

7. Taffesse, Alemayehu Seyoum, Paul Dorosh, and Sinafikeh Asrat Gemessa. "3 Crop

production in Ethiopia: regional patterns and trends." In Food and agriculture in Ethiopia,

Pp. 53-83. University of Pennsylvania Press, 2013.

8. Åkesson, Mrs Tanja, Codex Contact Point, and Viale delle Terme di Caracalla. "joint

fao/who food standards programme codex committee on contaminants in foods." 2015.

9. Ramatoulaye, F., C. Mady, and S. Fallou. "Production and use sorghum: a literature

review." Journal of Nutritional Health & Food Science, Vol. 4, No. 1, Pp. 1-4, 2016.

10. B. Assefa and B. Lanos, "Analysis of price incentives for Sorghum in Ethiopia," FAO,

Rome, 2015.

11. Teferi, Teklay Abebe, and Muruts Legesse Wubshet. "Prevalence and intensity of

economically important fungal diseases of sorghum in South Tigray, Ethiopia." Journal of

Plant Sciences, Vol. 3, No. 2, Pp 92-98, 2015.

12. Ray, Monalisa, Asit Ray, Swagatika Dash, Abtar Mishra, K. Gopinath Achary,

Sanghamitra Nayak, and Shikha Singh. "Fungal disease detection in plants: Traditional

assays, novel diagnostic techniques, and biosensors." Biosensors and Bioelectronics 87

pp.708-723, 2017.

100

13. Zechmann, Bernd, and Günther Zellnig. "Rapid diagnosis of plant virus diseases by

transmission electron microscopy." Journal of virological methods, Vol. 162, No. 2,

Pp.163-169, 2009.

14. Zhang, M., X. Liu, and M. O'neill. "Spectral discrimination of Phytophthora infestans

infection on tomatoes based on principal component and cluster analyses." International

Journal of Remote Sensing, Vol. 23, No. 6, Pp. 1095-1107, 2002.

15. Patrício, Diego Inácio, and Rafael Rieder. "Computer vision and artificial intelligence in

precision agriculture for grain crops." Computers and electronics in agriculture, Vol. 153,

Pp. 69-81, 2018

16. Guo, Yanming, Yu Liu, Ard Oerlemans, Songyang Lao, Song Wu, and Michael S. Lew.

"Deep learning for visual understanding." Neurocomputing, Vol. 187, Pp. 27-48, 2016.

17. Wehle, Hans-Dieter. "Machine learning, deep learning, and AI: What’s the difference?"

In International Conference on Data scientist innovation day, Bruxelles, Belgium. 2017.

18. Rath, A. K., and J. K. Meher. "Disease detection in infected plant leaf by computational

method." Archives of phytopathology and plant protection, Vol. 52, No. 20, Pp. 1348-1358,

2019.

19. B. Haile, T. Babege and A. Hailu, "Diseases and Insect Pests of Onion (Allium cepa L.) in

Masha District of Sheka Zone, South-West Ethiopia," Journal of Agricultural Research,

Vol. 4, No. 10, Pp. 629-632, 2016.

20. Kinfe, Hailegebrial, and Adane Tesfaye. "Yield performance and adoption of released

Sorghum varieties in Ethiopia." Edelweiss Applied Science and Technology, Vol. 2, No. 1

Pp. 46-55, 2018.

21. Amelework, Beyene A., Hussein A. Shimelis, Mark D. Laing, Dawit Getnet Ayele,

Pangirayi Tongoona, and Fentahun Mengistu. "Sorghum production systems and

constraints, and coping strategies under drought-prone agro-ecologies of Ethiopia." South

African Journal of Plant and Soil, Vol. 33, No. 3, Pp. 207-217, 2017.

22. Halder, Monishanker, Ananya Sarkar, and Habibullah Bahar. "Plant disease detection by

image processing: a literature review." Journal of Food Science & Technology, Vol. 3, No.

6, 2019.

101

23. Sujatha, R., Y. Sravan Kumar, and Garine Uma Akhil. "Leaf disease detection using image

processing." Journal of Chemical and Pharmaceutical Sciences, Vol. 10, No. 1, Pp.670-

672, 2017.

24. Tejashree Soni, Prajakta Joshi, Pranali Chavan, Ajjay Gaadhe. “Machine Learning

Approach for Crop Yield Improvement Using Plant Leaf Disease Detection”, International

Research Journal of Engineering and Technology, Vol. 7, No. 4, Pp. 4920-4923, 2020.

25. Rahman, Hidayat, Nadeem Jabbar Ch, SanaUllah Manzoor, Fahad Najeeb, Muhammad

Yasir Siddique, and Rafaqat Alam Khan. "A comparative analysis of machine learning

approaches for plant disease identification." Advancements in Life Sciences, Vol. 4, No. 4,

Pp. 120-125, 2017.

26. Ahmed, Kawcher, Tasmia Rahman Shahidi, Syed Md Irfanul Alam, and Sifat Momen.

"Rice leaf disease detection using machine learning techniques." In 2019 International

Conference on Sustainable Technologies for Industry 4.0 (STI), Dhaka, Bangladesh, 2019.

27. Tejas Mohan Ayyar, "Medium," [Online]. Available:

https://tejasmohanayyar.medium.com/a-practical-experiment-for-comparing-lenet-lexnet-

vgg-and-resnet-models-with-their-advantages-d932fb7c7d17. [Accessed 4 July 20021].

28. Zhang, Aston, Zachary C. Lipton, Mu Li, and Alexander J. Smola. "Dive into deep

learning”, Springer, 2021.

29. Sharma, Neha, Vibhor Jain, and Anju Mishra. "An analysis of convolutional neural

networks for image classification." in International Conference on Computational

Intelligence and Data Science, Noida, India, 2018.

30. Sladojevic, Srdjan, Marko Arsenovic, Andras Anderla, Dubravko Culibrk, and Darko

Stefanovic. "Deep neural networks based recognition of plant diseases by leaf image

classification." Computational intelligence and neuroscience 2016.

31. Jmour, Nadia, Sehla Zayen, and Afef Abdelkrim. "Convolutional neural networks for

image classification." In 2018 International Conference on Advanced Systems and Electric

Technologies (IC_ASET), Pp. 397-402. IEEE, 2018.

32. Bisandu, Desmond Bala. "Design science research methodology in Computer Science and

Information Systems." International Journal of Information Technology Vol. 5, No. 4 Pp.

55-60, 2016.

https://tejasmohanayyar.medium.com/?source=post_page-----d932fb7c7d17--------------------------------
https://tejasmohanayyar.medium.com/a-practical-experiment-for-comparing-lenet-

102

33. Anbsaw Belete Mekonnen, “A deep learning-based approach for potato leaf diseases

classification”, Master's thesis in Natural Science Deber Berhan University, Deber Berhan

Ethiopia: Unpublished, 2020.

34. Hemanth kumar, "Introduction to Micro Web Framework Flask," 3 5 2021. [Online].

Available:https://medium.com/featurepreneur/introduction-to-micro-web-framework-flask-

78de9289270b. [Accessed 1 6 2021].

35. https://scikitlearn.org/stable/modules/generated/sklearn.metrics.precision_recall_fscore_su

pport.html, [Accessed 10 October 2020].

36. Kimber, Clarissa T. "Origins of domesticated sorghum and its early diffusion to India and

China." New York:]ohn Wiley & Sons, Inc, 2000.

37. Smith, C. Wayne, and Richard A. Frederiksen, eds. “Sorghum: Origin, history, technology,

and production”. Vol. 2. Pp. 261-307, John Wiley & Sons, 2000.

38. Tuinstra, Mitchell R. "Food-grade sorghum varieties and production

considerations." Journal of Plant Interactions, Vol. 3, No. 1, Pp. 69-72, 2008.

39. Chala, C. B. "Sorghum [Sorghum bicolor (L.)] Breeding in Ethiopia: Review." Journal of

Biology, Agriculture and Healthcare, Vol. 8, No. 21, Pp. 81-90, 2018.

40. Demeke Mekonnen and F. Di Marcantonio. "Analysis of incentives and disincentives for

sorghum in Ethiopia." MAFAP, FAO, Rome, 2013.

41. Mbwika, J. M., H. Odame, and E. K. Ngungi. "Feasibility study on Striga control in

sorghum." Nairobi, African Agricultural Technology Foundation. Majestic printing works,

Nairobi, Kenya. 78pp (2011).

42. DeMilliano, Walter Alphonsus Johannes, Richard A. Frederiksen, and G. D. Bengston.

"Sorghum and Millets Diseases A Second World Review," International Crops Research

Institute for the Semi-Arid Tropics, Vol. 378, No. 46, 1992.

43. Tsedaley, Binyam, Girma Adugna, and Fikre Lemessa. "Distribution and importance of

sorghum anthracnose (Colletotrichum sublineolum) in southwestern and western Ethiopia."

Journal of Plant Pathology, Vol. 15, No. 3, Pp. 75-85, 2016.

44. Rahman, Hidayat, Nadeem Jabbar Ch, SanaUllah Manzoor, Fahad Najeeb, Muhammad

Yasir Siddique, and Rafaqat Alam Khan. "A comparative analysis of machine learning

approaches for plant disease identification." Advancements in Life Sciences, Vol. 4, No. 4

Pp. 120-126, 2017.

https://medium.com/featurepreneur/introduction-to-micro-web-framework-flask-
https://medium.com/featurepreneur/introduction-to-micro-web-framework-flask-

103

45. Samuel, Anjorin Toba, Oyerinde Akeem Abolade, and Okafor Obiageli Evelyn. "Status of

pests and diseases of sorghum and their management practices by Fadama III participating

farmers in Abuja, Nigeria." Journal of Agricultural Extension and Rural Development, Vol.

12, No. 2, Pp 36-47, 2020.

46. R. L. Christopher and P. Ramasamy, the Biology and Control of Sorghum Diseases,

Kansas: American Society of Agronomy Crop Science Society of America Soil Science

Society of America, 2019.

47. H. Goitoom, Biological Control of Anthracnose of Sorghum using Trichoderma isolates

under in vitro conditions, Master's thesis in Social Science, Addis Abeba University, Addis

Abeba Ethiopia, Unpublished, 2019.

48. Das, Ankita, Amar Kumar Dey, and Manisha Sharma. "Leaf disease detection,

quantification and classification using digital image processing." International Journal of

Innovative Research in Electrical, Electronics, Instrumentation, and Control Engineering,

vol. 5, no. 11, pp. 45-50, 2017.

49. Tropics, International Crops Research Institute for the Semi-Arid. “Sorghum disease a

world review,” in International Workshop on Sorghum Diseases, Hyderabad, India, 1978.

50. Upadhyaya, Hari D., Yi-Hong Wang, Rajan Sharma, and Shivali Sharma. "SNP markers

linked to leaf rust and grain mold resistance in sorghum." Molecular breeding, Vol. 32, No.

2, Pp. 451-462, 2013.

51. Rehman, Tanzeel U., Md Sultan Mahmud, Young K. Chang, Jian Jin, and Jaemyung Shin.

"Current and future applications of statistical machine learning algorithms for agricultural

machine vision systems." Computers and Electronics in Agriculture, Vol. 156, P. 585-605,

2018.

52. Gomes, Juliana Freitas Santos, and Fabiana Rodrigues Leta. "Applications of computer

vision techniques in the agriculture and food industry: a review." European Food Research

and Technology, Vol. 235, No. 6, Pp. 989-1000, 2012.

53. Li, Yang, and Yuhang Zhang. "Application Research of Computer Vision Technology in

Automation." In International Conference on Computer Information and Big Data

Applications (CIBDA) Guiyang, China, Pp. 374-377, 2020.

54. Foglia, Mario M., and Giulio Reina. "Agricultural robot for radicchio harvesting." Journal

of Field Robotics, Vol. 23, No. 6‐7, Pp. 363-377, 2006.

104

55. Vázquez-Arellano, Manuel, Hans W. Griepentrog, David Reiser, and Dimitris S. Paraforos.

"3-D imaging systems for agricultural applications—a review." Sensors, Vol. 16, No. 5,

2016.

56. Zhu, Yanjun, Zhiguo Cao, Hao Lu, Yanan Li, and Yang Xiao. "In-field automatic

observation of wheat heading stage using computer vision." Biosystems Engineering,

Vol. 143, Pp. 28-41, 2015.

57. Wiley, Victor, and Thomas Lucas. "Computer vision and image processing: a paper

review." International Journal of Artificial Intelligence Research, Vol. 2, No. 1, Pp. 28-30,

2018.

58. Gonzale, Rafael C. "Digital image processing third edition." Upper Saddle River, New

Jersey: Pearson Prentice Hall, 2008.

59. Tyagi, Vipin. “Understanding digital image processing”. India CRC Press, 2018.

60. Abdullah, Ahmed, Wahid Palash, Ashiqur Rahman, K. Islam, and A. Alim. "Digital image

processing analysis using Matlab." American Journal of Engineering Research (AJER),

Vol. 5, No. 12, Pp. 143-147, 2016.

61. Rao, Raghuveer M., and Manoj K. Arora. "Overview of image processing." In Advanced

image processing techniques for remotely sensed hyperspectral data, pp. 51-85. Springer,

Berlin, Heidelberg, 2018.

62. Panigrahi, Kshyanaprava Panda, Himansu Das, Abhaya Kumar Sahoo, and Suresh Chandra

Moharana. "Maize leaf disease detection and classification using machine learning

algorithms." In Progress in Computing, Analytics, and Networking Advances in Intelligent

Systems and Computing, Odisha, 2020.

63. Bhadur, Ganesh, and Rajneesh Rani. "Agricultural Crops Disease Identification and

Classification through Leaf Images using Machine Learning and Deep Learning

Technique: A Review." in International Conference on Intelligent Communication and

Computational Research, Jalandhar, 2020.

64. Anjali, Y. Rajkumar and J. Kamaldeep, "A Comparative Study of Image Segmentation

Methods," International Journal of All Research Education and Scientific Methods, Vol. 4,

No. 7, Pp. 232-235, 2017.

65. Karim, Abdul Amir Abdullah, and Rafal Ali Sameer. "Comparing the Main Approaches of

Image Segmentation." Journal of Science, Vol. 58, No. 4, Pp. 2211-2221, 2017.

105

66. K. Dilpreet and K. Yadwinder, "Various Image Segmentation Techniques," International

Journal of Computer Science and Mobile Computing, Vol. 3, No. 5, Pp. 809-814, 2014.

67. Kornilov, Anton S., and Ilia V. Safonov. "An overview of watershed algorithm

implementations in open source libraries." Journal of Imaging, Vol. 4, No. 10, Pp. 1-15,

2018.

68. Bala, Anju. "An improved watershed image segmentation technique using

MATLAB." International Journal of Scientific & Engineering Research, Vol. 3, No. 6, Pp.

1-4, 2012.

69. Choras, Ryszard S. "Image feature extraction techniques and their applications for CBIR

and biometrics systems." International journal of biology and biomedical engineering, Vol.

1, No. 1, Pp. 6-16, 2007.

70. E. Umapathy, S. Prasanna and Sripriya, "Various approaches of color feature extraction in

leaf diseases under image processing," International Journal of Engineering & Technology,

Vol. 7, No. 2, Pp. 712-717, 2018.

71. Gabor, Dennis. "Theory of communication. Part 1: The analysis of information." Journal of

the Institution of Electrical Engineers-Part III: Radio and Communication Engineering,

Vol. 93, No. 26, Pp. 429-441, 1946.

72. Kumar, Arun, Vinod Patidar, Deepak Khazanchi, and Poonam Saini. "Role of feature

selection on leaf image classification." Journal of Data Analysis and Information

Processing, Vol. 3, No. 2, Pp. 175-183, 2015.

73. Marmol, Urszula. "Use of Gabor filters for texture classification of airborne images and

LIDAR data." Archives of Photogrammetry, Cartography and Remote Sensing, vol. 22, pp.

325-336, 2011.

74. De Menezes, Richardson Santiago Teles, Rafael Marrocos Magalhaes, and Helton Maia.

"Object recognition using convolutional neural networks." In Recent Trends in Artificial

Neural Networks, Pp. 1-10, 2019.

75. Van Klompenburg, Thomas, Ayalew Kassahun, and Cagatay Catal. "Crop yield prediction

using machine learning: A systematic literature review." Computers and Electronics in

Agriculture, Vol. 117, Pp. 2-16, 2020.

106

76. Liakos, Konstantinos G., Patrizia Busato, Dimitrios Moshou, Simon Pearson, and Dionysis

Bochtis. "Machine learning in agriculture: A review." Sensors in Agriculture, Vol. 18, No.

8, Pp. 2-29, 2018.

77. Baştanlar, Yalin, and Mustafa Özuysal. "Introduction to machine learning." MicroRNA

Biology and Computational Analysis, Vol. 1107, Pp. 105-127, 2014.

78. Chollet, Francois. “Deep learning with Python”. Shelter Island: Manning Publications Co,

2017.

79. LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. "Deep learning." Nature, Vol. 521,

No. 7553, Pp. 436-444, 2015.

80. Ferentinos, Konstantinos P. "Deep learning models for plant disease detection and

diagnosis." Computers and Electronics in Agriculture, Vol. 145, Pp. 311-318, 2018.

81. Rawat, Waseem, and Zenghui Wang. "Deep convolutional neural networks for image

classification” Neural Computation, Vol. 29, Pp. 2352–2449, 2017.

82. Deng, Li, and Dong Yu. "Deep learning: methods and applications." Foundations and

trends in signal processing, Vol. 7, No. 3–4, Pp. 197-387, 2014.

83. Du, Xuedan, Yinghao Cai, Shuo Wang, and Leijie Zhang. "Overview of deep learning."

In 2016 31st Youth Academic Annual Conference of Chinese Association of Automation

(YAC), Wuhan, 2016.

84. Albawi, Saad, Tareq Abed Mohammed, and Saad Al-Zawi. "Understanding of a

convolutional neural network." In 2017 International Conference on Engineering and

Technology (ICET), Antalya, Turkey, 2017.

85. Yamashita, Rikiya, Mizuho Nishio, Richard Kinh Gian Do, and Kaori Togashi.

"Convolutional neural networks: an overview and application in radiology." Insights into

imaging, Vol. 9, No. 4, Pp. 611-629, 2018.

86. Si, Lei, Xiangxiang Xiong, Zhongbin Wang, and Chao Tan. "A Deep Convolutional Neural

Network Model for Intelligent Discrimination between Coal and Rocks in Coal Mining

Face." Mathematical Problems in Engineering, 2020.

87. Sakib, Shadman, Nazib Ahmed, Ahmed Jawad Kabir, and Hridon Ahmed. "An Overview

of Convolutional Neural Network: Its Architecture and Applications," 2018.

88. O'Shea, Keiron, and Ryan Nash. "An introduction to convolutional neural

networks." 2015.

107

89. Murphy, John. "An overview of convolutional neural network architectures for deep

learning." Microway Inc, Pp. 5-20, 2016.

90. Albawi, Saad, Tareq Abed Mohammed, and Saad Al-Zawi. "Understanding of a

convolutional neural network." In 2017 International Conference on Engineering and

Technology (ICET), Antalya, Turkey, 2017.

91. Sharma, Ochin. "A new activation function for deep neural network." In International

Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon),

India, 2019.

92. Wang, Yingying, Yibin Li, Yong Song, and Xuewen Rong. "The influence of the activation

function in a convolution neural network model of facial expression recognition." Applied

Sciences, Vol. 10, No. 5, Pp. 1-20, 2020.

93. Feng, Jianli, and Shengnan Lu. "Performance analysis of various activation functions in

artificial neural networks." In Journal of Physics: Conference Series, Vol. 1237, No. 2,

2019.

94. Nwankpa, Chigozie, Winifred Ijomah, Anthony Gachagan, and Stephen Marshall.

"Activation functions: Comparison of trends in practice and research for deep

learning." Glasgow 2018.

95. Bačanin Džakula, Nebojša. "Convolutional Neural Network Layers and Architectures."

In Sinteza 2019-International Scientific Conference on Information Technology and Data

Related Research, Singidunum University, Serbia, 2019.

96. Gholamalinezhad, Hossein, and Hossein Khosravi. "Pooling Methods in Deep Neural

Networks, a Review." 2018.

97. Le, Quoc V., Jiquan Ngiam, Adam Coates, Ahbik Lahiri, Bobby Prochnow, and Andrew Y.

Ng. "On optimization methods for deep learning." in Proceedings of the 28th International

Conference on Machine Learning, Washington, USA, 2011.

98. Coşkun, Musab, Özal YILDIRIM, U. Ç. A. R. Ayşegül, and Yakup Demir. "An overview

of popular deep learning methods." European Journal of Technique, Vol. 7, No. 2, Pp. 165-

176, 2017.

99. Arsenov, Andrey, Igor Ruban, Kyrylo Smelyakov, and Anastasiya Chupryna. "Evolution of

convolutional neural network architecture in image classification problems." In Selected

108

Papers of the XVIII International Scientific and Practical Conference on IT and Security

(ITS 2018).–CEUR Workshop Processing, Pp. 35-45. 2018.

100. Islam, Taohidul, Manish Sah, Sudipto Baral, and Rudra Roy Choudhury. "A faster

technique on rice disease detection using image processing of affected area in agro-field."

In 2018 Second International Conference on Inventive Communication and Computational

Technologies (ICICCT), pp. 62-66. IEEE, 2018.

101. Chen, Junde, Defu Zhang, Yaser A. Nanehkaran, and Dele Li. "Detection of rice plant

diseases based on deep transfer learning." Journal of the Science of Food and Agriculture,

Vol. 100, Pp. 3246–3256, 2020.

102. S. Mohammad and S. Wahyudi, "Convolutional neural network for maize leaf disease

image classification," Telecommunication, Computing, Electronics and Control, Vol. 18,

No. 3, Pp. 1376-1381, 2020.

103. B. Prakruti, S. Sanat, S. Anshul, S. Dineshkumar and P. Srinivasu, "Identification of

Diseases in Corn Leaves using Convolutional Neural Networks and Boosting," in 8th

International Conference on Pattern Recognition Applications and Methods, Mumbai,

India, 2019.

104. Priyadharshini, Ramar Ahila, Selvaraj Arivazhagan, Madakannu Arun, and Annamalai

Mirnalini. "Maize leaf disease classification using deep convolutional neural

networks." Neural Computing and Applications, Vol. 31, No. 12, Pp 8887-8895, 2019.

105. Afifi, Ahmed, Abdulaziz Alhumam, and Amira Abdelwahab. "Convolutional Neural

Network for Automatic Identification of Plant Diseases with Limited Data." Plants,

Vol. 10, No. 1, 2021.

106. Da Silva Abade, Andre, Ana Paula GS de Almeida, and Flavio de Barros Vidal. "Plant

Diseases Recognition from Digital Images using Multichannel Convolutional Neural

Networks." in 14th International Joint Conference on Computer Vision, Imaging and

Computer Graphics Theory and Applications, Prague, 2019.

107. Ramya, V. and M. Anthuvan Lydia. "Leaf disease detection and classification using neural

networks." International Journal of Advanced Research in Computer and Communication

Engineering, Vol. 5, No. 11, Pp. 207-209, 2016.

109

108. Sibiya, Malusi, and Mbuyu Sumbwanyambe. "A computational procedure for the

recognition and classification of maize leaf diseases out of healthy leaves using

convolutional neural networks." AgriEngineering, Vol. 1, No. 1, Pp. 119-131, 2019.

109. Gad, Ahmed Fawzy, Ahmed Fawzy Gad, and Suresh John. “Practical computer vision

applications using deep learning with CNNs”. Berkeley: Apress, 2018.

110. Deng, Qi, Yun Wang, and Shaobo Ji. "Design science research in information systems: A

systematic literature review 2001-2015." In international conference on information

resources management, Ontario, 2017.

111. Mandran, Nadine, and Sophie Dupuy-Chessa. "Supporting experimental methods in

information system research." In 2018 12th International Conference on Research

Challenges in Information Science (RCIS), Pp. 1-12. IEEE, 2018.

112. Ardakan, Mohammad Abooyee, and Kaveh Mohajeri. "Applying design research method

to IT performance management: Forming a new solution." Journal of Applied Sciences,

Vol. 9, No. 7, Pp. 1227-1237, 2009.

113. Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with

deep convolutional neural networks." Advances in neural information processing systems,

Vol. 25. Pp 1097-1105, 2012.

114. Dobbin, Kevin K., and Richard M. Simon. "Optimally splitting cases for training and

testing high dimensional classifiers." BMC medical genomics, Vol. 4, No. 1, Pp. 1-8, 2011.

115. World bank group, "The Growth Acceleration and How to Pace It," Washington, DC,

February 2016.

116. Tian, Hongkun, Tianhai Wang, Yadong Liu, Xi Qiao, and Yanzhou Li. "Computer vision

technology in agricultural automation—A review." Information Processing in Agriculture,

Vol. 7, No. 1, Pp. 1-9, 2020.

117. Akram, Shazia, Mehraj-Ud-Din Dar, and Aasia Quyoum. "Document Image Processing- A

Review." International Journal of Computer Applications, Vol. 10, No. 5, Pp. 35-40, 2010.

110

Appendix-I

Dear Evaluator,

This evaluation form is prepared aiming at measuring to what extend does sorghum leaf

classification system is useable and acceptable by end users in the area of agricultural expert.

Therefore, you are kindly requested to evaluate the system by labeling (X) symbol on the space

provided for the corresponding attribute values for each criteria of evaluation.

I would like to appreciate your collaboration in providing the information.

Note: - The values for all attributes in the table are rated as: Excellent=5, Very good =4,

Good=3, Fair= 2 and Poor =1.

No Criteria evaluation

P
o
o
r

F
ai

r

G
o
o
d

V
er

y
 G

o
o
d

E
x
ce

ll
en

t

1 The prototype system user friendly

2 The attractiveness of the system

3 Response time of the system

4 The correctness of the prototype in the
classification of sorghum leaf

5 Applicability of the system

6 How do you rate the significance of the system in the

domain area?

111

Appendix-II

##importing different libraries

import matplotlib.pyplot as plt

import numpy as np

import os

import PIL

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras import layers

from tensorflow.keras.models import Sequential

os.environ['KERAS_BACKEND'] = 'tensorflow'

import matplotlib.pyplot as plt

from import itertools

Reading an image and resize

Original_ds="C:\\Users\\Dagu\\Desktop\\dataset\\all"

Resized_ds="C://Users//Dagu//Desktop//resized//all "

image =size(list)

img_width,img_height=224,224

for file in list:

 im=Image.open(path1 + '\\'+file)

 img_1=im.resize((img_width,img_height))

 img_1.save(path2 +'\\'+ file, 'jpeg')

changing into one dimensional array

image_array=array([array(Image.open(‘C://Users//Dagu//Desktop//resized//all ' + '\\'+

im2)).flatten() for im2 in new_data],'f')

Label encoding

label=np.ones((image),dtype=int)

label[0:999]=0

112

label[1000:1999]=1

label[2000:2999]=2

label[3000:3999]=3

data,label=shuffle(image_array, label,random_state=4)

Splitting the dataset into training and testing and normalizing the input data

x_train,x_test, y_train,y_test=train_test_split(x, y,test_size=0.3, random_state=2)

x_train=x_train.reshape(x_train.shape[0],*(224,224, 3))

x_test= x_test.reshape(x_test.shape[0], *(224,224,3))

x_train /=255

x_test /=255

Importing keras module

from keras.models import Sequential

from keras.callbacks import ReduceLROnPlateau

from keras.layers.normalization import BatchNormalization

from keras.preprocessing.image import ImageDataGenerator

from sklearn.metrics import classification_report, confusion_matrix

from keras.layers import Conv2D, Flatten, Dense, MaxPool2D , Activation, Dropout

keras.optimizers import Adam

number_of_classes = 4

image_size=(224,244,3)

model = Sequential([

 layers.experimental.preprocessing.Rescaling(1./255, input_shape=(img_rows,img_cols, 3)),

 layers.Conv2D(16, 3, padding='same', activation= LeakyReLU),

 layers.MaxPooling2D(),

 layers.Dropout(0.5),

 layers.Conv2D(32, 3, padding='same', activation= LeakyReLU),

 layers.MaxPooling2D(),

113

 layers.Dropout(0.5),

 layers.Conv2D(64, 3, padding='same', activation= LeakyReLU),

 layers.MaxPooling2D(),

 layers.Dropout(0.5),

 layers.Conv2D(128, 3, padding='same', activation= LeakyReLU),

 layers.MaxPooling2D(),

 layers.Dropout(0.5),

 layers.Flatten(),

 layers.Dense(512, activation='relu'),

 layers.Dropout(0.5),

 layers.Dense(number_of_classes,activation='softmax')

])

model.summary()

Compile the model

Optimizer = Adam(lr=0.001,beta_1=0.9, beta_2=0.999, epsilon=1e-07)

model.compile(loss='categorical_crossentropy', Optimizer=optimizer, metrics=['accuracy'])

learning_rate_reduction = ReduceLROnPlateau(monitor='value_accuracy',

 patience=3,

 verbose=1,

 factor=0.5,

 min_lr=0.00001)

Data transformation

datagen = ImageDataGenerator(

 featurewise_center=False,

 samplewise_center=False,

114

 featurewise_std_normalization=False,

 samplewise_std_normalization=False,

 zca_whitening=False,

 rotation_range=10,

 zoom_range = 0.1,

 width_shift_range=0.1,

 height_shift_range=0.1,

 horizontal_flip=False,

 vertical_flip=False)

datagen.fit(x_train)

Training the model

epochs =100

batch_size=64

history = model.fit_generator(datagen.flow(x_train, Y_train, batch_size=batch_size),

 epochs = epochs,

 verbose = 1,

 validation_data=(x_test, Y_test),

 steps_per_epoch=len(x_train) / batch_size)

Epoch 1/100

88/88 [==============================] - 166s 2s/step - loss: 1.3423 - accuracy: 0.40

38 - val_loss: 0.7483 - val_accuracy: 0.6617

Epoch 2/100

88/88 [==============================] - 87s 982ms/step - loss: 0.7337 - accuracy: 0

.6931 - val_loss: 0.6258 - val_accuracy: 0.7475

Epoch 3/100

88/88 [==============================] - 91s 1s/step - loss: 0.6216 - accuracy: 0.747

2 - val_loss: 0.5763 - val_accuracy: 0.7533

Epoch 4/100

88/88 [==============================] - 87s 977ms/step - loss: 0.5126 - accuracy: 0

.7962 - val_loss: 0.5933 - val_accuracy: 0.7567

Epoch 5/100

88/88 [==============================] - 87s 985ms/step - loss: 0.5008 - accuracy: 0

.7956 - val_loss: 0.4902 - val_accuracy: 0.7950

Epoch 6/100

115

88/88 [==============================] - 86s 972ms/step - loss: 0.3638 - accuracy: 0

.8564 - val_loss: 0.6000 - val_accuracy: 0.7725

Epoch 7/100

88/88 [==============================] - 89s 1s/step - loss: 0.3115 - accuracy: 0.871

8 - val_loss: 0.5911 - val_accuracy: 0.7742

Epoch 8/100

88/88 [==============================] - 89s 1s/step - loss: 0.2814 - accuracy: 0.890

7 - val_loss: 0.7081 - val_accuracy: 0.7742

Epoch 9/100

88/88 [==============================] - 87s 982ms/step - loss: 0.2029 - accuracy: 0

.9240 - val_loss: 0.6150 - val_accuracy: 0.8217

Epoch 10/100

88/88 [==============================] - 86s 977ms/step - loss: 0.1313 - accuracy: 0

.9582 - val_loss: 0.5986 - val_accuracy: 0.8050

Epoch 11/100

88/88 [==============================] - 86s 969ms/step - loss: 0.0922 - accuracy: 0

.9721 - val_loss: 0.6298 - val_accuracy: 0.8283

Epoch 12/100

88/88 [==============================] - 94s 1s/step - loss: 0.1041 - accuracy: 0.959

6 - val_loss: 0.6273 - val_accuracy: 0.8217

Epoch 13/100

88/88 [==============================] - 88s 993ms/step - loss: 0.0731 - accuracy: 0

.9762 - val_loss: 0.6362 - val_accuracy: 0.8150

Epoch 14/100

88/88 [==============================] - 87s 977ms/step - loss: 0.1023 - accuracy: 0

.9627 - val_loss: 0.6769 - val_accuracy: 0.8292

Epoch 15/100

88/88 [==============================] - 84s 952ms/step - loss: 0.0274 - accuracy: 0

.9946 - val_loss: 0.7079 - val_accuracy: 0.8225

Epoch 16/100

88/88 [==============================] - 87s 980ms/step - loss: 0.0330 - accuracy: 0

.9921 - val_loss: 0.7049 - val_accuracy: 0.8333

Epoch 17/100

88/88 [==============================] - 84s 952ms/step - loss: 0.0165 - accuracy: 0

.9970 - val_loss: 0.8689 - val_accuracy: 0.8167

Epoch 18/100

88/88 [==============================] - 102s 1s/step - loss: 0.0325 - accuracy: 0.98

86 - val_loss: 0.7744 - val_accuracy: 0.8217

Epoch 19/100

88/88 [==============================] - 89s 1s/step - loss: 0.0158 - accuracy: 0.998

4 - val_loss: 1.0294 - val_accuracy: 0.7992

Epoch 20/100

88/88 [==============================] - 86s 971ms/step - loss: 0.0176 - accuracy: 0

.9945 - val_loss: 0.9055 - val_accuracy: 0.8150

116

Epoch 21/100

88/88 [==============================] - 87s 989ms/step - loss: 0.0447 - accuracy: 0

.9896 - val_loss: 0.8792 - val_accuracy: 0.8075

Epoch 22/100

88/88 [==============================] - 95s 1s/step - loss: 0.0699 - accuracy: 0.973

0 - val_loss: 0.8243 - val_accuracy: 0.8042

Epoch 23/100

88/88 [==============================] - 86s 977ms/step - loss: 0.0420 - accuracy: 0

.9836 - val_loss: 0.7801 - val_accuracy: 0.8317

Epoch 24/100

88/88 [==============================] - 87s 990ms/step - loss: 0.0189 - accuracy: 0

.9957 - val_loss: 0.8715 - val_accuracy: 0.8317

Epoch 25/100

88/88 [==============================] - 86s 974ms/step - loss: 0.0115 - accuracy: 0

.9974 - val_loss: 0.8687 - val_accuracy: 0.8167

Epoch 26/100

88/88 [==============================] - 90s 1s/step - loss: 0.0159 - accuracy: 0.997

1 - val_loss: 0.8449 - val_accuracy: 0.8417

Epoch 27/100

88/88 [==============================] - 89s 1s/step - loss: 0.0069 - accuracy: 0.998

8 - val_loss: 0.7646 - val_accuracy: 0.8442

Epoch 28/100

88/88 [==============================] - 96s 1s/step - loss: 0.0058 - accuracy: 0.998

6 - val_loss: 0.8007 - val_accuracy: 0.8433

Epoch 29/100

88/88 [==============================] - 83s 941ms/step - loss: 0.0041 - accuracy: 0

.9990 - val_loss: 0.8251 - val_accuracy: 0.8467

Epoch 30/100

88/88 [==============================] - 84s 954ms/step - loss: 0.0044 - accuracy: 0

.9989 - val_loss: 0.7707 - val_accuracy: 0.8400

Epoch 31/100

88/88 [==============================] - 83s 938ms/step - loss: 0.0041 - accuracy: 0

.9987 - val_loss: 0.7559 - val_accuracy: 0.8392

Epoch 32/100

88/88 [==============================] - 83s 941ms/step - loss: 0.0031 - accuracy: 0

.9992 - val_loss: 1.0297 - val_accuracy: 0.8142

Epoch 33/100

88/88 [==============================] - 87s 986ms/step - loss: 0.0070 - accuracy: 0

.9986 - val_loss: 0.9002 - val_accuracy: 0.8233

Epoch 34/100

88/88 [==============================] - 84s 946ms/step - loss: 0.0053 - accuracy: 0

.9987 - val_loss: 0.7699 - val_accuracy: 0.8400

Epoch 35/100

117

88/88 [==============================] - 85s 960ms/step - loss: 0.0034 - accuracy: 0

.9992 - val_loss: 0.9291 - val_accuracy: 0.8325

Epoch 36/100

88/88 [==============================] - 83s 944ms/step - loss: 0.0037 - accuracy: 0

.9993 - val_loss: 0.7708 - val_accuracy: 0.8325

Epoch 37/100

88/88 [==============================] - 84s 953ms/step - loss: 0.0043 - accuracy: 0

.9987 - val_loss: 1.0025 - val_accuracy: 0.8267

Epoch 38/100

88/88 [==============================] - 90s 1s/step - loss: 0.0057 - accuracy: 0.998

7 - val_loss: 0.8636 - val_accuracy: 0.8325

Epoch 39/100

88/88 [==============================] - 83s 941ms/step - loss: 0.0037 - accuracy: 0

.9991 - val_loss: 0.9010 - val_accuracy: 0.8358

Epoch 40/100

88/88 [==============================] - 85s 964ms/step - loss: 0.0041 - accuracy: 0

.9989 - val_loss: 0.8021 - val_accuracy: 0.8450

Epoch 41/100

88/88 [==============================] - 83s 940ms/step - loss: 0.0042 - accuracy: 0

.9991 - val_loss: 0.9154 - val_accuracy: 0.8317

Epoch 42/100

88/88 [==============================] - 84s 947ms/step - loss: 0.0036 - accuracy: 0

.9987 - val_loss: 0.8296 - val_accuracy: 0.8375

Epoch 43/100

88/88 [==============================] - 84s 953ms/step - loss: 0.0027 - accuracy: 0

.9990 - val_loss: 0.8517 - val_accuracy: 0.8442

Epoch 44/100

88/88 [==============================] - 83s 940ms/step - loss: 0.0036 - accuracy: 0

.9987 - val_loss: 1.0077 - val_accuracy: 0.8175

Epoch 45/100

88/88 [==============================] - 87s 980ms/step - loss: 0.0038 - accuracy: 0

.9988 - val_loss: 0.8309 - val_accuracy: 0.8467

Epoch 46/100

88/88 [==============================] - 84s 951ms/step - loss: 0.0031 - accuracy: 0

.9991 - val_loss: 0.9237 - val_accuracy: 0.8383

Epoch 47/100

88/88 [==============================] - 85s 958ms/step - loss: 0.0025 - accuracy: 0

.9989 - val_loss: 0.8604 - val_accuracy: 0.8417

Epoch 48/100

88/88 [==============================] - 83s 941ms/step - loss: 0.0025 - accuracy: 0

.9989 - val_loss: 0.8343 - val_accuracy: 0.8383

Epoch 49/100

88/88 [==============================] - 87s 984ms/step - loss: 0.0026 - accuracy: 0

.9989 - val_loss: 0.8914 - val_accuracy: 0.8317

118

Epoch 50/100

88/88 [==============================] - 87s 982ms/step - loss: 0.0026 - accuracy: 0

.9991 - val_loss: 0.9154 - val_accuracy: 0.8417

Epoch 51/100

88/88 [==============================] - 83s 942ms/step - loss: 0.0028 - accuracy: 0

.9988 - val_loss: 0.8722 - val_accuracy: 0.8375

Epoch 52/100

88/88 [==============================] - 98s 1s/step - loss: 0.0031 - accuracy: 0.998

9 - val_loss: 0.9332 - val_accuracy: 0.8333

Epoch 53/100

88/88 [==============================] - 90s 1s/step - loss: 0.0030 - accuracy: 0.998

7 - val_loss: 0.9451 - val_accuracy: 0.8275

Epoch 54/100

88/88 [==============================] - 96s 1s/step - loss: 0.0032 - accuracy: 0.998

6 - val_loss: 0.9449 - val_accuracy: 0.8267

Epoch 55/100

88/88 [==============================] - 98s 1s/step - loss: 0.0027 - accuracy: 0.998

7 - val_loss: 1.0029 - val_accuracy: 0.8250

Epoch 56/100

88/88 [==============================] - 90s 1s/step - loss: 0.2294 - accuracy: 0.920

7 - val_loss: 0.6864 - val_accuracy: 0.7792

Epoch 57/100

88/88 [==============================] - 109s 1s/step - loss: 0.1605 - accuracy: 0.94

65 - val_loss: 0.8973 - val_accuracy: 0.7950

Epoch 58/100

88/88 [==============================] - 101s 1s/step - loss: 0.0362 - accuracy: 0.98

92 - val_loss: 0.8927 - val_accuracy: 0.8392

Epoch 59/100

88/88 [==============================] - 102s 1s/step - loss: 0.0111 - accuracy: 0.99

65 - val_loss: 1.0499 - val_accuracy: 0.8225

Epoch 60/100

88/88 [==============================] - 115s 1s/step - loss: 0.0098 - accuracy: 0.99

78 - val_loss: 0.8654 - val_accuracy: 0.8458

Epoch 61/100

88/88 [==============================] - 94s 1s/step - loss: 0.0039 - accuracy: 0.999

2 - val_loss: 0.9126 - val_accuracy: 0.8400

Epoch 62/100

88/88 [==============================] - 98s 1s/step - loss: 0.0035 - accuracy: 0.998

7 - val_loss: 0.9281 - val_accuracy: 0.8308

Epoch 63/100

88/88 [==============================] - 98s 1s/step - loss: 0.0043 - accuracy: 0.998

7 - val_loss: 0.9979 - val_accuracy: 0.8408

Epoch 64/100

119

88/88 [==============================] - 94s 1s/step - loss: 0.0033 - accuracy: 0.998

6 - val_loss: 0.9094 - val_accuracy: 0.8450

Epoch 65/100

88/88 [==============================] - 98s 1s/step - loss: 0.0026 - accuracy: 0.998

6 - val_loss: 0.9290 - val_accuracy: 0.8458

Epoch 66/100

88/88 [==============================] - 110s 1s/step - loss: 0.0020 - accuracy: 0.99

91 - val_loss: 0.9798 - val_accuracy: 0.8442

Epoch 67/100

88/88 [==============================] - 108s 1s/step - loss: 0.0022 - accuracy: 0.99

92 - val_loss: 0.9115 - val_accuracy: 0.8425

Epoch 68/100

88/88 [==============================] - 102s 1s/step - loss: 0.0018 - accuracy: 0.99

93 - val_loss: 0.9823 - val_accuracy: 0.8375

Epoch 69/100

88/88 [==============================] - 97s 1s/step - loss: 0.0019 - accuracy: 0.998

9 - val_loss: 0.9273 - val_accuracy: 0.8467

Epoch 70/100

88/88 [==============================] - 100s 1s/step - loss: 0.0014 - accuracy: 0.99

93 - val_loss: 1.0201 - val_accuracy: 0.8317

Epoch 71/100

88/88 [==============================] - 99s 1s/step - loss: 0.0031 - accuracy: 0.998

6 - val_loss: 0.9060 - val_accuracy: 0.8458

Epoch 72/100

88/88 [==============================] - 99s 1s/step - loss: 0.0018 - accuracy: 0.999

0 - val_loss: 0.9668 - val_accuracy: 0.8400

Epoch 73/100

88/88 [==============================] - 100s 1s/step - loss: 0.0020 - accuracy: 0.99

87 - val_loss: 0.9253 - val_accuracy: 0.8467

Epoch 74/100

88/88 [==============================] - 109s 1s/step - loss: 0.0019 - accuracy: 0.99

88 - val_loss: 0.9623 - val_accuracy: 0.8433

Epoch 75/100

88/88 [==============================] - 102s 1s/step - loss: 0.0024 - accuracy: 0.99

89 - val_loss: 0.9499 - val_accuracy: 0.8417

Epoch 76/100

88/88 [==============================] - 111s 1s/step - loss: 0.0026 - accuracy: 0.99

86 - val_loss: 0.9521 - val_accuracy: 0.8358

Epoch 77/100

88/88 [==============================] - 111s 1s/step - loss: 0.0022 - accuracy: 0.99

88 - val_loss: 0.9300 - val_accuracy: 0.8458

Epoch 78/100

88/88 [==============================] - 106s 1s/step - loss: 0.0018 - accuracy: 0.99

90 - val_loss: 0.9299 - val_accuracy: 0.8458

120

Epoch 79/100

88/88 [==============================] - 89s 1s/step - loss: 0.0019 - accuracy: 0.998

7 - val_loss: 0.9287 - val_accuracy: 0.8467

Epoch 80/100

88/88 [==============================] - 94s 1s/step - loss: 0.0016 - accuracy: 0.998

8 - val_loss: 0.9289 - val_accuracy: 0.8467

Epoch 81/100

88/88 [==============================] - 103s 1s/step - loss: 0.0017 - accuracy: 0.99

87 - val_loss: 0.9752 - val_accuracy: 0.8475

Epoch 82/100

88/88 [==============================] - 100s 1s/step - loss: 0.0023 - accuracy: 0.99

87 - val_loss: 0.9854 - val_accuracy: 0.8458

Epoch 83/100

88/88 [==============================] - 100s 1s/step - loss: 0.0014 - accuracy: 0.99

90 - val_loss: 0.9536 - val_accuracy: 0.8467

Epoch 84/100

88/88 [==============================] - 102s 1s/step - loss: 0.0017 - accuracy: 0.99

86 - val_loss: 1.0166 - val_accuracy: 0.8383

Epoch 85/100

88/88 [==============================] - 95s 1s/step - loss: 0.0014 - accuracy: 0.999

3 - val_loss: 0.9622 - val_accuracy: 0.8450

Epoch 86/100

88/88 [==============================] - 102s 1s/step - loss: 0.0016 - accuracy: 0.99

94 - val_loss: 0.9817 - val_accuracy: 0.8442

Epoch 87/100

88/88 [==============================] - 108s 1s/step - loss: 0.0016 - accuracy: 0.99

90 - val_loss: 0.9780 - val_accuracy: 0.8450

Epoch 88/100

88/88 [==============================] - 100s 1s/step - loss: 0.0017 - accuracy: 0.99

87 - val_loss: 1.0472 - val_accuracy: 0.8367

Epoch 89/100

88/88 [==============================] - 111s 1s/step - loss: 0.0020 - accuracy: 0.99

86 - val_loss: 0.9996 - val_accuracy: 0.8325

Epoch 90/100

88/88 [==============================] - 101s 1s/step - loss: 0.0018 - accuracy: 0.99

88 - val_loss: 0.9729 - val_accuracy: 0.8467

Epoch 91/100

88/88 [==============================] - 103s 1s/step - loss: 0.0015 - accuracy: 0.99

88 - val_loss: 1.0292 - val_accuracy: 0.8425

Epoch 92/100

88/88 [==============================] - 98s 1s/step - loss: 0.0017 - accuracy: 0.998

8 - val_loss: 0.9608 - val_accuracy: 0.8442

Epoch 93/100

121

88/88 [==============================] - 98s 1s/step - loss: 0.0013 - accuracy: 0.998

8 - val_loss: 1.0509 - val_accuracy: 0.8442

Epoch 94/100

88/88 [==============================] - 115s 1s/step - loss: 0.0012 - accuracy: 0.99

90 - val_loss: 1.0017 - val_accuracy: 0.8442

Epoch 95/100

88/88 [==============================] - 109s 1s/step - loss: 0.0016 - accuracy: 0.99

87 - val_loss: 1.0104 - val_accuracy: 0.8467

Epoch 96/100

88/88 [==============================] - 104s 1s/step - loss: 0.0013 - accuracy: 0.99

92 - val_loss: 1.0252 - val_accuracy: 0.8442

Epoch 97/100

88/88 [==============================] - 107s 1s/step - loss: 0.0012 - accuracy: 0.99

93 - val_loss: 1.0365 - val_accuracy: 0.8450

Epoch 98/100

88/88 [==============================] - 107s 1s/step - loss: 0.0015 - accuracy: 0.99

87 - val_loss: 1.0291 - val_accuracy: 0.8483

Epoch 99/100

88/88 [==============================] - 117s 1s/step - loss: 9.8192e-04 - accuracy:

0.9991 - val_loss: 1.0540 - val_accuracy: 0.8475

Epoch 100/100

88/88 [==============================] - 116s 1s/step - loss: 0.0013 - accuracy: 0.99

87 - val_loss: 1.0488 - val_accuracy: 0.8467

Plotting Loss Curves

plt.figure(figsize=[8,6])

plt.plot(history.history['loss'],'r',linewidth=2.0)

plt.plot(history.history['val_loss'],'b',linewidth=2.0)

plt.legend(['Training loss', 'Validation Loss'],fontsize=15)

plt.xlabel('Epochs ',fontsize=13)

plt.ylabel('Loss',fontsize=13)

plt.title('Loss Curves',fontsize=13)

Plotting Accuracy Curves

plt.figure(figsize=[8,6])

122

plt.plot(history.history['accuracy'],'r',linewidth=2.0)

plt.plot(history.history['val_accuracy'],'b',linewidth=2.0)

plt.legend(['Training Accuracy', 'Validation Accuracy'],fontsize=15)

plt.xlabel('Epochs ',fontsize=13)

plt.ylabel('Accuracy',fontsize=13)

plt.title('Accuracy Curves',fontsize=13)

Plotting Confusion Matrix

classes=['Anthracnose','Healthy','leaf_blight','rust']

def plot_confusion_matrix(cm, classes,

 normalize=False,

 title='Confusion matrix',

 cmap=plt.cm.Blues):

 plt.imshow(cm, interpolation='nearest', cmap=cmap)

 plt.title(title)

 plt.colorbar()

 tick_marks = np.arange(len(classes))

 plt.xticks(tick_marks, classes, rotation=45)

 plt.yticks(tick_marks, classes)

 if normalize:

 cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]

 thresh = cm.max() / 2.

 for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):

 plt.text(j, i, cm[i, j],

 horizontalalignment="center",

 color="white" if cm[i, j] > thresh else "black")

 plt.tight_layout()

 plt.ylabel('True label')

 plt.xlabel('Predicted label')

123

target_names = []

for key in train_generator.class_indices:

 target_names.append(key)

Y_pred = model.predict(test_generator)

Y_pred_classes = np.argmax(Y_pred,axis=1)

Y_true = np.argmax(test_generator,axis= 1)

confusion_mtx = confusion_matrix(test_generator.classes, Y_pred_classes)

plot_confusion_matrix(confusion_mtx, classes)

