2-ANL NCHY 7 RrncCoi:

DEBRE BIRHAN UNIVERSITY

DEBRE BERHAN UNIVERSITY

INSTITUTE OF TECHNOLOGY
COLLEGE OF COMPUTING

Department of Information Systems

A Bi-Directional Ge’ez-Amharic Neural Machine Translation:

@ a Deep Learning Approach

Amdework Asefa Belay

A Thesis Submitted to Department of Information Systems of Debre
Berhan University in Partial Fulfillment for the Masters of Science
in Information Systems

Advisor: Wondwossen Mulugeta (PhD)
Addis Ababa, Ethiopia

Debre Berhan, Ethiopia
July 2021

DEBRE BERHAN UNIVERSITY
INSTITUTE OF TECHNOLOGY
COLLEGE OF COMPUTING

Department of Information Systems

Amdework Asefa Belay

Advisor: Wondwossen Mulugeta (PhD)

This is to certify that the thesis prepared by Amdework Asefa, titled: A Bi-Directional Ge’ez-
Amharic Neural Machine Translation: a Deep Learning Approach and submitted in partial
fulfillment of the requirements for the Degree of Master of Science in Information Systems
complies with the regulations of the University and meets the accepted standards concerning

originality and quality.

Approved by Board of Examiners
Name Signature Date

Advisor:

Internal Examiner:

External Examiner:

© 2021
AMDEWORK ASEFA BELAY

ALL RIGHTS RESERVED

ACKNOWLEDGMENT

Above all, though I do not deserve it, | thank my God for the entire he has done for me and by his
grace bringing me here. Next, |1 would like to express my deep-felt gratitude to my advisor, Dr.
Wondwossen Mulugeta, for his nice advice and tireless support in helping me to do better work.
Moreover, | would like to express my sincere gratitude to my brothers and sisters (friends) for their
support and encouragement until I accomplished this study. Particularly, by helping Geez
translations, evaluation and by collecting bilingual Ge’ez-Amharic parallel sentences, my
childhood teacher, Merigieta Meseret Tsegaye (£23-¢/yenitaye), Marigeta Memhir Bekalu
Menberu, my brothers D/n Mamas Tadesse, D/n Atsinaf G/Egziabhier and Woldeyesus Ayele,
nothing will pay back you whatever | say for everything you have done for me. Just May the
supreme God, graciously glorify you all. Finally, 1 would like to express my deepest gratitude to
my mother, Abezu Chanie, who endured many hardships and trials to me to make me reach here,
and my younger sister Tigza Assefa (I see her as my older sister), who always encouraged me to

complete this research and for everything in my life.

o7t A0 AATHANNC AT Dete HTNL Aotz 00H PT3:1€

Amdework Asefa

Date: July 2021

DEDICATION

This research work is dedicated to my mother Abezu Chanie, my sister Tigza Assefa and the
Ethiopian Orthodox Church. Especially, dedicated for ¢14- ¢n.®F A704 “1049 P50 MChA O/t

0t (k’enefa ch’ewochi anibesa maseriya k’idusi gebiri eli se/ti/ti beti).

ABSTRACT

Currently, due to globalization, our world is moving into one village and human languages are
being transnational. So far, human interpreters have been resolving communication gaps between
two people who speak different languages. However, since human translation is costly and
inconvenient, many kinds of research are being done to resolve this problem with Machine
Translation (MT) techniques. MT is a process of automatically translating text or speech from one
human language to another by computers. Neural Machine Translation uses Artificial Neural
Networks such as Transformers, which are the state of the art models that shows promising result
over the previous MT models. Several ancient scripts written in the Ge’ez language that needs to
be translated are available in Ethiopia and abroad. Currently, youth and researchers are interested
to learn and involve in research areas of Ge’ez and Amharic manuscripts. This thesis, therefore,
aims to demonstrate the capabilities of deep learning algorithms on MT tasks for those
morphologically rich languages. A bi-directional text-based Ge’ez-Amharic MT was tested on two
main different deep learning models viz. Seq2Seq with attention, and Transformer. A total of
20,745 parallel corpora was used for the experiment, from which the 13,787 parallel sentences
were collected from former researchers and a new 6958 parallel corpus was prepared. In addition,
a Ge’ez Latin numeric corpus having 3,078 parallel lines has been added to handle numeric
translation. We conducted four experiments, and the transformer outperforms other techniques by
scoring 22.9 and 29.7 BLEU scores from Ge’ez to Ambharic and vice versa using 20,745 parallel
corpora. The typical Seq2Seq model improves the BLEU score of the SMT model, obtained by
previous researchers with BLEU scores of +0.65 and +0.79 that is 2.46% and 4.66% increment
from Ge’ez to Amharic and from Amharic to Ge’ez using 13,833 parallel sentences. Doing further
researches with clean larger corpus size and pre-trained models may improve the result we have
reported in this work. However, we faced a scarcity of corpus and pre-trained models for Amharic

and Ge’ez languages to get better results.

Keywords: Artificial Neural Network, Attention, BLEU, Seg2seq, Machine Translation, Neural

Machine Translation, Transformer

Page | of 119

Table of Contents

ISR 0 o 1 = I OSSPSR v
LIST OF FIGURES ...ttt ettt ettt ettt ettt ettt e et s bt e e e bt e e st e e b e e st e e ebee e s teeebee e e beeebee e sbeeeabee e beeeseeesbeeebeeeateeesaeeesnneesnreens \Y
LIST OF ALGORITHMS ...oiiiiieitie ettt e ittt e ittesstteesteeesteeesteeesseaateessseeabaeeasseeabeeasteeebeeebeeesbeeesbeeebeeesteeebeessteeensneeseas Vi
LIST OF ACRONYMS ...utiiiitieeitee e itteeitee e iteeeitt e e s teeeaaee e s baeabeeeabeeasee e teeeate e e beeeateeebeeenteeenseeesbeeenbeeeateeenteensteeenseeesres Vi
CHAPTER ONE: INTRODUGCTIONcciiiiiiieiit ittt ste ettt e st et tvaesave e s taa e saaeestsaesateesbaeesneaesnneesnees 1
I.1 BACKGROUNDcciiutitieittee e e ettt e e ettt e e e ettee e e ettt e e e eeteeeeaestesesasteeeeabaeeeeabseaeeasbeeeeaassseeaasseseessbeeeeaastseesassaaeesasrenenn 1
[|V, [3 1 AV (0] N SO SRR URRRPT 3
1.3 STATEMENT OF THE PROBLEM......uuuiiiiitiiieiitiee e ettt e ettt e e ettt e e e ettt e e e eate e e e st e e e aatteeeeeabeeeesnbbaeeaaabseeesnbaeeesasbeeean 4
1.4 RESEARCH QUESTIONSc.utiitiiiteeiteaiteaiteaieeaueeateesteesteesteassesseesbeeabeeabeaaseasseaaeeabeeabeesbeesbeasbeasbesbeesbeenbeenaeanbeanns 6
1.5 THE OBJECTIVE OF THE STUDY ...uttiiiiitiieeeitieeeeitteeeeetteeeeetteeeeatteeeseaseeesssbeeeeaasteeeeasbeeeessbseeeaastseeesbaseesasrenean 7
IO T R €= 10 1= = @ o] =T 11V PSS 7
T o 1= Tod 1 ol @ o =T €AY SRS 7
1.6 RESEARCH IMETHODSuuiiiiiiiiee i ittt e e s ittee e s sttt e e et e e s ate e e e s steeeaastae e e s asseeeessteeeeanteeeeeanaaeeesnteaeeanteeeesnraneessreeean 7
1.6.1 LITEIALUIE REVIEBW ..cuvii ittt ettt st e e st e et e e st e e s abe e s sbeesabeessbeesabeessbeesnreessbeesnreens 7
1.6.2 COrPUS PrEPAIALIONveiieieeie ettt ettt te e te et e e e e s e ste e taebe e aeesaesreesneesreesneeneeanes 8
1.6.3 Implementation TOOIS @nd EXPEIIMENTociiiiiiiiieiiiie s 8
1.6.4 EVAIUBLION PIOUUCETS ...ttt bbb bbbttt ettt 9
1.7 SCOPE AND DELIMITATIONS OF THE STUDYccutiitieiteeteestesteesteesteestessteesseassesssessesssesssasssesssessesssesssesssesnsesnns 9
1.8 SIGNIFICANCE OF THE STUDY ..eeiiiitttieiitteeeeitteeeeitteeesestesssateeesaitsssesassesesssseseaasssessasesssssssesesasssessssssessisesens 9
1.9 ORGANIZATION OF THIS WORKuvtiiiiitiieeeitieeeeitteeeeetteeeastteeeseetaeeesesteeesssbeeeeaasssessasseseesbeeeeaasteeeessaseesasreeens 9
CHAPTER TWO: LITERATURE REVIEW........coiii ittt ettt eve e v 10
B B ©)Y = =AY | PSSR 10
2.2 NATURAL LANGUAGE PROCESSING.....cccitttieiitttreaitieeesitteeesstesessuseesasssssssassssesssssssesasssesssssssssssssssssasssseennns 10
2.3 IMACHINE TRANSLATION ...uttiiititteeittee e sttt e estteeeassteeeeaateeeesassaeeessbseeeaasteeeaassseeessseeeaassseeassssseesasseeesasseeenanes 10
2.3.1 History of Maching Translationccceoviiiiiiiicccc e 10
2.3.2 Approaches to Maching TranSIationccoeiiiiiiiiii s 12
2.4 ARTIFICIAL NEURAL NETWORKScoiiittttiieieeiiiiititiee e e e e e eeitttteeeeeesesatteeseeeesassatbaeeeeeesssassbaeseeeeesssssssneeasessan 24
241 DEEP NEUIAL NEIWOTKSviviitiieiiitiite ettt bbbttt bbbt 25
2.4.2 Different types of NeUral NEIWOTKSccoiiiiiiiiiiiieri s 26
243 WOId emMBEATING ...t 40
2.5 MACHINE TRANSLATION EVALUATION IMETRICS.....ecciiiieiiiieeeeiitieeesitiee e e eteeeesiteeeessatreessnteaeessnaeeessssneeeanes 44
The Bi-Lingual Evaluation Understudy (BLEU)c.coiiiiiiiiie ettt 45
2.6 CHALLENGES TO MACHINE TRANSLATIONuutiiiititeeeitieeeeitteeeesiteeeeastaeesssnseeessseeeeassssesssnsesesssssesessssseeeanes 46
2.7 RELATED WORKSuttiiiiiiit e e ittt e e ettt e e ettt e e e ette e e e s tte e e e s tee e e e aabe e e e s abee e e e steeeeanseeeesbeeeeaastseeasnteeeessaeeesasseeeeanes 46
SUMMATY O REIAIEA WOTKS..... ..ottt e et e e e ers et e e sbe e beeaeeneenneas 53
CHAPTER THREE: GE’EZ AND AMHARIC LANGUAGEScooi ittt 54
O B I = €] = =) I 10 /Y] =S 54
311 Ge'ez Script Arrangements (b &.LA)cccooiiiiiiiiiiiiii s 54

3. L2 GE'eZ NUMETALS (APT).ceoieiniiiiiiiii ettt 55
313 SIMIAr LEMErS (F@PHadllP) ..ottt 55
3.2 THE AMHARIC LANGUAGEcviiiie ittt ettt e e e s ettt e e e e e s s e etbb e e e e e e e s esaabreeeeeesaaabbbaseeeesaasssbreseeeeseasnsees 56
3.3 LINGUISTIC RELATIONSHIPS OF GE’EZ AND AMHARICuvveeeiierieeeeteeeeeeeeeeeveeeeeteeeseenteeesanbaeesssaneeesennes 57
331 WIIEING SYSEEM ..ttt bbbttt bbbt se e et ek e bt bt e b e ene e e e nae e 57
3.3.2 Syntactic Language Structure (Word OFer)ooiiiiiiiiieieiee et 57

Page Il of 119

3.3.3 Grammar structure of Ge'ez and AMRATIC ((APAD)ccuecveveieiieiiesieeieesierese s 58

3.4 MAJOR PARTS OF SPEECH ...ueiiviiiieeiieeiieesteesteesteesteesaeessteesstaesnteesbeeaseessbeeanbaessbesanbeessteeanreessteeenreessres 58
BUAL INOUN (£277) oottt e b bbb kbbb bbbt 58
342 AGJECHIVEI PR .ottt r bbbttt ettt ens 59
R B - o o /) S 59
344 AUVEID (F @I TU) .o s 60

3.5 IMINOR PARTS OF SPEECH.......uuiieiitiiieeiitteeeeittee e e ettt e e e ette e e s etaeeeaatbeeeeeebeeeeaetaeeeeasbeeeeatteeesasbesesasbaeeeateeeeanreas 61
PUNCEUALION IMATKSviiieeec ettt ettt e e st e et e e e be e s st e e s tb e e sabeessbeesateessbeesabeesrbaesntessrbaesnrenans 61

CHAPTER FOUR: RESEARCH METHODOLOGYcoiiiitiiiiie ettt ettt ettt evae st et svaa e naee s ns 62

AT OVERVIEW .ottt e ettt e et eett et e ettt e e e ettt e e e ette e e e e ateeeeatteeeeasbaeeesabeeeeasbeeeeaaseeeesbtaeesasbseesanbeeeessbaeesasseeeeanns 62

4.2 RESEARCH DESIGNuviiiiieiiiii ittt stee ettt ste e et e st e st e e s taeesaa e e s teeesaeeesbeaesaeeessteesabeesbbeesneeestbaesabeesrneesneeeans 62
Design Science Research MethodolOgyccviiiieiiiiic e nre s 63

4.3 THEPROPOSED SYSTEM ...uutitiiiitteteeittteeeiiteseesittssesssteeeeaasssessassesessssseesaasssssaassesssasssseaasssesssssssesssssssessssseeasnes 65

4.4 PREPROCESSING ...eeeittteeiittteeiitteeesittteeeattssessstseeaasteseeassseeaassasaesssseeeaaseseeaasseeeesssseeeaassseeasnsesaesseneeaasnnneeanns 67
R |V = [g @ =T T 1o PSS 67
442 o] 1= 172 L[] P 67
O S o =Y a1 142 1 1o o SRR 68
AA4 PAOUING .ottt b bbbttt 69

4.5 INPUT EMBEDDINGutttiieeiiiiititteee e e e s ietttteeeeeessaattsseeseeessaasabsreseeeesaasttseseeeesaaasbbrasaeeeessassbbasaeeeessasbrnnesaenanan 70

N I = = oo]] = SOOI 70

g N = B =00] =1 PSSR 71

A8 THE EVALUATION ...ttt ettt ettt e st e e e st e e st e e e st e e e e stee e e aateeeessseeeeaasteeeasnseeeesseneesasaneeeanns 73

CHAPTER FIVE: EXPERIMENT AND RESULT ANALYSISoooi e 74

BT R @ = 1 TSR 74

5.2 CORPUS PREPARATIONuuiiiititteiitttee ettt e e sttee e e ettt e e e aataeeesaaaeeeaasteeeeaabeseeasaeeeeassaeeeanseeeeesbeaeeasbeeeeanseeeeannns 74
Challenges during COrpUS PrEPATALION.eviuirieietiite ettt ettt bbb 76

5.3 EXPERIMENTAL SETUP....utiii ittt e ettt e e ettt e e ettt e e e et e e e ette e e e eate e e e esteeeeeateeeeesaeeeeastaeeeaseeeeeasteeeeasbaeeeaseeeesneeas 77
SW and HW TooIs USed fOr EXPEIIMENT.........oviiiiiiiiieiiiitesi ettt 77

I S =T =] Y = N TSR 78

5.5 LINGUIST EVALUATIONttttiiie e e e e icittt et e e e e e s ettt e e e e e e s etbbaa e e e e e s s astbbaaeeeeeesaasaatseeeeeesaabsbsaseeeesaasssbreseeeesaannsees 89

5.6 ANSWERING RESEARCH QUESTIONSueittiutiiurtatteattesteesteesteete st sieesseesbeesbe st enneasseessesbeenbeebeebeesnessnesnees 92

5.7 CHALLENGES OF GE’EZ AND AMHARIC DURING MACHINE TRANSLATIONccivtieiiiiieeiiireeeesieeeeeennnee e 93

CHAPTER SIX: CONCLUSION AND RECOMMENDATION........ooiiiiiiiiceece et 94

LT B @ Y =1 [ST 94

(A O] N (o U 1] [0\ PRSPPI 94

6.3 CONTRIBUTION OF THE STUDY ..ciittiieeiiteeeeitteeeeettteeeeaee e e e etteeeaeateeeeeteeeesesaeeeeastaeeeaseeeesesteeesassaeeeeasseeeeanses 94

6.4 FUTURE WORKS AND SUGGESTIONS.uvtiiiiteeeeeietieeeeeteeeesiteeesasteeesessssessessesssssseseassssessessesessseeessssesesssnsees 95

Lt] N L = U 96
ANNEX .ottt e e et e et e e sttt e e bt e eh e e ebee e e et e ah—eeah et e ahte e et e ahteeaheeeaheeeabeeeabeeearaeeabteearaeeareeeareeearees 101

Page 111 of 119

List of Tables

Table 2.1 General Comparison of Machine Translation Approaches...........cccceevvniiiiiinnninns 23
Table 2.2 BLEU scores of Morpheme Based Bi-directional Ge’ez-Amharic MT 52
Table 2.3 Comparison between related works on Ge’ez-Amharic MTcccccoevveveiiieceenns 53
Table 3.1 similar letters in Ge’ez and AMNATICccoveiiiiiiiiieiie e 55
Table 3.2 Amharic Script (a) added script, (b) Derived SCrPt........cccoovveriieieiie e 56
Table 3.3 Root or main Verbs (ACANT-101) OF GE'EZ........ccvevveiiiie i 60
Table 5.1 Hardware and Software REQUIFEMENTSccecviieeriiiie e 77
Table 5.2 The different experiments, models, and cOrpus Size USed...........cccevveveervereiieesnennns 78
Table 5.3The Ingeth of sentence, token and type used for each experimentccoccevenne 79
Table 5.4 The proposed Models and their BLEU SCOre result...........ocoovvieeieiiniineneiiinseeinns 88
Table 5.5 The four Experiments and their BLEU score result............ccccocoovveiiiieiiecccicceee 88

Table 5.6 Parallel sentences prepared for manual evaluation (Translated by OpenNMT)....... 90

Table 5.7 Parallel sentences prepared for manual evaluation (Translated by Transformer) 91

Table 5.8 Manual evaluation results compared with the BLEU Score...........ccccooevviiiiiiinnnns 91
Annex-Table A.1 Vocabulary and One-Hot encoding VECtOr.........cccccoevvevicvieieece e 101
Annex-Table B.1 Word embedding of a sentence "A%7t 17 £@ A7t 10"c.oooveoveeiiece, 101
Annex-Table C.1 Ge'ez SCript ArrangemMENTS.........cueiereieriererienesie e 101
Annex-Table C.2 Ge’ez and Amharic NUMETalSccovveeiiiiiieiiiiie e 102

Page IV of 119

List of Figures

Figure 1.1 The relationship between Al, ML, and Deep Learning [10]ccccoeverencinninnnnnns 2
Figure 2.1 Architecture of RBMT AppProach [4]ccccoeiveiiiiieee e 13
Figure 2.2 Bernard Vauquois’ pyramid [4]......cooiieiiiiiiiieiiieniiee e 14
Figure 2.3 Instance of example-based translation..............cooeeiiiiiiiiiinceee e 16
Figure 2.4 the general model of ANN followed by itS processing.........cccoceevereeresieeieeieesnenn 24
Figure 2.5 Diagram of the Attention model shown in Bahdanau’s paper [45]........ccccoovvevrnen. 32
Figure 2.6 Architecture of Transformer Model adopted from [47]cccovveveieeii i, 34
Figure 2.7 a Transformer of 2 stacked encoders and decOoders..........ccovovevveieneenenieseesieenn 36
Figure 2.8 Scaled dot product attention adopted from [47]coceoiiiiiiiiiiicee e 38
Figure 2.9 Multi-head self-attention adopted from [47]c.ccoeiieiiiie i 38
Figure 4.1 Design Science Research Framework Adopted From [63]ccccooveviiieveecincnnenn, 62
Figure 4.2 DSR Methodology Process Model Adopted from [63]cccovveieiiieicniiinen 64
Figure 4.3 Overall architecture of the proposed SYStEM ...t 66
Figure 4.4 The detailed structure of Transformer’s Encoder and Decoder architecture........... 72
Figure 5.1 Sample dataset from Ge’ez Ambharic corpus in distinct filesccocceviiriiinnnnne 76
Figure 5.2 Snapshot of OpenNMT (a) training, (b) loss, and (C) OUEPUL..........cccevereiiicrininnn 82
Figure 5.3 Hyper-parameters of the Transformer modelccoooiiiiiiiiiieiciec e 83
Figure 5.4 Results shown by the OpenNMT model with the new COrpusccccoceevrerinnnnne 84
Figure 5.5 Output results shown by the Seq2Seq model with the new corpus............c.cc.c....... 85
Figure 5.6 The NUMETIC COMPUSoivieiiiieiie ettt st ba e sreenneenee e 86

Figure 5.7 Google Translate is still suffering from mistranslating Ge'ez numeral translation . 87
Figure 5.8 Comparison of Deep Learning MOdelsSccooiiiiiiiiiiiiiieeeee e 89

Annex-Figure D.1 Snapshot of fragment code of Sentencepiece tokenizer and detokenizer. 103

Annex-Figure D.2 A Snapshot for fragment code of preprocessing..........cccccevvevveveiiieieennns 103
Annex-Figure D.3 Snapshot of fragment code of Normalizationcccccoeiiieiiiiinnnnnn. 104
Annex-Figure E.1 A sample photo of the OpenNMT translation manual evaluation 105
Annex-Figure E.2 A sample photo of the Transformer translation manual evaluation........... 106

Page V of 119

file:///D:/ge-am%20files/Final%20BDGANMT2%20Septermber1-%20For%20Print.docx%23_Toc81647809

List of Algorithms

Algorithm 4.1 Algorithm for general cleaning (Preprocessing) of & COrpus..........cccccvevrernnens 67
Algorithm 4.2 Algorithm for Amharic text normalization.............cccceevveveiiierie e 68
Algorithm 4.3 Amharic sub-word segmentation Algorithmccccceviiiiiici i, 69

Page VI of 119

List of Acronyms

Adam: Adaptive Moment Estimation

Al: Artificial Intelligence

ALPAC: Automatic Language Processing
Advisory Committee

ANN: Artificial Neural Networks

ATR: Advanced Telecommunications Research
BERT: Bidirectional Encoder Representation
from Transformers

BLEU: BiLingual Evaluation Understudy
BP: BackPropagation

BPE: Byte Pair Encoding

BPTT: Backpropagation Through Time

CAP: Credit Assignment Path

CBMT: Corpus-Based Machine Translation
CBOW: Continuous Bag of Words

CNN: Convolutional Neural Network

CPU: Central Processing Unit

C-STAR: Consortium for Speech Translation
Advanced Research

DMT: Direct Machine Translation

EBMT: Example-Based Machine Translation
EOTC: Ethiopian Orthodox Tewahido Church
FDRE: Federal Democratic Republic of
Ethiopia

FNN: FeedForward Neural Networks
GNMT: Google’s Neural Machine Translation
GPU: Graphical Processing Unit

GRU: Gated Recurrent Unit

HICATS: Hitachi Computer-Aided Translation
System

IBM: International Business Machines
Information Interchange

IRSTLM: Istituto per la Ricerca Scientifica e
Technologica Language Modeling

LSTM: Long Short Term Memory
METEOR: Metric for Evaluation of
Translation with Explicit ORdering

MLP: Multi-Layer-Perceptron

MS: Micro-Soft

MT: Machine Translation

NaN: Not a Number

NEC: Nippon Electric Company

NIST: National Institute of Standards &
Technology

NLP: Natural Language Processing

NMT: Neural Machine Translation

NN: Neural Network

NVIDIA: New VIDio Intelligence Automaton
(Envidia -Spanish)

OCR: Optical Character Recognition
OKI3: Open Knowledge Initiative
OpenNMT: Open Neural Machine Translation
ReLU: Rectified Linear Unit

RNN: Recurrent Neural Network
RoBERTa: Robustly Optimized BERT Pre-
Training Approach

Seq2Seq: Sequence 2(to) Sequence

SGD: Stochastic Gradient Descent

SMT: Statistical Machine Translation
SVO: Subject-Verb-Object (SOV, VSO..)
TAUM: Troy Area United Ministries

TPU: Tensor Processing Unit

WMT: Workshop on Machine Translations
Word2vec: Word 2(to) Vector

Page VII of 119

CHAPTER ONE: INTRODUCTION

1.1 Background

Machine Translation (MT) is an automatic translation of text or speech from one natural language
to another, preserving the meaning of the input text, and producing fluent text in the target language
[1]. MT is a relatively old task that has taken a long journey in research and development. Over
the years, two major MT approaches have emerged; a rule-based approach and the corpus-based
approach. In the rule-based approach, experts’ knowledge about the source and the target language
to develop syntactic, semantic, and morphological rules is required to achieve the translation.
Whereas, under the corpus-based approach, there is a parallel corpusz built by human experts from
where the knowledge is automatically extracted by analyzing translation examples (bitext)2 [2].
Corpus-based MT includes Example-Based MT (EBMT), Statistical Machine Translation (SMT),
Neural Machine Translation (NMT), and other Hybrid MTs [2, 3, 4]. These are discussed under
section 2.4 in detail.

SMT is an MT paradigm where translations are generated based on statistical models, whose
parameters are derived from the analysis of bilingual text corpora. It is focusing on finding the
translation with the highest probability of occurrence of words based on existing translations.
Google launched Google Translate based on SMT in 2006. However, later on, after 10 years of
research, Google substitute SMT with NMT to increase fluency and accuracy since SMT had poor

grammatical accuracy [5].

Neural Machine Translation on the other hand is the newest approach to machine translation and
is based on Artificial Neural Networks that consist of nodes conceptually modeled after the human
brain. The complex and dynamic nature of networks in NMT allows the model to guess more
educated and appropriate target text about the context. NMT systems iteratively learn and adjust

weights to provide the best output than SMT but require a lot of processing power [6].

1 A pair of equivalent source sentences and target sentences
2 Refers to the corpora or the training data used to build a translation model

Page 1 of 119

Deep Learning (also known as Deep Neural Network) is a sub-set of machine learning methods
based on Artificial Neural Networks that imitates the workings of the human brain in processing
data and creating patterns for use in decision-making. These networks are capable of learning
unsupervised from data that is unstructured or unlabeled. [7]. Earlier versions of NNs such as the
first perceptron were shallow, composed of one input and one output layer, and have at the most
one hidden layer in between. Deep Learning is the name used for “stacked neural networks”; that
is, networks composed of several layers. According to [8, 6, 9] More than or equal to four layers
(including input and output) qualifies as “deep” learning. The relationship between Al, MT, and
Deep Learning [10] is depicted in Figure 1.1.

Al
(Artificial
Intelligence)
I
\ I l
ML NLP Other
(Machi nge arning) ~ (Natural Language Expert System, Vision,
- Processing) Speech, Planning, Robotics

t—> Deep Learning
) 1. Machine Translation
1. Supervised))
2. Question Answering

2. Semi-Supervised

N 3. Sentiment Analysis
3. Unsupervised :
4. Text Generation
4. Reinforcement -
5. Content Exftraction

etc....

Figure 1.1 The relationship between Al, ML, and Deep Learning [10]

As shown in Figure 1.1 ML and NLP are branches of Al. Moreover, Deep learning is a subset of
ML and MT is one of the major tasks of NLP. Hence, we will use an unsupervised Deep Learning
approach to Machine Translation. This study is focusing on the state-of-the-art NMT with a deep

learning structure for Ge’ez and Amharic languages.

Ge’ez Is an ancient Semitic language with its own script that is originated around the 5th century

BC [11]. The language began in the northern part of Ethiopia, in Eritrea and Tigray. It has been

Page 2 of 119

the official language of Ethiopia for thousands of years [12]. As a result, many Ethiopian stories,
civilizations, philosophies, religion, medicine, engineering, astrology, education, crafts, arts, and
many other things that need to be translated are recorded. At present, the language has become so
flagged and it is now only used as liturgical (praise and thanksgiving) language in the Ethiopian
and Eritrean Orthodox Churches. Although it is a language that could be lost at all, the Ethiopian
Orthodox Church has preserved it and deserves credit for it [11, 13]. Ge’ez uses the 'Abugida’s

writing system from left to right (former was an abjads system, from right-to-left, just like Arabic).

Ambharic, on the other hand, is the current official working language of the Federal Democratic
Republic of Ethiopia and is estimated to be spoken by well over 100 millions people as a first or
second language that is 83.3% of the population and over 3 million people outside Ethiopia
including USA, Israel, Egypt, Canada, etc. [14]. Amharic is the second most spoken Semitic
language in the world (after Arabic). Today it is the largest language in Ethiopia and one of the
five largest languages on the African continent. Following the Constitution drafted in 1993,
Ethiopia is divided into nine (now ten)s independent regions and two chartered cities, each with
its own regional working language. Amharic is the working language of different regional states
including Amhara regional state, Addis Ababa and Southern Nations, Nationalities, and people’s
regional States. Due to these reasons, creating an intelligent machine translation system for these

languages will help millions of people.
1.2 Motivation

A lot of ancient scripts and documents, written in Ge’ez are available in Ethiopia and abroad.
These documents are written in different fields of areas such as religion, medicine, engineering,
astrology, education, and many more. The language attracts the attention of many researchers to
carry out critical analysis on socio-cultural, political, astronomical, and historical aspects of

Ethiopia’s past. Currently, the youth and researchers are interested to learn the Ge’ez language and

3 (known as alphasyllabary, neosyllabary or pseudo-alphabet) is a writing system that is neither a syllabic nor an
alphabetic script, but somewhere in between. Consonant-vowel sequences are written as a unit, each based on the
consonant letter and vowel notation is secondary. E.g. 4- (Fa). Adopted from A0, (a-bu-gi-da), the name of its own
script, based on the Ge’ez alphabet order (4017£) similar with Greek alphabet order (A, B, ', A).

4 A type of writing system in which (in contrast to true alphabets) each symbol or glyph stands for a consonant.

5 https://www.press.et/english/?p=2654 accessed: Mar 2019

6 The Sidama region has been created in June 2020 and makes ten regions.

Page 3 0of 119

https://www.press.et/english/?p=2654

have good motivations to involve in research areas of Ge’ez manuscripts. As of Wendy Laura 2017
[15], about 7 Ethiopian and more than 25 abroad universities give Ge’ez language as either a
department or a course and more universities are launching Ge’ez department in Ethiopia. Hence,
this language is rising again and needs more attention. There should be a good translation system
between Ge’ez and other languages [2, 16]. Google Translate supports more than 108 world-
spoken languages including Amharic that have sufficient resources such as wiki and news.
However, languages such as Ge’ez (with no speakers and online resources) and Afaan Oromo (has
just 772 articles in its Wikipedia) which have not an adequate resource for translation purposes are

not supported until 20217.

That is why this study is initiated to explore the possibility of developing deep learning models
that can produce fluent and natural-sounding translation between Ge’ez and Amharic languages
with the available bilingual corpora using NMT techniques.

1.3 Statement of the Problem

Various studies have shown that hundreds of thousands of Ge’ez books are available in Ethiopia
and abroad. It is believed that these books, both domestically and abroad, have contributed greatly
to modern civilization [12]. To gain this wisdom and knowledge, these Ge’ez books and scripts
must be digitized and translated into different languages. For these efforts, there are many
digitization projects, which can electronically digitize these contents. Then they can be used for
developing machine translation models. Particularly, if they are translated into Amharic they will
have a valuable contribution to Ethiopians, in holding the country's values. Thus these contents
can also be translated to languages like English using the available Google Translate to make them
more accessible to the world. Moreover, students and researchers in different fields will gain the
advantage of exploring the knowledge documented using the language. Even though it is time-
consuming, Ge’ez is currently being translated into Amharic and other languages manually by

linguists, mainly by the Orthodox Tewahido Scholars [2, 17].

Nevertheless, as we have already noted, manual translation is difficult to do widely and easily

because of these reasons. The language is known only by some people and or priests, human

7 https://www.wired.com/story/google-translate-wikipedia-siri-widely-spoken-languages-cant-translate/ accessed
May 26, 2021

Page 4 of 119

https://www.wired.com/story/google-translate-wikipedia-siri-widely-spoken-languages-cant-translate/

translation takes a very long time, editing and evaluation is too costly (in terms of money, time,
and row materials like paper, vellum, and ink), and eranslation errors cannot be handled easily.

This can be very difficult to translate, evaluate and deliver a translation in a short period.

In the past few decades, there have been many attempts for solving machine Translation problems.
While most of the works focused on resourced languages. Less-resourced and morphologically
rich languages such as Ge’ez get limited attention due to a lack of data. Some studies [2, 16, 17]
have been tried to develop a Machine Translation for Ge’ez and Ambharic in different approaches
such as Rule-Based, SMT, and hybrid. The rule-based and hybrid machine translations are based
highly on word-based translation. In addition, the researchers said that there was a challenge
because of the morphological richness of the languages [17]. Beyond this, the researchers faced
Syntactic, Semantics, and Pragmatics transformation challenges, misworded (Wrong word
choices), disordered grammatical organization of with Subject Verb Object (SVO), Verb Subject
Object (VSO), and Subject Object Verb (SOV), as well, generating unknown words, name
translation problems, and so on. Moreover, according to Tadesse [2], different alignments were
handled such as one-to-one, one-to-many, and many-to-one alignments; however, many-to-many
alignment and derivational and Inflectional morphemes are not handled [2]. Hence, we try to

overcome these problems in this study [2, 16].

In the grammatical organization; Ge’ez follows somewhat free word order structure SVO, VSO,

SOV, and OVS Part of Speech Tags. Here are some examples:

SVO: “@nk aogh 0 Ok (Wi'itu mets’i’a habe betu. and “hAMHA0dC 100 Adv(y (igizi’abihéri

nebebo lemuse)”.
VSO: “oogh @k 10 Ok (Mmets’i’a wi'itu habe betu)” and <100 AMHA(OHAC Aov+(, (Nebebo
igizi’abiheri lemusé)”.

SOV: “@uk -0 Ok av3R” (Wi'itu habe betu mets’a’a) and “AMLANAC Aav 0, 100 (igizi’abiheri
lemusé nebebo). Though their word order is different the above three PoSs have the same meaning
as “At- L Nk oo (isu wede bétu met'a)” meaning “He came home ” and “A°ILANh.C o207 +G1L0D-

(igizi’abiher musén tenagerew)” meaning, “God spoke to Moses” respectively. These Parts of

Page 5 of 119

Speeches (PoS) were not handled in previous works. Only one of the three PoSs was applied in

one research [2].

Furthermore, different words like “0%A. [se ali]” and “aaA. [se’ali]” have the same sound but
different meanings with “to draw” and “to beg” respectively. Again “%oot+ (A’'met) and “hovt
(Amet) have the same sound but different meaning, which means “Year” and “housemaid”
respectively. This type of syntaxes needs a context-based translation just like Google Neural
Machine Translation (GNMT). The previous researchers strongly recommended extending their
research using a pure and larger corpus size and various domains of contents in addition to the

religious one [2, 17].

Even though there are attempts in both languages to deal with the aforementioned problem, almost
all of the works focused on exhaustive word and morpheme-based translations using rule-based or
Statistical Machine Translations such as phrase-based with very limited corpus, which are not
mature enough to be used. All the above researches on Ge’ez and Ambharic [2, 16, 17] are
conducted with SMT and faced those problems. Therefore, to address and overcome those
problems we will try to use more training data, by developing a better model with Deep Neural

Networks. NMT can handle alignments and word ordering by itself via Attention mechanisms.

In recent times Neural Machine Translation models that learned from large, unstructured data
using a language-independent architecture achieved the state-of-the-art result in Machine
Translation. However, such approaches need to learn sub-word tokenizer models and pre-trained
models such as BERT. While resourceful languages such as English benefited from this technique,
languages such as Amharic and Ge’ez are barely represented due to a lack of learned sub-word

segmenter such as BPE, WordPeice, and SentencePeice.

1.4 Research Questions
Lastly, this study tries to answer and address the following research questions:-
«» How effective are the Transformer and the Seq2Seq models in MT for low-resourced
languages such as Ge’ez and Amharic?
s Which NMT algorithm from the Transformer and Seq2Seq is better for low resource
languages like Ge’ez and Amharic?

% What are the main challenges of translation between Ge’ez and Amharic?

Page 6 of 119

1.5 The objective of the study

151

General Objective:

The main objective of this work is to explore and experimentally demonstrate deep learning-based

bi-directional Ge’ez-Amharic Neural Machine Translation.

1.5.2

Specific Objectives:

To achieve the specified general objective, the following specific objectives will be applied.

R/
L X4

X/
°e

Investigate literature related to Deep learning-based Machine Translation tasks.

Explore orthographic and phonetic characteristics of both Ge’ez and Amharic languages.
Prepare a parallel bi-lingual corpus for both Ge’ez and Amharic languages.

Do basic cleaning on the bilingual corpus.

Apply Amharic normalization.

Use tokenization.

Apply padding to shorter sentences to make them equal to the longest one.

Design a bi-directional Ge’ez-Ambharic translation model.

Conduct experiments with different deep learning models

Evaluate the performance of translation in both manual and automatic evaluation methods.
Select the best performer model

Explore challenges of Ge’ez-Amharic Machine Translation.

Suggest Future works and recommendations.

1.6 Research Methods

To achieve the general and specific objectives of the study and to answer the research questions,

the Design Science research methodology will be used as a general research methodology and the

following subtopics will also be used as an additional research methodology.

16.1

Literature Review

Performing the literature survey provides knowledge about the state-of-the-art models in the

current research areas. It will help us to understand the existing approaches, techniques, and tools.

It provides a comprehensive interpretation of the problem domain, to design an effective Ge’ez-

Ambharic MT. A vast review of literature in the area of MT with a special focus on Deep Learning

Page 7 of 119

approaches and algorithms will be done. Many peer-reviewed publications including books,
articles, journals, and other scholarly publications will be reviewed. Moreover, discussions with

the linguist of Ge’ez and Amharic will also be done.
1.6.2 Corpus Preparation

We will use an existing domain-specific bilingual corpus having 13,787 parallel sentences
prepared by the former researcher [2] from the bible, Mass, praise of Mary, and other Ethiopian
Orthodox Church’s faith books. We will also collect and prepare additional corpus in addition to

the existing one.

An experiment will be conducted with the formerly available corpus to determine whether the new
NMT is effective for low-resourced languages and to be comparable with previous SMT results
reported by [2]. However, The NMT will also be checked with both the existing corpora and with
the existing plus the newly added corpus. In addition, parallel Ge’ez-Amharic numeral datasets

will be added to handle numeric translation.

1.6.3 Implementation Tools and Experiment

Python will be used as a tool to develop models with Pytorch and OpenNMT will also be used for
confirmation. Python supports extensive collections of special libraries for implementing deep-
learning methodologies. Particularly offers a neater and faster way to build highly performing
algorithms.

The model for Ge’ez-Amharic Machine Translation will be made with Pytorch and experimented
using the available corpus. We will also try our dataset on OpenNMT to ensure whether our result
is reliable or not. OpenNMT is an open-source ecosystem for Neural Machine Translation and
neural sequence learning [18]. We will train the proposed model with two established NMT
architectures, namely, Attention Based Seq2Seq NMT and the Transformer [19].

In addition, draw.io, the online diagrams tools , and Edraw max 7.9 will be used to draw diagrams
of this study. MS Word, PPT, and notepad++ will be used for writing a report, presentation slides,
and text processing such as corpus preparation respectively, and browsers such as Opera, Google

Chrom, and MS Edge will also be used for running Google’s Co-laboratory scripts.

8 https://app.diagrams.net/ accessed from sept 2020 — Jul 2021
Page 8 of 119

https://app.diagrams.net/

1.6.4 Evaluation producers
To evaluate the translation quality of the proposed Ge’ez-Amharic NMT system and to be
comparable with previous works we will use a BLEU (Bilingual Evaluation Understudy) score

and Human (Manual) evaluation system (rating scale).

1.7 Scope and Delimitations of the study

This study focuses on Deep Learning NMT approaches for Ge’ez and Amharic text Translation.
An 85.45% of the corpus (17724 pairs of sentences), used for this study, is from the religious
domain and the remaining 14.56% (3021 pairs of sentences) is from Ge’ez teaching books.

The delimitation of this study on the other hand is, it does not include Amharic Romanization and

post-editing techniques. The lack of conversation bilingual corpus is also another issue.
1.8 Significance of the study

The outcome of this study can help researchers to investigate old literature written in Ge’ez
since many of ancient civilization pioneer literature such as Medicine, Astronomy, and
calendar (like Bahire Hasab), Archeology, Engineering, and ...so on has been written in
Ge’ez. The study can keep Ge’ez alive by raising and extending its age. As well, this work
can help the upcoming youths who are interested to study the Ge’ez and Ambharic

languages. Moreover, it helps people to find out the true history of Ethiopia.

1.9 Organization of this work

This document is organized into six chapters. The first chapter presented the statement of the
problem, objective, scope, methodology, Significant, scope, and limitations of the study. The
second chapter deals with the literature review of the science behind the MT process, approaches,
evaluation techniques, and related works. The third chapter discusses the Ge’ez and Ambharic
Languages, their Lexical, Morphological, and Syntactic characteristics. The fourth chapter
presents the methodology used for this study, the proposed MT architecture, and its components
in detail. The fifth chapter presents the dataset, implementation, result, and analysis of the system.
In the last chapter, we put our conclusion and possible recommendation for future studies based

on the findings of this work.

Page 9 of 119

CHAPTER TWO: LITERATURE REVIEW

2.1 Overview

This chapter discusses Natural Language Processing (NLP), Machine Translation (MT), and
history of machine translation, approaches to machine translation (rule-based and corpus-based
machine translations), Artificial Neural Networks (ANN), machine translation evaluation metrics,

challenges to MT, and related works.
2.2 Natural Language Processing

Different scholars have defined Natural Language Processing (NLP) in different ways. From those
definitions, we selected the two more generalized ones. Andreas Kaufmann [20] defined it as “NLP
is a subdomain of artificial intelligence and as an interdisciplinary field; it is combining linguistic
knowledge with computer science.” Baysolow Il, Taweh [21] also said, “NLP is a subfield of
computer science that is focused on allowing computers to understand language in a ‘natural’
way, as humans do”. Natural Language Processing shows the capability of computers to
understand and processes human languages focusing on the interactions between human and
computer via communication or language in a natural way. NLP includes tasks such as machine
translation, automatic text summarization, named entity recognition, sentiment analysis, speech

recognition, Question and answering, PoS tagging, and so on [16].
2.3 Machine Translation

Machine translation is the process of translating a text or speech in a given or input language to a
target or output language using automated computers [1]. The story of Machine Translation begins
in the 1940s, which was considered as the pioneers and stages of MT.

2.3.1 History of Machine Translation

Endeavor to do machine translation systems started just as soon as computers came into existence.
According to Mohamed Amine Chéragui [22], the history of machine translation started in 1948

and classified into five periods and narrated as follows: -

Page 10 of 119

First period (1948-1960): The beginning: In this era, four different researchers showed a good
pioneer to MT. In 1949, Warren Weaver adopted the term computer translation in his
Memorandum and proposed the first ideas using computers in translation. In 1954 by a group of
researchers from Georgetown University in collaboration with IBM, the first very basic automatic
translator was developed, which translates about sixty Russian sentences into English. The authors
claimed that within three to five years, machine translation would not be a problem. In the same
year (in 1954): Victor Yngve published the first journal on MT, entitled “Mechanical translation
devoted to the translation of languages by the aid of machines”. MT research programs pop up in
Japan and Russia (1955), and in London (1956) when the first MT conference was held.

Second Period (1960-1966) Parsing and disillusionment: In the early 1960s (Tesniere
stratificationnelle Lamb) there were parsers developed from different types of grammars, such as
grammar and dependency grammar. In February 1961, there were series of weekly lectures
organized by David G. Hays at the Rand Corporation in Los Angeles, and computational
linguistics was born. In 1964, ALPAC (Automatic Language Processing Advisory Committee)
was created with the American government to study the perspectives and the chances of machine
translation. In 1966, ALPAC published its famous report and it concluded that its works on
machine translation are just wasting of time and money. The conclusion of this rapport hurt MT's

search for several years.

Third period (1966-1980): New birth and hope: The project named REVERSO by a group of
Russian researchers was started in 1970. In the same year Peter Toma, a member of a group search
for Georgetown at that time, developed SYSTRANL1 (Russian-English). In 1976, at the University
of Montreal, a group of researchers under the direction of Alai Colmerauer created the system
Weather (the machine translation to weather forecasts for the public) in the project TAUM. Lastly,
Atlas2 was created in 1978 by the Japanese firm Fujitsu, this translator was based on rules and

able to translate from Korean to Japanese and vice versa.

Fourth Period (1980-1990): Japanese invaders: The Japanese Company Sharp markets its
Automatic translator (English - Japanese) in 1982. This translator was based on rules and an
approach to translation transfer. In 1983: the NEC (Nippon Electric Company) develops its

translation system based on an algorithm called Pivot by using Interlingua. OKI3 (Open

Page 11 of 119

Knowledge Initiative) at Massachusetts Institute of Technology, also developed a system named
Pensee in1986, which is a translator (Japanese-English) based on rules. In 1986, the group Hitachi
developed its translation system (Japanese- English) based on rules (which is an approach taken
by transfer), and christened HICATS (Hitachi Computer-Aided Translation System).

Fifth Period (since 1990): The Web and the new vague of translators: The project named C-STAR
(Consortium for Speech Translation Advanced Research) made the first demonstrations trilingual
transatlantic in January 1993. It was a project on the machine translation of the parole in the field
of tourism (dialogue client travel agent), by videoconference. This system dealt with three
languages (English, German, and Japanese) the company Softissimo starts marketing the translator
REVERSO in 1998. In 2000, an example-based MT started with Japanese- English and Chinese -
English. The system was done by a Japanese laboratory ATR.

2.3.2 Approaches to Machine Translation

MT has taken a long journey in research and development and it is a relatively old task. Over the
years, two major approaches emerged, a rule-based approach and the corpus-based approach. In
the rule-based approach, experts’ knowledge about the source and the target language is required
to develop syntactic, semantic, and morphological rules for translation. Whereas, under the corpus-
based approach, there is a parallel corpus built by human experts from where the knowledge is
automatically extracted by analyzing translation examples (bitext) [2]. Corpus-based MT includes
Example-Based MT (EBMT), Statistical Machine Translation (SMT), Neural Machine Translation
(NMT), and other Hybrid MTs [3, 4, 23].

I. Rule-Based Machine Translation Approach

RBMT was the first commercial and practical approach to machine translation, developed several
decades ago. It is also known as Knowledge-Based Machine Translation or Classical Approach of
MT. It works based on a manually determined set of rules encoded by linguistic experts. RBMT
relies on a very large number of bilingual dictionaries for each language pair, and with countless
linguistic rules such as rules for syntactic analysis, lexical transfer, syntactic generation,
morphology, lexical rules, etc. The rules attempt to define correspondences between the structure
of the source language and the target language. Representation should be unambiguous lexically

and structurally. It consists of a collection of rules called grammar rules and lexicon to process the

Page 12 of 119

rules [2, 17]. The goal of RBMT is to convert the source language structure to the target language
structure by preserving the meaning of source language texts and generating equivalent target-

language texts [24].

The benefit of RBMT is that without a need for huge bilingual corpora, a good engine can translate
a wide range of texts, not like in SMT or NMT, which require large bilingual corpora. However,
RBMT is time-consuming and labor-intensive to develop a system and it may take several years

for one language pair.

Additionally, In RBMT when facing real-life texts, like metaphorical or slang texts, human-
encoded rules are limited and unable to cowl all possible linguistic phenomena. This may result in
poor translation quality. For this reason, RBMT has completely been replaced by SMT or hybrid
systems; however, it is still being used for less common language pairs wherein there are not
sufficient corpora to train Statistical or Neural Machine Translation engines. The steps in RBMT

are depicted in Figure 2.1 below.

Source text > Morphological analyser
Part of Speech Tager
Lexical Selection
Structure Transfer <> Lexical Transfer
Morphological generator

Post generator —» Target Text
Figure 2.1 Architecture of RBMT Approach [4]
Sub Approaches of RBMT

There have been three basic approaches under rule-based machine translation; the Direct, Transfer-
Based, and Interlingua Machine Translation Approaches [4]. They differ in the depth of analysis
of the source language and the extent to which they attempt to reach a language-independent
representation of meaning or intent between the source and target languages. The Vauquois

Triangle illustrates these levels of analysis and shows their dissimilarities as depicted in Fig. 2.2.

Page 13 of 119

Interlingua

Transfer

Direct Transilation

Target

Source
Text

Text

Figure 2.2 Bernard Vauquois’ pyramid [4].

a) The direct Machine Translation (DMT) Approach Starts with the shallowest level at the
bottom of the pyramid as shown in Figure 2.2. It works by translating Words of Source
Language without passing through an additional (intermediary) representation. The analysis of
Source Language texts is oriented to only one Target Language [4, 24].

b) The transfer-based Machine Translation Approach is the second generation of Rule-Based
machine translation (between the 1960s and 1980s) after Direct Machine Translation. In this
approach, the source language is transformed into a less language-specific representation
called abstract. Then for the target language, an equivalent representation (with the same level
of abstraction) will be generated using bilingual dictionaries and grammar rules. Transfer-
based machine translation creates a translation from an intermediate representation that
simulates the meaning of the original sentence. Unlike Interlingua MT, the Transfer model
depends partially on the language pair involved in the translation [4, 24].

c) Interlingua Machine Translation Approach is the third generation of Rule-Based machine
translation that is an inherent part of a branch called Inter-Linguisticse. In Interlingua, the
source language is transformed into an auxiliary or intermediary language (i.e. a “language-
neutral” representation) that is independent of any language. Later, the translated verse for the
target language is generated from the Interlingua. One of the main advantages of Interlingua

MT is that it can support a large number of target languages to be turned into [4, 24].

9 From two Latin words, Inter and Lingua, which means intermediary and language

Page 14 of 119

i. Corpus-Based Machine Translation Approaches

Corpus-based machine translation (also known as “data-driven” or Empirical machine translation)
is another recent approach for machine translation that started to overcome the problem of rule-
based machine translation (a knowledge acquisition problem, to meet the wide variety and time-
changing characteristics of the real text). As its name implies, Corpus-Based Machine Translation
(CBMT) uses, a huge amount of corpora, (mostly a bilingual parallel corpus) to obtain knowledge
for new entry translation. The bilingual parallel corpus contains text and its translations. The
translation knowledge is acquired from these corpora. The corpus-based approach is further
classified into three main sub approaches; Example-based Machine Translation, Statistical

Machine Translation, and Neural Machine Translation Approaches [4].

A. Example-Based Machine Translation (EBMT) Approach

Example-Based Machine Translation is also known as “memory-based”, “case-based”,
“experience-guided”, "example-guided inference”, or “analogy-based” translation [17]. It works
translation by recalling or finding analogous examples of the language pairs from premade
corpora. EBMT translates a source sentence by imitating the translation of the matched examples
of a similar sentence already in the corpora. These similar sentences (examples) are used to
translate a similar type of sentence stored in a database from the source language to the target
language. In EBMT Analogy of text, the similarity is the key; hence, the concept is “Translation
by Analogy”. In EBMT the basic principle is that, if a formerly translated phrase occurs, a similar
translation is likely to be correct once again. There are four stages in EBMT [16]

< Example acquisition: is about how to acquire examples from the parallel bilingual corpus.

< Example base management: - is about how examples are stored and maintained.

+ Example application: - concerns itself with how examples are used to facilitate translation,
which involves the decomposition of an input sentence into examples and the conversion
of source texts into target texts in terms of an existing translation.

+« Target sentence synthesis: - is to compose a target sentence by putting the converted
examples into a smoothly readable order, aiming at enhancing the readability of the target

sentence after conversion.

Page 15 of 119

Example-Based Machine translation works by calculating the distance between the input sentence
and the analogy stored in the database or corpora. The smaller the distance is more similar to the
input. When a new source sentence is entered for translation, the examples are retrieved to find
similar ones in the source; afterward, the target sentence is generated by imitating the translation
of the matched examples. As shown below in Figure 2.3, based on the first (i) examples, the second

(ii) translation can be done [2].

Examples stored in a Corpus

! Source: 1

1 - ™ HH
:Amharlc i’fﬁf";ﬂkl 2QC' '[.;IC 9."1.3 ‘lﬂ:- f;-‘?ﬂf;' Y i f“.’&‘gﬂ? !
1
(. 1
! 1
1 Target */ N v ¥ 4% v K v '
| Ge'ez % ABEFRI® AdA BF 850 @-hbn L AT S8 BNk :
E ——

8 Translation Based on Examples

S e e e mmmmm oo E e g gy g E
1Source: ni !
) H wfs ™ 1
amharic f'?"?rﬂ-fpil 79_0 r[lc (;ﬁ,e. ‘rEJ'-- ﬁﬂ..f. ;’,9 C4 &Eh :
. 1
" XA Y i
1 Target: N v ¥ 7 v v '
' Ge'ez exa AASTAT WP A AEE 55C @bk e A i et :

Figure 2.3 Instance of example-based translation

B. Statistical Machine Translation Approach

Statistical Machine Translation is an empiricist approach, which works by using a very large
volume of bilingual corpora to train the translation engine. However, some studies corroborate
SMT as one of the paradigms of EBMT [24]. In this, statistical methods such as n-gram based
SMT and Occurrence-based SMT are applied to generate a translated version using bilingual

corpora.

The first model of SMT was based on Bayes Theorem and proposed by Brown et al [25]. The
probability that every sentence in one language has a possible translation of any sentence in the
other [4]. SMT requires a large amount of monolingual and bilingual data. The monolingual corpus
is required to estimate the right word orders that the target language should look like and the
bilingual is an aligned sentence, used to build the translation model training and decoding purpose
that determine the word (phrase) alignment between the two aligned sentences [17]. SMT in
general is focusing on finding the translation with the highest probability of being the best.

However, balancing Adequacy (how faithful is the translation to the source) and Fluency (how

Page 16 of 119

natural is the translation) should be under-considered. In SMT, the quality metrics for the source

and target language is measured via a product of faithfulness and fluency [2]
Best translation T = argmaxy = Faithfulness(T,S)fluency(T) (2.1)

Where in that a source language sentence S may translate into any target language Sentence T. It
is based on statistical searching of the most likely translation from a huge bilingual corpus. For
every pair of strings (A, G) ‘A’ is given and a probability P(G|A) is assigned to produce ‘G’ as its

translation [17]. The entire formula can be written as equation 2.2 based on Bayes' theorem.

P(G|A)P(A)

26 (2.2)

P(A|G) =
Where P(A) is the probability of the language model, and P(G|A) is the probability of the
translation model. A sentence is translated based on the probability distribution of P(A|G) in
which a string ‘A’ in the target language (for instance, Amharic) is the translation of a string ‘G’
in the given source language (for example, Ge’ez). A sentence, which comes, as the translation
(&), is the one that has the highest probability with each sentence in ‘A’ is a translation of ‘G’ with
this probability. In mathematical terms [17], P(G) is fixed, the maximization of P(A|G) denoted

by é is thus equivalent to maximization of P(G|A)P(A) and it gives.
e = argmax, P(G|A)P(A) (2.3)

WhereP(G|A): The Translation model that provides the probabilities of possible translation pairs
of the source sentence A given the translated sentence G. The P(A) is the Language model that
provides a probability to each unit of text. In addition, argmax, is the Search algorithm in
decoder that searches for the best translation from the given all possible translations based on the
probability estimates P(A|G) and P(A) and performs the actual translation. Based on this concept
there are three components of SMT in its general architecture namely, the Language Model, the

Translation model, and the Decoder. [16].

The Language model: determines the probability of a sequence of words or ensuring that words
come in the right order, i.e., Subject-Object-Verb (SOV). The target Language Model is produced

using a monolingual corpus where reasonable sequences of words are given high probabilities and

Page 17 of 119

senseless ones are given low probabilities. It generally reflects how frequently a string of words

occurs as a sentence.

The translation model: looks for statistical correlations between input texts and translations. That
is the bilingual relationship between the source and target strings of corresponding parallel
corpora. It then shows how likely a given source text is mapped to a translation by generating

confidence scores. However, the translation engine itself has no notion of rules or grammar.

There are three categories of translation models: - word-based models, phrase-based models, and
syntax-based models [17]. In the word-based translation model, the objective is to discover the
word-to-word translational correspondences in a bilingual corpus. Here the fundamental unit is a
word. It handles translation and alignment at the word level. However, compound words, idioms,
and homonyms create complexity. In the phrase-based model, the fundamental unit is a phrase
or sequence of words. A sequence of words in the source and the target language should be
developed. These multi-word segments of words are called blocks or phrases, which are not
linguistic phrases like noun phrases but phrases found using statistical methods from the corpus.
Decoding is done based on the vector of features with matching values for the language sequence
pair. It translates any contiguous sequence of words and reduces restrictions produced by word-
based translation. The phrase-based model is the widely adopted method among all the proposed
approaches in SMT. In the syntax-based model, the fundamental unit is the translation rule. It is
based on the idea of translating syntactic units, rather than single words (as in word-based MT),
or strings of words (as in phrase-based MT). Translation rule consists of a sequence of words and
variables in the source language, a syntax tree in the target language (having words or variables at

leaves), and a vector of feature values that describes the likelihood of the language pairs.

The Decoder on the other hand uses a searching algorithm to determine the most probable
translation among all possible translations. Most decoders in the SMT are based on the best-first
search (E.g. A"). Some examples of decoders are the Beam search algorithm, Greedy decoder,

stack-decoding algorithm... and so forth.

C. Neural Machine Translation (NMT) Approach
In the last few years, a new machine translation paradigm has emerged in the MT era, the Neural

Machine Translation (NMT), recently proposed by Kalchbrenner and Blunsom [26] also called

Page 18 of 119

data-driven or, less often, corpus-driven machine translation. NMT is the newest approach to
machine translation and displaces its corpus-based predecessor, statistical machine translation [6,
27]. Itis trained on large pairs of source and target language sentences (corpora), containing huge
translation memories of hundreds of thousands or even millions of translation units. It was
introduced as a promising approach with the potential of addressing many shortcomings of
traditional machine translation systems. The training of the models is similar to phrase-based
models, but uses a completely different computational approach: neural networks (discussed in
section 2.5), a set of algorithms, modeled loosely after the human brain that is designed to
recognize patterns [28].

The nodes can hold single words, phrases, or longer segments and relate to each other in a web of
complex relationships based on bilingual texts used to train the system. The artificial neural
networks are used to predict the likelihood of a sequence of words, typically modeling entire
sentences in a single integrated model. The complex and dynamic nature of such networks allows
the formation of significantly more educated guesses about the context and therefore the meaning
of any word to be translated [6, 29].

In 2014, sequence-to-sequence models were introduced opening new possibilities for neural
networks in NLP. Before the seq2seq models, the network needed a way to transform the sequence
input into computer-ready numbers (one-hot encoding vector, and embedding) shown in Annex A
Table A.1. With seg2seq, the possibility of training a network with input and output sequences
became possible [27].

An NMT system is a neural network that directly models the conditional probability P(y|x) of
translating a source sentence, Xu, . . ., Xn, t0 a target sentence, yi, . . ., ym. A regular form of NMT
has two components: an encoder, which calculates a representation for each input sentence, and a
decoder that generates one target word at a time and hence decomposes the conditional probability

as the following equation [19].

m
logP(y|x) = b + Z log(vjly <Jj.s) (2.4)

j=1
NMT systems continuously learn and adjust to provide the best output. [30].
This research is mainly focused on and works with this approach to develop a model for Ge’ez-

Amharic Machine Translation and there are different levels of NMT, such as Word Level, sub-

Page 19 of 119

word level, morpheme level, character level, phoneme level, and so on. In this study, the sub-word

level is used as it is more efficient and effective in real-world applications and suited to NNS.

The main advantage of NMT is that a single system can be trained directly on the source and target
text, no longer requiring the pipeline of specialized systems used in statistical machine learning.
This is called the End-to-end model (no pipeline of specific tasks) as only one model is required
for the translation. In NMT, word alignment, the cornerstone of SMT, is no longer needed as an
input of the system. Current Neural MT engines can extract word alignment from the attention
weights [31].

On the other hand, the major problem with neural networks occurs if the training data is
unbalanced, the model cannot learn from the rare samples as well biased to frequent ones. This
problem is known as the rare word problem. Besides, the limited vocabulary is due to
computational constraints. These models are trained with, say, 50,000 word-vocabularies, and any
longer words are broken up into word pieces. This is a real problem for deployments with large
numbers of brand names or large specialized vocabulary. Neural systems are very hard to debug
than SMTs and the errors produced by neural systems are sometimes quite capricious. The other
disadvantage is that the biasing of the model towards frequent words on the corpus. A recent paper
proposes a solution using a post-processing step to translate the rare words with a dictionary [32].
In Addition, it requires a large bilingual corpus like SMT, a very high resource (time and
processing power), that needs a special type of processing units like GPU and TPU which is not
easily able to run on the regular CPU processors. However, some generous companies such as
Google and NVIDIA thanks to them freely provide these resources.

Challenges of NMT

Many scholars have accused that NMT systems lack robustness, especially when input sentences
contain rare words and it is more sensitive than SMT to noises. Even though accuracy and speed
are essential, these issues have stuck NMT to be used in practical deployments and services.
According to Koehn et.al [33], and many other researchers Neural Machine Translation has the

following six challenges.

Page 20 of 119

Domain mismatch
Neural Machine Translation systems have a lower quality out of domain, to the point that they

completely sacrifice adequacy for the sake of fluency. Large amounts of training data are only
available out of domain, but it is expected to have robust performance.

Amount of training data
Neural Machine Translation requires a very huge amount of training data than SMT to be more
fluent. NMT systems have a sharper learning curve for the amount of training data, resulting from
poor quality in low-resource settings, but better performance in high resource settings. However,
it is tough to get a training corpus with the sizes of millions of words.

Rare words
Although NMT systems outperform SMT systems on the translation of very infrequent words, but
still challenging for it too. NMT models perform particularly poorly on rare words like in highly
inflected categories (such as verbs). This issue was addressed by Google’s researcher [32].

Long sentences
NMT systems had lower translation quality on very long sentences but do comparably better up to
a sentence length of about 60 words. The introduction of the attention model remedied this problem
somewhat, but not fixed the problem completely until the transformer models come into existence.
While overall NMT was better than SMT, the SMT system outperformed NMT on sentences of
length 60 and higher. Quality for the two systems is relatively close, except for the very long
sentences (80 and more tokens). However, now different Transformer pre-trained embedding
models such as Bidirectional Encoder Representations from Transformers (BERT) resolved this
issueio [32].

Word alignment
Attention can do some word alignment especially in attention-based NMTs; however, this
attention model for NMT does not always fulfill the role of a word alignment model, but may
dramatically diverge. The attention model was the imposition of an alignment of the output words
to the input words. However, it may nearly fail to handle word alignment for some NMT models.
To solve the alignment problem of any attention mechanism Li, Xintong, et al. [34] found that
Alignment by Explicit Alignment Model and Alignment by Prediction Difference, which is agnostic

to specific NMT models. The researcher said the prediction difference is better for understanding

10 https://github.com/UKPLab/sentence-transformers/issues/364 accessed April 2021

Page 21 of 119

https://github.com/UKPLab/sentence-transformers/issues/364

and visualizes NMT from word alignment. Again the Transformer models are advisable than the
standard attentions with SeqSeq models on handling alignments.

Beam search
In many cases, poor translations are found beyond an optimal beam size setting. Optimal beam
sizes are between 30 -50 in many cases (sometimes up to 200), however, quality is still drop in
larger beams and NMT only improves translation quality for narrow beams and is bad when
exposed to larger search space.
Even though these six issues are the main challenges of NMT, in 2016 Google [28] presented
Google’s Neural Machine Translation (GNMT) system, which attempts to address these issues,
particularly the rare word problems, and most of these problems are not issues anymore.
Hardware and software requirements of NMT
Choosing hardware is just as crucial as the software and algorithms because the training of neural
networks consists of a large number of matrix multiplications, which needs parallel computing
power. The usual CPUs cannot process this much computation in a short time. It may take months
or even years to train the model. To minimize the training time processing units with parallel
computing power such as Graphics Processing Units (GPUSs) and or Tensorflow Processing Unit
(TPU) are required. Google and NVIDIA made the current advances in artificial neural networks
possible by providing GPUs and TPUs. GPUs are constructed specifically for large-scale parallel

computing and matrix multiplications.

D. Hybrid Machine Translation Approaches

The above individual approaches have their own shortcomings, and many hybrid machine
translation approaches have been proposed. The three main categories of hybrid systems are:

% Rule-based engines using statistical translation for post-processing and cleanup,

++ Statistical systems guided by rule-based engines.

¢ Either of the above with some input from the Neural Machine Translation system.
In the first case, the text is translated first by an RBMT engine. This translation is then processed
by an SMT engine, which corrects any errors made. In the second one, the RBMT engine does not
translate the text but supports the SMT engine by inserting metadata (e.g. noun, verb, adjective,
present or past tense, etc.). The last one is either of the two is supported by NMT. A summary of

all approaches to machine translation is shown below in table 2.1.

Page 22 of 119

Table 2.1 General Comparison of Machine Translation Approaches

MT Advantages Drawbacks
Rule-Based | < Fine for the translation of small content | < Requires extensive proofreading & experts
Machine volumes ¢+ heavy dependence on lexicons and rules
Translation | < Provides consistent translation quality | <+ rules of language change through time and need
(RBMT) for short sentences and a fixed set of to be constantly updated
terminology data. % Time-consuming and labor-intensive, may take
¢ A good engine can translate a wide several years for one language pair.
range of texts (Domain-independent) | < human-encoded rules are unable to cover all
% Only the dictionary, no bilingual text possible linguistic phenomena
required. % Conflicts between existing rules may lead to
% Total control (a possible new rule for poor translation
every situation) + Don’t deal well with slang or metaphorical texts.
« Reusability (existing rules of | < Requires good dictionaries
languages can be transferred when | < Lack of fluency [1]
paired with new languages) + The more the rules the harder to deal with the
system
Example- |« It May result in high-quality | %= A large set of high-quality training data is
Based translation when highly similar required.
Machine examples are found. «» When there is no similar example found, the
Translation translation quality may be very low.
(EBMT)
Statistical |+« Make most sense when needed to | <+ Requires very large, well-organized, and high-
Machine translate in high volumes, such as quality bilingual and monolingual corpora for
Translation technical manuals. each language pair.
(SMT) +¢+ Training data is widely available on the | < Fail when presented with texts that are not
Internet similar to material in the training corpora.
% Eliminates the need to handcraft a | < Unable to translate idioms and marketing
translation engine for each language material
pair and create linguistic rule sets, as is
the case with RBMT
¢ Requires less virtual space than other
prior models of MT
Hybrid % Better translation quality + Need for extensive editing.
Machine ¢+ Combination advantage of two or more | %+ More Complex work than single MTs
Translation MTs +«+ Human translators will be required
(HMT)
Neural %+ The most advanced option < A very large set of high-quality training data is
Machine % lteratively learn and adjust waits to required.
Translation provide the best output «+ Training models for NMT is an expensive affair
(NMT) % Provides a single system that can be | < Require a lot of processing power

trained to decipher the source and
target text.

Provides translations that are much
more fluent and readable than other
MTs.

0.0

Encounters difficulties when faced with highly
technical language, or the use of rare words and
proper nouns.

More sensitive to corpus
hyperparameters than SMT

quality and

All Corpus-based MTs require adequate and clean bilingual corpora. The more the data, the
improved the quality translation.

Page 23 of 119

2.4 Artificial Neural Networks
Artificial Neural Network (ANN) simply called Neural Network (NN) is an efficient computing

system whose structure is derived from the analogy of biological neural networks. It is composed
of thousands of units called artificial neuronsi1, which are the fundamental piece of deep learning
algorithms [6]. Each neuron takes inputs from numerous other neurons, multiplies them by
assigned weights, adds them, applies an activation function, and passes the sum to one or more
neurons. Neural Machine Translation uses these artificial neural networks. Figure 2.4 shows the

general model of neural networks and their process.

Activation
function

Weights

Figure 2.4 the general model of ANN followed by its processing12

For Figure 2.4 the net input of the artificial neural network can be calculated as:
Vin = X1. W1 + Xp. Wy + X3. W3 ... Xy W, + b.wy (b is always 1)
m
i.e.,Netinputy;, = z x;.w; +b.wg

i

(2.5)

This output can be calculated by applying the activation function over the net input. y = F(y;,)
ANNSs have different components such as neural unit (neuron), Learning Weights (weight matrices
or Interconnections), Layers (The input, the hidden, and the output layers), Bias, Activation

Functions (threshold or transformation), and Loss functions, and so onzs.

11 Named after the neurons in a biological brain

12 https://wiki.pathmind.com/neural-network Accessed on Jan 2021

13 https://otexts.com/fpp2/nnetar.html, https://wiki.pathmind.com/neural-network Accessed on Jan 2021,
https://www.tutorialspoint.com/artificial neural network/artificial neural network basic_concepts.htm Jan 2021

Page 24 of 119

https://wiki.pathmind.com/neural-network
https://otexts.com/fpp2/nnetar.html
https://wiki.pathmind.com/neural-network
https://www.tutorialspoint.com/artificial_neural_network/artificial_neural_network_basic_concepts.htm

2.4.1 Deep neural networks

The deep neural network is also known as deep neural learning or deep learning is a subset of
machine learning methods in artificial intelligence (Al) that imitates the workings of the human
brain based on artificial neural networks that are capable of learning unsupervised from data that
is unstructured or unlabeled. [7].

Even though there is no common universal convention about the number of layers to be called
deep learning, it is distinguished from the more common one single-hidden-layer neural networks
by its depth; that is, the number of node layers via which data must pass in a multistep process of
pattern recognition. However, representations are usually deep (hence the buzzword deep
learning): they are not created in a moment phenomenon, but stages from other shallower
representations or layers. These layers may usually contain hundreds of neural units and the
number of connections ranges in the thousands. Hence, it is important to raise questions like “What
is the minimum number of layers in a deep neural network?” or “At which depth level does Shallow
Learning end, and Deep Learning begin?”

Most researchers in the field agreed that deep learning has multiple nonlinear layers. Mikel L.
Forcada [6] and Hinton et al. [35] though most of the earlier versions of neural networks such as
the first perceptron are shallow, which are composed of one input, one output, and at most one
hidden layer. The researchers said there for more than three layers with input and output layers is
called “deep” learning. So deep is not just arbitrary and a buzzword to make algorithms seem like
for the down and too hard to understand. It is a strongly defined term with the meaning of more
than one hidden layer. In deep learning networks, each layer of nodes trains on a distinct set of
features based on the previous layer output. The more layers the neural nets have, the more
complex the features the nodes can recognize. A Multi-Layer-Perceptron (MLP) with four or more
layers (including input and output) is called a Deep Neural Network [6, 9, 29]. In addition to its
name, a deep neural net has three levels of depth (Deep, very deep, and extremely deep)

Deep: According to Hinton et.al [35] one of the earliest deep neural networks has three densely
connected hidden layers. After fine-tuning, a network with three hidden layers forms a very good

generative model of machine translation tasks.

Page 25 of 119

Very deep: According to Schmidhuber [36] considers Depth of Credit Assignment Paths (CAPs) !
> 10 to be very deep learning.14 Whereas Simonyan et.al said, a very deep neural network has at
least 16 hidden layers [37].

Extremely Deep: He et al. In 2016, the extremely deep residual networks consist of 50 up to 1000+
hidden layers [38]. Again, Schmidhuber [36] said both Feedforward Neural Networks (FNNSs)
(acyclic) and recurrent neural networks (RNNs) (cyclic) have won competitions. In a sense, RNNs
are the deepest of all NNsis they are general computers more powerful than FNNs, and can in
principle create and process memories of arbitrary sequences of input patterns

As discussed above, though there is no universal agreement upon the threshold of depth separating
shallow learning from deep learning, most researchers said a deep neural network shall call deep
if the net has more or equal to 2 hidden layers. Hence, in this study, we used this concept to call
deep learning. A network with two or more hidden layers is a deep neural network or deep

learning. The more hidden layers the more the model learns better and predicts correct translation.

2.4.2 Different types of Neural Networks

There are numerous types of neural networks, such as Feedforward Neural Networks (FNN), Back
Propagation (BP), Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN),
Attention and Transformers.

The Feedforward Neural Networks are also known as multilayer perceptron or deep feedforward
networks where the connections between nodes or layers do not form a cycle. FNNs were the first
type of ANN invented and are simpler than recurrent neural networks, made from FNNSs. They are
called feedforward because information only travels forward in the network (no back loops), from
input nodes via hidden nodes if have, to output nodesis.

Back Propagation short for "backward propagation of errors” is the process of updating the
weights and biases of the neurons based on the error at the output. Which is the method of fine-
tuning the weights of a neural net based on the error rate obtained in the former output (in iteration).

Proper tuning of the weights allows the model to reduce error rates and to make it reliable by

14 A chain of transformations from input to output is a Credit Assignment Path or CAP. For a feedforward neural
network, the depth of the CAPs, and thus the depth of the network, is the number of hidden layers plus one.

15sKaiming He Xiangyu Zhang Shaoqing Ren Jian Sun Deep Residual Learning for Image Recognition (page 4)

16 Feedforward Neural Networks. Brilliant.org. Retrieved 11:35, June 3, 2020, from
https://brilliant.org/wiki/feedforward-neural-networks/ by John McGonagle, José Alonso Garcia, Saruque Mollick

Page 26 of 119

http://arxiv.org/pdf/1512.03385v1.pdf
https://brilliant.org/wiki/feedforward-neural-networks/

increasing its generalization. It is a standard method of training artificial neural networks. This
method helps to calculate the gradient of a loss function for all the weights in the network.
Convolutional Neural Network (CNN) or (ConvNet) is a deep neural network for images modeled
after the human visual cortex and originally employed in the field of computer vision [14]. This
Learning algorithm takes in an input image, assign weights and biases to various objects in the
image, and makes an explicit assumption to classify one from the other. Unlike regular ANN and
deep neural nets, CNNs are based on having the neurons arranged in 3D (width, depth, and
height)17 [37].

Now a day CNNs are used on different NLP applications such as Machine Translation. The
Facebook Al research published a paper that shows CNNSs are better than RNN architectures for
Machine Translation. CNN-based MT architectures work similarly to CNN on images. In which
sentences are treated as 1D images. These models are faster and have achieved higher results than
RNN models for translation tasks because of parallelization [39]. Other NNs are discussed below.
(a) Recurrent Neural Network (RNN):

RNNSs are a generalization of feed-forward neural networks that has an internal memory with loops
designed specifically to deal with textual data like machine translation, text summarization,
sentiment classification, image captioning...focusing on temporal dependency, or dependencies
over times. The output from the previous step is fed as input to the current step. This means the
current output depends not only on the current input but also on past inputs, (the result is dependent
on previous n time steps). They have a shared weight and a memoryao that takes information from
prior inputs to influence the current input and output. RNNSs are universal also known as Turing
complete and used for mapping inputs to outputs of varying types, lengths and are fairly
generalized in their application. RNNs take two inputs at each time step; an input (in the case of
the encoder, one word from the input sentence), and a hidden state. The next recurrent neuron takes
the second input vector and hidden state 1 to create the output of state 1. This is continuously done
in a Recurrent Neuron. A recurrent neuron is a single neuron that stores the state of a previous
input and combines it with the current input by preserving its relationship [40]. Recurrent neural

networks power Backpropagation Through Time (BPTT) algorithm to determine the gradients,

17 From [DesireCourse.Net] Udemy - Tensorflow and Keras For Neural Networks and Deep Learning
18 http://karpathy.qgithub.io/2015/05/21/rnn-effectiveness/ Accessed on Jan 2021
19 Memory: is an internal state of RNN used to process sequences of inputs. Not in feed-forward neural networks.

Page 27 of 119

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

which is somewhat different from traditional backpropagation as it is specific to sequence data. In
BPTT, the model trains itself by calculating errors from its output layer to its input layer.
RNNs suffer from two problems, known as exploding gradients and vanishing gradients [41].
These issues are caused by the size of the gradient2o, which is the slope of the loss function along
the error curve.
The vanishing gradient: problem happens when the gradient is too small, it continues to become
smaller, updating the weight parameters until they become zero or insignificant. This makes the
learning of long data sequences difficult or the algorithm is no longer learning. For instance in a
sentence like “The man who ate my Injera has white hair”, the description of white hair is for the
man and not the Injera. Hence, this is a long dependency. If the error were back propagated in this
case, it would need to apply the chain rule. After applying the chain rule and if any one of the
gradients approached 0, all the gradients would rush to zero exponentially fast due to the
multiplication. Such states would no longer help the network to learn anything.
Exploding gradients: On the other hand occur when the gradient is too large, creating an unstable
model. In this case, the model weights will grow too large, and they will eventually be represented
as NaN. The vanishing gradient problem is far more threatening as compared to the exploding
gradient problem. Why because the Vanishing gradient problem is more concerning is that an
exploding gradient problem can be easily solved by clipping the gradients at a predefined threshold
value. To handle the vanishing gradient problem, other variants of RNN such as the LSTM and
the GRU are created.
(b) Long Short Term Memories:
LSTMs are a special kind of RNNs and are capable of learning long-term dependencies by
remembering information for longer periods, that is their default behavior. RNNs suffer from
vanishing gradient problems when they are asked to handle long-term dependencies. For example
in a sentence, “I have been staying in the Amhara region for the last 6 years. I can speak
fluently”
The word it predicts will depend on the previous few words in context. Here it needs the context
of Amhara to predict the missed word in blank space, and the most suitable answer to this sentence
is “Amharic.” In other words, the gap between the relevant information and the point where it is

needed may have become very large. Vanishing and exploding gradients make RNNs unusable.

20 The gradients carry information used in the RNN

Page 28 of 119

LSTMs were then introduced by Hochreiter & Schmidhuber [42] in 1997 to overcome this problem
by explicitly introducing a memory unit, called the cell into the network. They work very well on
many different problems and are still widely using.
A common LSTM unit is composed of a cell, an input gate, an output gate and a forget gate21. The
cell remembers values over arbitrary time intervals and the three gates regulate the flow of
information into and out of the cell [43]. The Cell State Vector (memory cell) represents the
memory of the LSTM and it changes the forgetting of old memory (forget gate) and the addition
of new memory (input gate). The Forget Gate Control (decide) what information to throw away
from the cell state (memory) and Decides how much of the past info it should remember. It looks
at ht.g and x¢, and outputs a number between 0 and 1 for each number in the cell state Cr.1. A 1
represents completely keep this while a 0 represents completely get rid of this.
Forget layer------------- fe = oW [he_g, x¢] + by) (2.6)
The Input Gate (Update) controls what new information is added to the cell state from the current
input and decides how much of this unit is added to the current state. This has two parts. First, the
input gate layer (a sigmoid layer), decides which values it will update and the next is a tanh layer
creates a vector of new candidate values, C%.1 that could be added to the state and combine these
two to create an update to the state.
it = o(wi. [he—y, xc] + by (2.7)
C = tanh(wg. [he_q,x:] + bc (2.8)
Updating the old cell state, Ct.1, into the new cell state C; is just by multiplying the old state, Ct.1
by fi, and adding it x C% and forgetting the things it decided to forget earlier. This is the new
candidate value, scaled by how much it decided to update each state value.
Updating the old state cell------------- Co=fe*C_q+ip*C, (2.9)
The Output Gate on the other hand conditionally decides what to output from the memory. First,
it runs a sigmoid layer, which decides what parts of the cell state it is going to output. Then, it put
the cell state through tanh (to push the values to be between -1 and 1) and multiply it by the output
of the sigmoid gate, so that it only outputs the parts it decided to.
output Gate------------- 0 = a(Wylhe—q, x¢] + by)

(2.10)
h; = o, * tanh(C;)

21 http://colah.github.io/posts/2015-08-Understanding-LSTMs/ Accessed on Feb 2021

Page 29 of 119

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

(c) GRU (Gated Recurrent Unit):

It is a variant of LSTMSs but is simpler in its structure and is easier to train. It combines the ‘forget’
and ‘input’ gates into a single update gate22. It also merges the cell state and hidden state then
makes some other changes. These gates have their own sets of weights that are adaptively updated
in the learning phase. GRU has two gates, the reset, and the update gate.

The Update gate helps the model to determine how much of the past information (from previous
time steps) needs to be passed along to the future. That is powerful because the model can decide
to copy all the information from the past and eliminate the risk of the vanishing gradient problem.

Zp = O'(W(Z)XZ + u(z)ht_l) (2.11)
The Reset gate is used to decide how much of the past information to forget. The formula is the
same as the update gate. The difference is in their weights and the gate’s usage

T = O'(W(r)XZ + u(r)ht_l) (2.12)
The Current memory content will determine what to remove from the previous time steps
ht = tahn(wx; + r.Quh;_,) (2.13)

The Final memory at the current time step holds information for the current unit and passes it
down to the network.
(d) Encoder-Decoder (Sequence-to-Sequence Models)

One of the older and more established versions of NMT is the Encoder-Decoder structure. This
architecture is composed of two recurrent neural networks (Mostly LSTMs and GRUSs) used
together in tandem to create a translation model Easier. RNN Encoder-Decoder has been proposed
by Cho et al [44] and Sutskever et al. [27]. A sequence-to-sequence (Seq2Seq) model aims to map
a fixed-length input with a fixed-length output where the length of the input and output may differ.
In the Encoder-Decoder structure, an encoder reads the input sentence, a sequence of vectors x=
(X1, - - -, hTy), into a vector ¢ [45]. The most common approach is to use an RNN such that

he = f(xt, he-1) And ¢ = q({hy, ..., hT,}) (2.14)
Where h; € R" is a hidden state at time t, and c is a vector generated from the sequence of the
hidden states. f and g are some nonlinear functions. Sutskever et al. [27] used an LSTM as f and
q ({h, - - -, ht}) = ht, for example.
For translating a sentence “Hé 9°7 9°H0&-@ AAV?” (Zaré min yemitiserawi alehi?) From Amharic

to Ge’ez has an input of 4 words and an output of 5 words “¢9° 97t @k vieh HHINE” (Yyomi

22 https://towardsdatascience.com/understanding-gru-networks-2ef37df6c9be Accessed on Feb 2021

Page 30 of 119

https://towardsdatascience.com/understanding-gru-networks-2ef37df6c9be

miniti wi’itu haloke zetigebiro) meaning “What are you doing today? ”A regular LSTM cannot be
used to map each word from the Amharic sentence to the Ge’ez sentence.

This is why the Seq2Seq model is used to address problems like that one. Generally, the encoder
encodes the input sequence to an internal representation called context vector, which is used by
the decoder to generate the output sequence. The lengths of input and output sequences can be
different, as there is no explicit one-to-one relation between the input and output sequences.

(e) The Attention Mechanism:

The main weakness of a fixed-length context vector (thought vector) of Seq2Seq design is the
incapability of remembering longer sequences (no > 20-time steps)23 because only the last hidden
state of the encoder RNN is used as the context vector for the decoder. Often it will forget the
earlier parts of the sequence once it has processed the entire sequence. The attention mechanism
came to resolve this problem and was first proposed by Bahdanau et al [45] in 2015. It is just
selectively concentrating on a few relevant things. Hence, this process of searching for a set of
positions in the encoders’ hidden states, where the most relevant information is available is named
an Attention. Therefore, Attention is memory through time.24

In the traditional Seq2Seq model, outputs (Yi) of the Encoder at each time step2s all the
intermediate states of the encoder are discarded and use only its final state vector to initialize the
decoder. This technique works well for smaller sequences, though as the length of the sequence
increases, a single vector becomes trouble and it gets very hard to summarize long sequences into
a single vector. As well, the performance of the system decreases drastically as the size of the
sequence increases. The Attention Mechanism directly addresses this issue as it recalls and utilizes
all the hidden states of the input sequence during the decoding process by creating a unique
mapping between each time step of the decoder output to all the hidden states of the encoder.
Therefore, in general, the central idea behind Attention is to utilize all the intermediate states of
the encoder to construct the context vectors required by the decoder to generate the output
sequence. This means, for each output of the decoder, it has access to all input sequences and can

selectively pick out a specific element from that sequence to produce the output. In other words,

23 https://theaisummer.com/attention/ Accessed on Feb 2021

24 www.limetorrents.info/ DeepMind’s deep learning videos 2020 with UCL, Lecture: Attention and Memory in Deep
Learning, Alex Graves

25 https://towardsdatascience.com/intuitive-understanding-of-attention-mechanism-in-deep-learning-6c9482aecf4f
Accessed on Feb 2021

Page 31 of 119

https://theaisummer.com/attention/
http://www.limetorrents.info/
https://towardsdatascience.com/intuitive-understanding-of-attention-mechanism-in-deep-learning-6c9482aecf4f

the Attention mechanism has an infinite reference window to reference from. It is developed to
learn word mappings through Gradient Descent and Back-propagation. Bahdanau et al [45] stated
that in a decoder, each conditional probability:

pily - ¥ic1, %) = gie1, S0, €0) (2.15)
Where sj is an RNN hidden state for the time i, computed by s; = f(s;_1,Yi—1,¢;). Unlike in the
traditional encoder-decoder approach, here the probability is conditioned on a distinct context
vector c;j for each target word yi. This is depicted in the following figure (Figure 2.5).

o u The embedding of all the words in the input (represented by
hidden states) while creating the context vector is done by
simply taking a weighted sum of the hidden states. A feed-
forward neural network learns the weights and the context

vector c; for the output word y; is generated using the

weighted sum of the annotations: as shown in equation 2.16.

1 >_hE| T le T

Where c is a weighted sum of the encoder-hidden states, o;
X1 Xg Xa XT TX
Figure 2.5 Diagram of the Ci = Z a;jh;. (2.16)
Attention model shown in j=1
Bahdanau’s paper [45] is the amount of attention the i output should pay to the j"

input and h; is the encoder state for the j™ input.
The weight aij of each annotation h; is computed by a Softmax function given by the equation:
exp(eij)

—_—_ 2.17
¥ exple) (217)

aij =

Where e;; = a(S;_1,h;) and o are alignment models which score how well the inputs around
position j and the output at position i match, and s;-1 is the hidden state from the previous time step
[46]. An attention model differs from a classic Seq2Seq model in two main ways. First, the encoder
passes all the hidden states to the decoder instead of passing the last hidden state of the encoding
step. Second, the decoder focus on the parts of the input that are relevant to the decoding time step,
based on these three steps:

1. Look at the set of encoder hidden states it received, since each encoder hidden state is

associated with a word in the input sentence

2. It gives each hidden state a score

Page 32 of 119

3. Multiplies each hidden state by its Softmaxed score, thus accepting hidden states with high
scores, and dropping out hidden states with low scores.

(f) The Transformer:
The Google-led team first introduced the transformer architecture in 2017 in a paper titled
“Attention Is All You Need” [47], which is currently the state-of-the-art methodology on Machine
Translation and even on other non-NLP fields such as computer vision [14]. It is built on the top
of the attention mechanism, essentially a stack of encoder and decoder layers (based on the paper,
six of them are on top of each other). Both the Encoder and Decoder are composed of modules
that can be stacked on top of each other multiple times, which is labeled by Nx in Figure 2.6. Those
modules consist mainly of Multi-Head Attention and Feed Forward layers.
The goal of the transformer is to change the sequential nature of the encoder to parallelization.
Quoting from [47] “The Transformer is the first transduction2s model relying entirely on self-
attention to compute representations of its input and output without using sequence-aligned RNNs
or convolution”. Hence, the idea behind Transformer is to handle the dependencies between input
and output with attention completely. Which is that the word in each position flows through its
path in the encoder. A transformer implements end-to-end training, similar to the sequential
encoder-decoder architecture, which has both encoder and decoder however, the transformer
encoder-decoder elements are self-attention mechanisms rather than RNN or CNN. Besides, the
transformer adds positional encoding to capture the relationship between consecutive words within
a sentence. All sub-modules of the transformer are discussed below and Figure 2.6 shows the

overall architecture.

26 Here, “transduction” means the conversion of input sequences into output sequences.

Page 33 of 119

Output
Probabilities

A
Softmax

A
Linear
1
/ Add & Norm «\

T

Feed
Forward
f) 1
A % doon Multi-Head -
. Attention |
Feed Forward A A A |
N C— l
x Add & Norm [
| Add & Norm T
T Masked
Multi-Head Multi-Head
Attention Attention

R A —)

Positional & an Positional
Encoding Encoding

Input Output
Embedding Embedding
Inputs Qutputs

(Shifted right)

Figure 2.6 Architecture of Transformer Model adopted from [47]
a) Input
The Transformer takes a sequence of words as input, which are presented to the network as vectors.
It uses usually a vocabulary (dictionary), in which each word is assigned a unique index. The index

can be represented as a so-called one-hot-Encoding vector, which is predominantly made up of

zeros, with a single “one” value at the correct location of a word.

Page 34 of 119

b) Input or output embedding

Word embedding reduces the dimensionality of the one-hot encoded vectors by multiplying them
with a so-called “embedding matrix”. The resulting vectors are called word embedding. The size
of the word embedding in the original paper is 512” [47]. From pre-trained language models, such
as word2vec, BERT, and ROBERTa, the transformer architecture gets additional information about
the input with the help of embedding layer

c) Positional encoding (PoE)

Positional encoding is a set of small constants, which are added to the word-embedding vector
before the first self-attention layer. It is a supplement to the transformer besides the embedding.
Since the transformer does not have recurrence and convolution, it adds positional encoding into
embedding instead. Positional information enhances the transformer representation to capture the
relationship between the token in the sequence by considering word order. Both the embedding
and positional encoding have the same dimension d, which lets them sum the result. As per [47]
sine and cosine functions are used to calculate positional embedding for the different positions:

21
PE,4s2i = sin(pos/10000D)
(2.18)

PEjos2it1 = cos(pos/lOOOO%)

Where pos and D represent the position and the input dimension respectively. PoE will generate a
512 dimension vector for each position, as well, the even and odd dimensions use sin and cos
functions respectively. The value of PoE range between -1 and 1.

d) The Encoder

Encoders of the transformer are built on top of the self-attention. The job of the encoder layers is
to map all input sequences into an abstract continuous representation that grasps the learned
information for that entire sequence. The encoders are all identical in structure but they do not
share the same weights. Each encoder in the stack has two main layers: (i) A multi-head self-
attention Layer, and (ii) A position-wise fully connected feed-forward network. There are also
residual connections around each of the two sublayers followed by a layer normalization. After
embedding the words in the input sequence, each of them flows through each of the self-attention

and the feed-forward layers of the encoder.

Page 35 of 119

1
// ‘\\ : nag A3+
: > Add & Normalize : Softmax
S ; . !
5 | IFeed Forward Feed Forward :", (Linear
R TR - 0
o > Add & Normalize Y Decoder #2
apr A t : 4 4
Self-Attention ' / - \
\\L - _‘r_ __________ A / ! :- > ‘t Add & Mormalize T
I] . ; .
.f‘/,} Add & Normalize 1\. | : Feed Forward Feed Forward
1 1 o o o o A e e e e e e e e o e
= | ' Add & Normalize
3+ I It
5| et _
§=] v - - - - Encoder-Decoder Attention
3| > Add & Normalize A
u!i ! ‘r ‘r % 4 Add & Normalize
, Self-Attention : A 4
\\ il ianlielieilelieeliele A / \: Self-Attention /
Positional e S Er e L
ol Py Py

X1 T X[1T 1]
aage ah

Figure 2.7 a Transformer of 2 stacked encoders and decoders27

The Multi-Head Self Attention
Multi-headed attention in the encoder applies a specific attention mechanism called self-attention.
Self-attention allows the model to associate each word in the input, with other words. There are
dependencies between unique paths of words in the self-attention layer. However, the feed-forward
layers do not have those dependencies, and thus the several paths can be executed in parallel.
Self-attention is a layer that receives input and helps the encoder look at other words in the input
sentence. It accepts a sequence of vectors and a results sequence of vectors. The outputs of the

self-attention layer are fed to a feed-forward neural network. Here are some steps to calculate self-
attention.

27 https://jalammar.qgithub.io/illustrated-transformer/ Accessed on Feb 2021

Page 36 of 119

https://jalammar.github.io/illustrated-transformer/

Step-1: Create three vectors from the embedding of each word, named a Query (Q) vector, a Key
(K) vector, and a Value (V) vectorszs for each word. These vectors are created by multiplying the
embedding by three matrices that were trained during the training process.

These new vectors have a smaller dimension than the embedding vector that is the Q, K, V vectors,
and the embedding vector has a size of 64 and 512 respectively.

Step-2: Calculate a scoring matrix, which determines how much focus should a word be put on
other words of the input sentence. The higher the score the more focus. The Score matrix= the dot
product of the Q vector and the K vectors. Hence, if we are applying the self-attention for the word
in position 1, the first score would be ql.k1 and the second score would be g1.k2... and so forth.
Step-3: Scaling Down the Attention Scores by divide the scores by the square root of the dimension
of the key vectors (8 in the paper [47])20. This leads to having more stable gradients as multiplying
values can have exploding effects.

Step-4: Softmax of the Scaled Scores to get the attention weights. Softmax normalizes the scores
between 0 and 1. By doing a Softmax the higher scores get high attention, and lower scores get
lower. This allows the model to be more confident about which words to attend more.

Step-5: Multiply Softmax score with Value vector to get an output vector (and to sum them up).
The intuition here is to keep words with the higher Softmax scores and to drown out the irrelevant
words with lower scores (by multiplying them by tiny numbers like 0.001, for instance).

Step-6: Sum up the weighted value vectors. This produces the output of the self-attention layer at
this position (for the first word). Then the output of that will be feed into a linear layer to process.
The final equation for the scaled dot product attention is shown on Eq 2.19 and its figure is depicted

in Figure 2.8

. QK"
Attention(Q,K,V) = softmax <) %4 2.19
Va .

28 The query, key and value concept come from retrieval systems. For example, when a query is given to a Youtube,
it will map the query to a set of keys (video title, description etc.) associated with candidate videos in the database,
and then displays the best-matched videos (values).

29 The square root of the dimension 64. There could be other possible values, but this is the default.

Page 37 of 119

Q K A%

Figure 2.8 Scaled dot product attention adopted from [47]

The split vectors (Q, K, and V) go through the self-attention process individually. Each self-
attention process is called headso. The output vector of every head is concatenated with a single
vector before going via the final linear layer multiplied by W°. Multi-head can be represented as:

MultiHead(Q,K,V) = Concat(head,, ..., head,,)W°
(2.20)
Where head; = Attention(QW,%, KWK, vw})

Where the matrices WiQ, W[, and W/ are trainable weights, and Q,V, and K are e RV*4, Here
N is the number of inputs tokens and d is the input dimension. This head learns something different
and this gives the encoder more representation power.

The multi-headed attention on the other hand is a module in the transformer network that computes
the attention weights for the input and produces an output vector with encoded information on how

each word should attend to all other words in the sequence. It is depicted in Figure 2.9.

Scaled Dot-Product
Attention h

A A A
=2 | =ES =S
Linear {Linear ILinear

|]

A\ K Q

Figure 2.9 Multi-head self-attention adopted from [47]

30 A process were a multi-head attention is named after.

Page 38 of 119

The Pointwise fully connected Feed-Forward Networks
The multi-headed attention output vector is added to the original positional input embedding. This
is called a residual connection. The output of the residual connection goes through a layer
normalization. The normalized residual output gets projected through a pointwise feed-forward
network for further processing. The pointwise feed-forward network is a couple of linear layers
with a ReLU activation in between. The residual connections help the network train, by allowing
gradients to flow through the networks directly. The layer normalizations are used to stabilize the
network, which results in substantially reducing the training time necessary. The pointwise
feedforward layer is used to project the attention outputs possibly giving it a richer representation.
e) The Decoder
The decoder is similar to the encoder, which has both self-attention layers and FNNs; however,
the decoder adds a masked multi-head attention layer that helps the decoder focus on relevant parts
of the input sentence. After the encoder maps an input sequence into an abstract continuous
representation, the decoder then takes that continuous representation and generates a single output
step by step. Hence, the job of the decoder is to display the translated text.
The inputs of the decoder go through embedding and positional encoding layers. Then the
positional embedding is inputted to the first multi-head attention layer, which computes the
attention scores for the input of the decoder.
Since the decoder is autoregressive and generates the sequence word by word, it needs to be
prevented from looking to future tokens. For example, when computing attention scores on the
word “2us”(dehina), it should not have access to the word “7%”(Negn)s1, because, that word is a
future word that was generated after. The word “LuS” should only have access to itself and the
words before it. A method that prevents computing attention scores for future words is called
masking. The mask is a matrix, which has the same size as the attention scores filled with values
of 0’s and negative infinities. Therefore, Masking is a process of adding 0’s and negative infinities
to attention scores and the future tokens are represented by zeros. Masked multi-head attention
allows the model to attend only to the previous word and to prevent the decoder from looking at

future tokens. The mask is added before calculating the Softmax, and after scaling the scores.

31 Have a meaning of “Fine” and “am” respectively. To say “Am fine” by omitting the subject “T”

Page 39 of 119

The second multi-head attention layer is in charge to map the encoder output and the decoder input
to decide which part of the encoder input is relevant to focus on. Thus, the outputs of the encoder
(the query, and key) and decoder input are the results of the first multi-head attention layer. The
output of the second multi-headed attention passes through a pointwise feedforward layer for
further processing. The decoder stack outputs a vector of floats. Hence, how these vectors can turn
into a word is a big question and that is the job of the final linear layer, which is followed by a
Softmax Layer. The linear layer is a simple fully connected neural network that turns the vector
produced by the stack of decoders, into a very larger score vector called logitss2. The Softmax
layer then turns those scores into probabilities (all positive, all add up to 1.0). The cell with the
highest probability is selected, and the word associated with it is displayed as the output for this
time step. This process is repeated until the decoder produces the last <EOS> token, which shows
the end of the sequence. Similar to the encoder layer normalization is applied after each sublayer

of residual connection.

2.4.3 Word embedding

Word embedding is a representation of words in the form of real-valued vectors, where words that
have the same meaning have a similar representation. First, words are transformed into vocabulary
(dictionary, a list of unique words with their corresponding indexes) then converted to one-hot
encoding vector, finally to vectors of continuous real value numbers in a predefined vector space.
It normally involves a mathematic embedding from a high-dimensional sparsess vector space (e.g.,
one-hot encoding vector space, in which each word takes a dimension) to a lower-dimensional
densess vector space. Hence, embedding is a low-dimensional vector that captures a lot of syntactic
and semantic information of words and their relationships.

The word-embedding processes a text just like this: First, each word in the vocabulary is decoded
in the one-hot encoding. E.g. in the sentence “A7t 917 fo- At ' (ante gin yaw ante neh)”,
(meaning, “but you are you™), the vocabulary (or unique words) are (1, A7, <17, £@-). To create a
vector that contains the encoding of the sentence, the one-hot vectors (sample shown in Annex A
i table A.1) for each word should be concatenated. However, a one-hot encoded vector is sparse

and inefficient. Hence, we move to the second step, encoding each word using a unique number.

32 A score for each token (unique word) in the vocabulary
33 A vector where most indices are zero
34 A vector where all elements are fully represented with numbers (no 0’s)

Page 40 of 119

Recalling the example above, assign 1 to “iw”, 2 to “aA”, 3 to “17”, and 4 to “f@- and so on. We
can then encode the sentence “A7rt 917 @ Ar 1~ as a dense vector like [2, 3, 4, 2, 1]. This
approach seems efficient because instead of a sparse vector, a dense one is used. However, there
are still problems with this approach. The integer-encoding is arbitrary that does not capture any
relationship between words and they can be challenging for a model to interpret.

Finally, an embedding is used as a dense vector of floating-point values that is a trainable
parameter for the model. A sample embedding is depicted on Annex B, table B.1 Word embedding

is mostly 8-dimensional for small datasets, up to 1024-dimensions for large datasets, but
embedding vectors of size 200 or 300 are usual. A larger-dimensional embedding can capture more
relationships between words but takes more data to learn. Different word embedding models are
commonly used in NMT and rely on deep learning techniques, such as Word2Vec, BERT,
ROBERTa ... etc. Some of these are discussed below.

I Word2Vec
Word2vec is a predictive model to efficiently create word embedding by using a two-layer neural
network. It was first introduced by Mikolov et al. from Google in 2013 [48], which is the most
popular word embedding model. It uses shallow neural networks to calculate a word embedding
based on the context of the words. The objective function of Word2Vec causes the words that have
a similar context to have similar embeddingss.
Word2vec is not a single algorithm but a combination of two techniques named Continuous bag
of words (CBOW) and Skip-gram models. Both of these are shallow neural networks (have only
one hidden layer) which map words to the target variable, which are also words. Both of these
techniques learn weights that act as word vector representations.
The CBOW tends to predict the probability of a word given a context (single or a group of words).
It uses continuous representations whose order is irrelevant. Instead of feeding n previous words
into the model, the model receives a window of n words around the target word w; at each time
step t. Let /s the size of a vocabulary, N is embedding dimension, and ¥ (w1, w2 ... wi) and wt
are input and output respectively. Each input word w; and output word wr is represented as a one-
hot vector .xand y, based on vocabulary size /. The model starts to learn features by multiplying

vector x and word embedding matrix W of size /”x A/to produce embedding vector of a given wz.

35 Sebastian Ruder, "On word embedding - Part 1". http://ruder.io/word-embeddings-1/, 2016. Accessed: Feb 2021
Page 41 of 119

http://ruder.io/word-embeddings-1/

The embedding vector outputted from the hidden layer is the average of many contextual words to
the target word. The multiplication of the hidden layer and word target matrix W’ of size N x V to
produce the one-hot encoded vector y.
The Skip-Gram model on the other hand turns the CBOW’s model on its head. Instead of using
the surrounding words (context) to predict the center word, it uses the center word to predict the
context. In other words, the Skip-Gram predicts the context given words. Although the Skip-Gram
and the CBOW models share similar but reverse algorithms, their differences often make one of
them are superior for a particular task. E.g, numerous context-target pairs are treated as a new
observation in a Skip Gram model and are better for the larger data set and vice versa for CBOW.
ii. FastText
FastText, created and released by the Al Research lab of Facebook in 2016 that is a library for
efficient learning of word representations (embedding) and sentences. It enables the creation of
either unsupervised or supervised learning algorithms to get vector representations of words [49].
Though Word2Vec successfully handles the problem caused by a one-hot encoding vector, it has
many limitations. The major problem is that rare (infrequent) words in the training dataset do not
map to vectors. This leads fastText to be selected, in that it performs better than Word2Vec and
allows rare words to be mapped to vector properly but it takes a longer timess to train than
word2vec. Instead of inputting separate words into the NN (in word2vec), FastText breaks words
into various n-grams (sub-words). For instance, the tri-grams for the word “¢2aha>- (kedeskmu)
is “#LA”, “Lan”, and “ahar” regardless of the starting and ending of a word boundary. Then the
embedding vector for “¢2ahe>-” will be the sum of all n-grams. After training the NN, there will
be word embedding for all the n-grams given the training dataset. This lets the fastText to properly-
represent rare words since it is very likely that some of their n-grams also appear in other words.
In short, fastText is created to overcome the generalization of unknown words. The idea is similar
to Word2Vec but the major amendment of fastText is it goes one level deeper to build word
embedding.
FastText incorporates character n-grams into the CBOW model. Sub-word embedding uses the
principles of morphology that usually improve the quality of representations of rare words. Instead

of learning vectors for words directly, fastText represents each word as an n-gram of characters.

36 Because number of n-grams > number of words

Page 42 of 119

A CBOW model is trained to find out the embedding afterwords are represented using n-gram
character. This model is a bag of words model with a sliding window over a word and no internal
structure of the word is taken into account. The order of the n-grams does not matter as long as the
characters are within that window. Every word is decomposed into its character n-grams N and
every n-gram n is represented by a vector x». The word vector then is just the sum of the two

vectors as shown in Equation 2.21.

1
T Z %, 2.21)

The set of n-grams (N) is limited to 3 to 6 characters that have two main advantages. First, as long
as new words have identical characters as known ones, generalization is feasible. Second, less
training data is required since more information can be extracted from every bit of text. That is
why there are pre-trained fastText models than other embedding algorithms (294 languages in
2021)37 [14].

Contextualized word embedding
A word can have different meanings in different contexts. However, most of the traditional feature-
based word embedding techniques represent a word with different contexts (in different sequences)
as one generalized representation. They lack contextualized representation then. To resolve this
problem, numerous pre-trained models are created. E.g. Peter et al. [31] proposed ELMo word
embedding to represent words as the entire input sequence. ELMo trained with large datasets on
the bidirectional language model. Though, It is good for representing words from both directions,
due to its shallow connection of independently trained language models, the output representations
are not rich enough. Hence, researchers provide different alternatives for contextualized word
embedding techniques. Most of the models are trained on the concept of transformer architecture.
Here some common pre-trained embeddings such as BERT and ROBERTa are discussed.

iii. BERT

BERT stands for Bidirectional Encoder Representation from Transformer, which is a transformer-
based pre-trained machine learning technique for NLP developed by Jacob Devlin et.al at Google
in 2018 that is trained unsupervised on a large corpus [32].
BERT is used as a word and sentence representation technique by assessing words in a sentence

from previous to next or vice versa that makes it a deep bidirectional pre-trained language model.

37 https://fasttext.cc/docs/en/pretrained-vectors.html Accessed on Feb 2021

Page 43 of 119

https://fasttext.cc/docs/en/pretrained-vectors.html

The BERT model is pre-trained to perform masked language modeling and next sentence
prediction. BERT masked language model accepts a sequence of words as input and the input
context is encoded by multi-head self-attention results a contextualized representation of each
word. The principle of the masked language model is used to design BERT, which randomly masks
some of the tokens from the given sequence. The masking aims to predict the masked word based
on the context. For instance, if we have a sentence “07108@- £ATT UV o+ 2LV 102" (bemaledawi
yalagenyehuhi yeti hédehi newi?) then “0°108@- 2ATTU-v [MASK] %Lv 1@-?” is given as input
sequence to the model. The model predicts “yet” in Amharic “¢+” as the replacement of the
[MASK] word by considering both forward and backward context.

As well, BERT has two alternatives to generate language models. The pre-training and the fine-
tuning approaches. The pre-training approach takes an unlabeled dataset, and all parameters are
initialized from 0. The fine-tuning approach makes the BERT model task-specific which initializes
the model parameters from the pre-trained model and all parameters are fine-tuned on labeled task-
specific datasets. BERT achieves a state-of-the-art result in different tasks such as machine
translation and question answering even though the above tasks are monolingual.

iv. RoBERTa

RoBERTa stands for Robustly Optimized BERT proposed by Liu et al. [50] with the pretraining
Approach intending to improve the performance of Google’s BERT in different tasks by modifying
hyperparameters of the model [32]. It modifies key hyperparameters of BERT, removes the next
sentence prediction, and training with larger mini-batches and learning rates. From the
modifications, ROBERTa permits training on longer sequences for more training time. ROBERTa
has a similar architecture with BERT but uses a byte-level BPE as a tokenizer and a different
pretraining structure. Moreover, RoBERTa allows dynamically change the masking strategy
applied to the training set. The model scores almost competitive results on the downstream tasks

with other contextualized word embedding techniques.

2.5 Machine Translation Evaluation Metrics

There are generally two types of MT evaluation metrics, Human and automatic MT evaluation
metrics [63]. Human evaluation is done by a linguist that evaluates segments manually, which is
intensive but expensive and time-consuming. Whereas Automatic evaluation of MT is the

evaluation of translated contents using automated metrics such as BLEU, NIST, METEOR, and

Page 44 of 119

so on. Automated metrics emerged to address the need for objective, consistent, quick, and
affordable assessment of MT output as opposed to a human evaluation.

The most appropriate automatic metric for measuring one's MT system will depend on the
language, content type, use case, and MT approach. However, nowadays, many machine
translation works are evaluated with BLEU metric and to be comparable with them we will use it

for this study too.

The Bi-Lingual Evaluation Understudy (BLEU)

BLEU is the most widely used metric for MT evaluation and was first proposed by Kishore
Papineni, et al [51] in 2002. The idea behind BLEU is that “the closer the MT is to a linguist
translation, the better it is”.

BLEU measures the overlap of unigrams (single words) and high-order n-grams between MT
output and reference translations (Test sets). Its main component is n-gram precision, and to
compute a modified precision score, pn, for the complete test corpus, first compute the n-gram
matches at a sentence level, then add the clipped n-gram counts for each candidate (C) sentence

and divide by the number of candidate n-grams in the test corpus as shown in equation 2.22.

_ ZCE{Candidates} Yn—gramec Countcyp (n—gram)

Pn (2.22)

- z:C’e{Candidates} z:n—grame’c’ Coun(n-gram')
Then, it will compute the Brevity Penalty, BP, to make the length of candidate translation match
with the length of reference translations if the candidate translation is longer: It is computed as:
1 ifc>r
BP = { (1-2) (2.23)
e\ ¢ ifc<r
Where c is the length of the candidate translation and r is the reference corpus length. Finally, it
will calculate the geometric average of the modified n-gram precisions, pn, using n-grams up to

length N and positive weights wn will be summed to one.

N
Z wylog pn) (2.24)

n=1

BLEU = BP. exp(

Hence, At the corpus level, BLEU has been shown as a strong correlation with human evaluation.
We will evaluate our models using BLEU to be comparable to previous works. Besides, we will
do side-by-side human evaluation by linguistic raters, who evaluate and compare the quality of

translations predicted by the proposed model.

Page 45 of 119

2.6 Challenges to Machine Translation

MT in general is too challenging for many reasons such as collecting, preparing, and cleaning a
very massive amount of corpus for low resource languages such as Ge’ez and Ambharic.
Particularly, many languages in the world have different lexical and morphological structures.
These languages can use different structures for the same purpose and the same structure for
different purposes. A word can have more than one meaning due to Semantic (out of context),
Syntactic (in a sentence), and Pragmatic (situations and context) meanings, Technical Verbs,
paragraphs with symbols and Equations, and Abbreviated Word are very difficult to translate. No
direct equivalent word can be found for a particular word of one language in another. As well,
numerous research works, frameworks, and tools for different approaches are being created and
released, identifying and choosing the best, being familiar with that state-of-the-art tool and
framework in a short time is also another challenge. Generally, MT is an extremely challenging

task, mainly since natural languages are ambiguous, context-dependent, and ever-evolving [2].

2.7 Related Works

Earlier works on NMT, Ge’ez, and Amharic MT, such as thesis and other online publications are

systematically reviewed to understand the domain and the advancements.
Machine Translation Systems for Non-Ethiopian Language Pairs (International Works)

I Google's Neural Machine Translation system: Bridging the gap between human and

machine translation.

The publication by Yonghui Wu, Mike Schuster, et al [28] presented a work that initially started
to solve the basic three problems of NMT. Slower training, ineffectiveness in dealing with rare
words, and sometimes fail to translate all words in the source sentence. Their model contains a
deep LSTM network with eight encoder and eight decoder layers to eliminate slow training. To
address rare words, they used sub-word units or wordpieces for inputs and outputs. A beam search
technique was used to enable the model to translate all of the provided inputs. Their model is a
common sequence-to-sequence learning framework with attention. The model was evaluated with

WMT En —Fr, En —De datasets, and many Google internal production datasets. On WMT En

Page 46 of 119

—Fr and En —De, the training sets contain 36M and 5M sentence pairs respectivelyss. In both
cases, news test 2014 was used as the test sets to compare against previous works. In addition to
WMT, the model was evaluated with some Google-internal datasets such as English «<» French,
English < Spanish, and English <> Chinese. On WMT’14 English-to-French, the single model
scores 38.95 BLEU, an improvement of 7.5 and 1.2 BLEU from a single model without an external
alignment reported in [32, 52] respectively. Moreover, their models were completely self-
contained. Likewise, on WMT’14 English-to-German, the single model scores 24.17 BLEU,
which is 3.4 BLEU better than a previous competitive baseline. Finally, with a human side-by-
side evaluation, the GNMT model reduces translation errors by an average of 60% compared to

Google’s previous phrase-based translation system on the above pairs of languages.

ii. Effective Approaches to Attention-based Neural Machine Translation

A paper by Minh-Thang et al [19] studies two simple and effective classes of attentional
mechanism [19]: a global approach that always attends to entire source words and a local one that
only looks at a subset of source words at a time. They proved the success of both approaches on
the WMT translation tasks between English <» German. The model achieved a significant gain of
5.0 BLEU points over non-attentional systems that already incorporate known techniques such as
dropout. Their ensemble model using different attention architectures yields a new state-of-the-art
result in the WMT’15 English to German translation task with 25.9 BLEU points, an improvement
of 1.0 BLEU points over the existing best system backed by NMT, and an n-gram re-ranker.

Machine Translation Systems for Non-Ethiopian and Ethiopian language pairs
i. Optimal Alignment for Bi-directional Afaan Oromo-English Statistical Machine Translation

This is a study by Yitayew Solomon [53], which was aimed to explore the effect of word, phrase,
and sentence level alignments on Bidirectional Afaan Oromo-English statistical machine
translation. The corpora were collected from the Criminal code, FDRE constitution, Megleta
Oromia and Holly Bible. A total of 6400 simple and complex sentences were used. The researcher

used Mosses for the translation process, MGIZA++, Anymalign, and hunalign tools for word,

38 The datasets contain more than 3 million and 500 thousand piars of sentences for En—Fr and En—De
respectively.

Page 47 of 119

phrase, and sentence level alignments respectively, and IRSTLM for language modeling. From
different experiments, the better performance of 47% and 27% BLUE score was scored from Afaan
Oromo-English and English-Afaan Oromo translation, respectively. They said an average of 37%
accuracy improvement was registered in their study. Concluded that, alignment has a great effect

on the quality and accuracy of statistical machine translation between both language pairs.

ii. Bi-Directional English-Afan Oromo Machine Translation Using Convolutional Neural
Network

This one is a study by Arfaso Birhanu [54] which used a total of 5550 parallel sentences, collected
from the Holy Bible, published conversational books, Ethiopian governmental constitutions (both
regional and federal), Oromia regional revenue, and from Oromia health sectors. The researcher
used 80% and 20% of the total dataset for training and testing respectively. Three experiments
were conducted. The first was a word-based statistical approach that was used as a baseline, the
second was with the RNN method and used as a competitive model and the last one was with
convolutional neural networks for the bi-directional translation between Afan Oromo and English
languages. The Baseline (STM) model scored 20.51 and 19.86, The RNN based model scored
22.79 and 21.67, and The CNN-based model also scored 24.37 and 23.18 BLEU scores from
English to Afan Oromo and Afan Oromo to English respectively. The CNN achieved 3.86 and
3.32 BLEU scores improvement on translation from English to Afan Oromo and vice versa
translation than baseline system. In addition, an improvement of 1.58 and 1.51 BLEU score on
translation from English to Afan Oromo and from Afan Oromo to English translation respectively
than the RNN approach. Even though the CNN is faster than RNN during training, both are getting

in low-quality translation as the length of the sentence is grown.
iii. Ambharic-Arabic Neural Machine Translation

Another work is done by Ibrahim Gashaw and HL Shashirekha [55]. The researcher used Two
LSTM and GRU-based NMT models are developed using Attention-based Encoder-Decoder
architecture, using an open-source OpenNMT system. The corpus ware collected from Quran is
available on Tanzile. They compared the LSTM and GRU-based NMT models and Google
Translation system and found that LSTM based OpenNMT outperforms the other, with a BLEU
score of 12%, 11%, and 6% for LSTM, GRU, and GNMT respectively.

Page 48 of 119

Machine Translation System for Ethiopian Language pairs
i Experimenting Statistical Machine Translation for Ethiopic Semitic Languages

Research by Michael Melese Woldeyohannis and Million Meshesha [56] was conducted with
25,470 parallel sentence corpus for both Amharic and Tigrigna. In addition, a separate language
model consists of 36,989 sentences for Amharic language and 62,335 sentences for Tigrigna
language at the word level. The corpus was mainly collected and prepared from the bible. The
researchers prepared a word-word, word-morpheme, morpheme-word, morpheme-morpheme,
morpheme-based, and word-based Amharic-Tigrigna and Tigrigna-Amharic parallel data. Using
word and morpheme as a unit of the model, eight models have been constructed including word-
word, word-morpheme, morpheme-word, and morpheme-morpheme for both Amharic-Tigrigna
and Tigrigna-Amharic machine translations. The BLEU score of 6.65 and 8.25 from Tigrigna-
Ambharic and Amharic-Tigrigna respectively was recorded using a word-word unit. In addition,
from Amharic-Tigrigna 13.49 and Tigrigna-Amharic 12.93 BLEU scores were recorded using
morpheme as a unit. On the other hand, a BLEU score of 5.81 for Tigrigna-Ambharic and 9.11 for
Ambharic-Tigrigna was achieved using a morpheme unit for Tigrigna and a word unit for Amharic.
Moreover, using word unit for Tigrigna and morph unit for Amharic 10.71 for Tigrigna-Amharic
and 9.09 BLEU score for Amharic-Tigrigna have been achieved. Finally, the researchers found
and concluded as their work result shows that a 4.24% performance improvement was observed
using morpheme-based translation over word-based translation from Ambharic-Tigrigna

translation.
ii. Amharic-Awngi Machine Translation An Experiment Using Statistical Approach

A work by Habtamu Mekonnen [57] based on SMT and the corpus was collected from Amharic
texts, Mass Media Agency, and Bible. They used 3500 (1500 simple, 1000 compound, and 1000
complex sentences) and a maximum of 5000 sentences for each sentences type for training with a
10 fold cross-validation. For the language model, they used a minimum of 5700 and a maximum
of 14491 monolingual sentences for the Awngi language. Moses for Mere Mortal for the
translation process, MGIZA++ for alignment, and IRSTLM for language model were used. A 37%
(1-gram scoring) and 17.26% (3-gram scoring) BLUE score was recorded using complex

sentences.

Page 49 of 119

iii. Bidirectional Amharic-Afaan Oromo Machine Translation Using Hybrid Approach

The study was done by Gelan Tulu Heyi [58]. The researcher collected and prepared the corpus
from Fana Broadcasting Corporate News, Holy Bible. A 1402 Amharic-Afaan Oromo parallel
sentences were used. Around 7.2% of the total parallel sentences, (i.e., 101 sentences) for testing
and 93.8%, (i.e., 1301 parallel sentences) were used for training. Totally two experiments were
conducted using two different approaches namely statistical and hybrid approaches. In the
statistical approach, a BLEU score of 89.39% and 80.33% were achieved to translate Amharic to
Afaan Oromo and vice versa respectively. In a hybrid approach, a BLEU score of 91.56% and
82.24% were achieved for Amharic to Afaan Oromo and Afaan Oromo to Ambharic translation
respectively. The result shows that the hybrid approach is slightly better than the statistical
approach. The result recorded was somehow high because the test set taken was from the corpus
itself.

Works on Ge’ez and Amharic Languages

This section discusses related works of machine translation specifically related to both Ge’ez and

Ambharic languages. Each work is discussed in detail as follows.
i. Ge'ez to Amharic Automatic Machine Translation: A Statistical Approach

Done by Dawit Mulugeta [17], which uses phrase-based Statistical Machine Translation to
translate from Ge’ez to Amharic. The researcher used 12840 Ge’ez and Amharic parallel sentences
from only religious sources. The corpora were prepared from the online available Old Testaments
of Ge’ez and Ambharic Bible. In addition to the bible, other religious sources like the Praises of St.
Mary (Wedase Mariam), Arganon, and some editions of Hamer Magazine were also used. The
dataset was split into 90% training and 10% for testing purposes. The software and tools used by
the researcher were Moses for translation and modeling purposes, IRSTLM for language modeling,
and GIZA++ for word alignment. The researcher said that the SMT system does not perform well
due to the limited size of the corpus, 12, 840 parallel bilingual sentences. A BLUE score obtained
was 8.26% [17].

Page 50 of 119

i, Morpheme Based Bi-directional Ge’ez-Amharic Machine Translation

This work is conducted by Tadesse Kassa [2] and outperforms the word-based machine translation.
Because there was trouble using word-based translation in SMT when translating between two
morphologically rich languages like Ge’ez and Ambharic. At the word level, it is difficult to manage
many forms of a single word, not specific and lacks consistency. Whereas at the morpheme level
sub-parts of words are specific, easy to manage, and have the consistency of form. The parallel
corpus was prepared from the EOTC website and Old Testament of the Holy bible and anaphora
or Kidassie (anaphora of Saint John Chrysostom, Saint Epiphanius, and Saint Athanasios), The
rest of the bitext which includes seven days Wedase Marya, Anketse Berhan, yewedesewa
mela’eket, Kidan and Liton were manually prepared. The morpheme-based aligned sentences were
prepared using “morfessor”zs and rule-based. Two bilingual files for each technique were
prepared. The corpus contains 13,833 simple and complex spiritual sentences. The software and
tools used by the researcher were: Moses-Decoder for translation setup, SRILM for language
modeling, GIZA++ for extracting word and morpheme alignments, Morfessor for segmentation of
words, and Pycharm for python and shell scripting in Ubuntu 16.04 LTS operating system. Six
experiments were conducted using word and morpheme as a translation unit. Using the word as a
translation unit two experiments were conducted (Experiment on word-based translation from
Amharic to Ge’ez and from Ge’ez to Ambharic) and four experiments were conducted at morpheme
level, (That is two experiments using unsupervised morpheme segmentation and the other two
using rule-based segmentation). Finally, the best-performed unit was selected, which was a
morpheme-based translation for bi-directional Ge’ez and Amharic MT. Hence, the experiment
shows a better performance of 15.14% and 16.15% BLEU scores using morpheme-based from
Ge’ez to Amharic and Amharic to Ge’ez translation, respectively. As compared to word-level
translation, there is on average of 6.77% and 7.73% improvement from Ge’ez-Ambharic and
Amharic-Ge’ez respectively. Accordingly, the performance of rule-based morphological
segmentation is better than unsupervised with an average BLEU score of 0.6% and 1.27% for

Ge’ez to Amharic and Ambharic to Ge’ez respectively. This is shown in table 2.2 below.

39 Morfessor is a family of probabilistic machine learning methods for finding the morphological segmentation
from raw text data.

Page 51 of 119

Table 2.2 BLEU scores of Morpheme Based Bi-directional Ge’ez-Amharic MT

Types of an Result of an experiment in BLEU from both
experiment conducted directions
Ge’ez to Ambharic Ambharic to Ge’ez
Word Based Translation 837% 8.42%
Morpheme Using Morfessor 14.54% 14. 88%
Based Translation Using Rule-Based 15.14% 16.15%

iii. A Hybrid Ge’ez to Amharic Machine Translation

Conducted by Biruk Abel [16] composed of two main components a Rule-Based Ge’ez Corpus
Preprocessor and a Baseline SMT. It uses a serial coupling of rule-based Ge’ez language word
reordering followed by a standard SMT system. The Rule-Based Preprocessor takes the manually
Part of Speech tagged Ge’ez corpus and produces another corpus that contains reordered Ge’ez
sentences having a similar structure with that of Amharic sentences. It first reads all sentences
from the input file and iterates through all sentences and it determines the PoS pattern and applies
the corresponding reordering rule. After each sentence is processed the output corpus along with
the Amharic corpus will be fed up as an input to the Baseline SMT. Then using the input corpora,
the actual translation of Ge’ez sentence to Amharic sentences will be performed by the Decoder
of the Baseline SMT by using the Language model of Amharic and Translation model. The
researcher used two sets of corpora to test the proposed Hybrid Ge’ez to Amharic Machine
Translation System and the Baseline SMT. The first set contains Ge’ez and Amharic corpus
without any POS information that will be used as an input to the Baseline SMT without being fed
to the hybrid one. The second set contains POS tagged Ge’ez corpus and an Ambharic corpus
without any POS information. The POS tagged Ge’ez corpus will first be preprocessed via the
Rule-Based Ge’ez Corpus Preprocessor before being supplied as an input to the Baseline SMT.
The Ge’ez corpus contains 976 sentences with 3010 words and the Amharic corpus contains the

same number of sentences with 3174 words.

The researcher conducted two experiments. The first one was to test the Baseline SMT and the
other was to test the proposed system. To test the Baseline SMT both Ge’ez and Amharic corpus
without POS were used while to test the proposed system Ge’ez corpus with POS and Amharic
corpus with no POS were used. Based on the test results the Baseline SMT scored a BLEU of 72%

and the proposed system outscores it by 4% and scored 76% owing to the reordering rules applied

Page 52 of 119

on Ge’ez corpus. This study showed a high result. However the researcher used a corpus with only
simple sentences (maximum of 5 words in a sentence), no real-world translations focused, and the

test set taken was from the corpus itself.

Summary of Related Works
All the related works, discussed above on both Ge’ez and Amharic languages are done either via
Statistical Machine Translation or a hybrid methodology. However, there are many kinds of
research done on Neural Machine Translation in different language pairs. The researchers
mentioned above do their part and suggested many further works to be done. The summary of
related works on both Amharic and Ge’ez is shown in table 2.3 underneath.

Table 2.3 Comparison between related works on Ge’ez-Amharic MT

No | Author | Title Methodology | Size of | Result Remark
(Year) & Corpora
Algorithms
Dawit Ge’ez to SMT, Moses, | 12,840 BLUE score | Small data
Mulugeta | Amharic GIZA++, parallel 8.26 on 10F | size.
(2015) Automatic IRSTLM bilingual | CV Low
1 Machine Sentences BLEU
Translation: a score
Statistical
Approach
Tadesse | Morpheme- SMT & Rule | 13,833 15.14% and | The small
Kassa Based Based, simple 16.15% and
(2018) Bi-directional Mosses, and BLEU scores | domain-
2 Ge’ez -Amharic | MGIZA++, complex specific
Machine IRSTLM sentences dataset.
Translation
Biruk Ge’ez to Amharic | Rule-Based 976 BLEU The test set
Abel Machine and SMT, | parallel 76% taken was
(2018) Translation Moses sentences | (Questionable) | from the
3 corpus
itself.
Only
simple
sentences
with a max
of 5 words.
A static
structure of
sentences

Page 53 of 119

CHAPTER THREE: GE’EZ AND AMHARIC LANGUAGES

This chapter will cover the lexical, syntactical, grammatical structures, linguistic relationships, and

writing systems of both Ge’ez and Ambharic languages.

3.1 The Ge’ez Language

Ge’ez, also known as Ethiopic, is an ancient Semitic language of Ethiopia (including Eritrea).
Ethiopia is one of the oldest and historic countries in the world having its own characters called
&2 (Fidel) or vt (hohieyat) and numbers called 421 (Ahaz). The earlier and the current
civilization, bravery, religion, culture, and history of Ethiopia were known throughout the world
via the scripts on stone, vellums, and pictures drawn and written in Ge’ez [59]. In Ge’ez language
numerous books have been written, compositions have been authored, and #:#+ (Qinnies) have
been scripted. Hence, the wisdom and history of Ethiopia have been transferred from generation
to generation because there were vellum books written and stored in Ge’ez in different places
mainly in Ethiopian Orthodox Church monasteries and caves. The literature includes religious
texts (such as the Bible, Apocrypha, Pseudepigrapha, liturgical literature, homilies, theological,
acts of martyrs and saints, religious poetry, hymns in honor of Christ and his mother virgin Saint
Mary, and Angels), as well as secular writings (such as histories and romances, legal,
mathematical, and medical texts) [16] attested in inscription since the early 4" century.

Later the Amharic language starts substituting the Ge’ez language in the 12" century and Ge’ez
has completely died out as a spoken language close to 13"'C but remained the primary writing
language of Ethiopia up to the 21™""C and remains only as of the literature and liturgical language
of the Ethiopian and Eritrean Orthodox Tewahido Churches, the Ethiopian Catholic Church, and
the Bete-Israel Jewish community of Ethiopia [17, 59].

3.1.1 Ge’ez Script Arrangements (& &£240)

Ge'ez language has two script arrangements, the former script arrangement, #499%€ +0¢é 4.4
(k’edamawrt nubaré fideli) and the later (current) script arrangement, £ché-® +0é &84 (deharawt
nubareé fideli) [2, 60].

The former script arrangement of Geez has this 26 basic characters: 4 (a), 01 (be), 7 (ge), £ (de), U
(ha), @ (we), H (ze), (ha), 1 (ha), m (t’e), ¢ (ye), h (ke), & (le), a» (me), 1 (ne), » (Se), 0 (‘a), &
(fe), & (ts’e), @ (ts’e), ¢ (K’e), & (re), a (se), +(te), & (p’e), and T (pe). And the current script

arrangement also has this 26 basic characters with different order: v (ha), A (le), ch (had), e» (me), w

Page 54 of 119

(8e), < (re), a (se), ¢ (k’e), a (be), -+ (te), 1 (ha), 1 (ne), & (3), h (ke), @ (we), 0 (‘a) H (ze), ¢ (ye), L
(de), 7 (ge), m (t’e), & (p’e), & (ts’e), 6 (ts’e), 4. (fe) T (pe). The complete script arrangement of
both the former and the current basic forms and their family (the derived forms) are depicted in
Annex C, Table C.1. As it is depicted in this Annex, in table B.1 (a) and B.1 (b), Ge’ez language

has 182 letters (7*26) with two arrangements (Previous and Current), as well B.1 (c) and B.1 (d)
shows derived letters of Ge’ez language from the basic letters [2, 60]. Which means
182+22+16=220 unique characters. Table (d) are special derived letters, which are created by

leaving the second and the seventh order appearance and by changing their shape and sound.

3.1.2 Ge’ez Numerals (A>H)
Ge’ez has its own non-positional numerals. The Amharic language also takes these numbers as

they are. These numbers are used in the Ethiopian yearly calendar, birr notes, and some other

Ge’ez numerals [61]. We have prepared 3078 Ge’ez-Latin numeral datasets to handle number

translation.

3.1.3 Similar Letters (+a*h«2£.907)

They are letters that have similar sounds. Even though they are having similar sounds, the letters
are different in shape orthographically.
Table 3.1 similar letters in Ge’ez and Amharic

Sound | Letter
ha Vich®
se wil
a’ A0
ts’e a0

These letters have unique importance in Ge’ez script. That means they make words have different
meanings. For example, wi® (Serek’e) = oM (wet’a) and as+ (serek 'e) = ad+ (serek) to mean
(He went out) and (He stole), Aot (ameti) = A10\2L (ageligayi) and oot (ameti) = Hav (zemeni)
to mean (server) and (Year), aoa (se‘ale) = o aa (si ‘ili sale) and axa (se ‘ale)= aavh (lemene) to
mean (He painted) and (He begged), aovs (mehare)= hirt @14 (asitemare) and aodid. (mehare)= £+C
A (yik 'iri ale) to mean (He Taught) and (He Forgave), "14? (haleye)= hara1t (amesegene) and chA?
(haleye)= nan (asebe,) to mean (He Thank) and (He Thought), as well, é.&ev (fets’eme)= ¢ndal

(ch’erese)and &.8av (fers 'eme)= 1em. (nech ’e) to mean (He Finished) and (He scraped) respectively.

Page 55 of 119

However, these similar characters do not have any difference in the Amharic writing system,
except writing trends adopted from Ge’ez, such as 4o+ 9°ul-+ (‘amete mihireti) and A9%sh
(amerika). Though, they have a great influence on machine translation quality. We apply
normalization to handle these problems. Ge’ez also has words like o7 (mekan) that have different
meanings when they are spoken accentuated (means Barren) and smoothly (place) [62] and these

are also other challenges for Machine Translation tasks.

3.2 The Amharic Language

Ambharic is the second most widely spoken Semitic language in the world, next to Arabic and the
second largest language in Ethiopia (after Afan Oromo) [17]. It is the official working language of
the Federal government of Ethiopia, where it has over 100 million native and nonnative speakers
where the overall population of Ethiopia was estimated over 120 million, and that makes the native
speakers more than 83.3% of the population [14]. Amharic uses a Ge’ez script called hohieyat
(r22+) which is written in a tabular format of seven columns. Both Ge’ez and Amharic languages

share the same scripts and writing system as depicted in Annex C, Table C.1. The first column

represents the basic form and the other orders are derived from it by slight or considerable
modifications indicating the different vowels. Amharic has 34 bases 8 derived characters leads to
having 246 = (34*7+8) characters where the 26 characters are derived from Ge’ez. The remaining
8 of them were by modifying Ge’ez characters; namely, Ato @ :+toF:1to7:hto N iHtO M ®
£1t0 2 7 mtoem and 0 to o [2]. As well, the second supplementary 8 derived characters are formed
from the first 8 derived ones. This is depicted in the following table.

Table 3.2 Amharic Script (a) added script, (b) Derived script

q90H | hol | ZIAO | &N | ARO[A0 | 4N
pla | [a. |4 i a o
g |F E T F F + ¥
Fl|7 |+ | |& |% T %
g|/h [[[7h i |
Elm [w [| | G
T 2 |5 |5 5 L e | X
Z |6 |6s |6R. | B fanis s | 6P
=|a |a |a. |a | a |0

(a)

ENESEARA NN Y
(b)

Page 56 of 119

3.3 Linguistic Relationships of Ge’ez and Amharic

3.3.1 Writing System

The writing system of Ge’ez and Amharic is similar. Both languages use the Abugida or alpha
syllabaries writing system from six different types of writing systems namely, Alphabets (English,
Russian, Greek), Abjads (Arabic, Hebrew), Abugidas or alpha syllabaries (Devanagari, Thai,
Ge’ez, Amharic), Featural alphabets (Hangul), Syllabaries (Japanese, Cherokee), and Logographic
systems (E.g., Chinese characters). Before Aba Selama (Friemnatos), the first Patriarch of
Ethiopia, Ge’ez was written from right to left but now it is written from left to right like Amharic
[12, 60]. The two types of Ge’ez alphabet arrangement are AN1£ (the previous) and vu- (the current)
[2]. Ambharic uses the current Ge’ez script arrangement (&ché-® +0é& 4.240) with its new derived
characters.

3.3.2 Syntactic Language Structure (Word Order)

The general syntactic structure of Amharic is Subject-Object-Verb (SOV) word order e.g. AN
oG M (abebe mekina geza) meaning, “Abebe bought a Car”. However, if the object is
tropicalized it may precede the subject (OSV) E.g. oohG@% +avq1y LavPN (mekinawini
temesigeni yamet’awali) meaning, “Temesgen will bring the Car”. Whereas Ge’ez follows
somewhat free word order structure such as Subject-Verb-Object (SVO), Verb-Subject-Object
(VSO0), and Object-Verb-Subject (OVS) word orders.

A. Subject-verb-object (SVO): AA“TH 10t &0 (alimaz gebiret ts’ibih)> AATTH O AT
(alimaz wet’i serachi). kO£ UL FIPUCT (éleyas mehare timihirite)> hOLA TIVCTT
AOtold (eliyas timihiritin dsitemare).

B. Verb-subject-object (VSO): co? aeaxht 04912 (ri‘iye mela’ikit besemayi)—> eeAnh7
00912 he (mela’iketin besemayi aye). Meaning (He saw angels in heaven)

C. Object-Verb-Subject (OVS): aAer<q, 100 AMANMAC (lemusé nebebo igizi’abiher)
D hMANhC 207 514D+ (igizi 'abihéri muséni tenagerewi) and

D. Subject-Object-Verb (SOV): acANAC Ao, 100 (igizi’abihéri lemusé nebebo) —>
ALANMC o207 5140+ (igizi 'abihér musén tenagerew) meaning “God spoke to Moses”.

From the above word orders, the Ge’ez language mostly follows the Subject-verb-object (SVO).
For instance, the sentence “@-x-k ap2A 101 -k (We 'etu mets’a habe bietu)” in Ge’ez is similar to
“Al @0k ovM (esu wedebietu met’a)” in Amharic, which means “He came home” where “ad

(esu)”, “oL0* (wedebietu)” and “er (met’a)” are the subject, object, and verve that are equivalent

Page 57 of 119

to “@-nk (weetu)”, “10 (- (habe bietu)”, and “avgh (metsi’a)” in Ge'ez respectively. But usually,
pronouns are omitted in both languages and become part of the verb when they are used as a subject
“avgh 10 Ok (Metsi ‘a habe bietu)” equivalent to “@20.+ e (wedebietu met’a)” [17].

3.3.3 Grammar structure of Ge’ez and Amharic (APH@)

In linguistics, grammar or aPa@- is a set of structural constraints controlling the composition of
words, phrases, and clauses in any given natural language such as Ge’ez and Amharic. It is the
study of such rules, which includes phonology, morphology, and syntax, often complemented by
phonetics, semantics, and pragmatics [2].

Words or lexicons are the basic units of many languages. Even though most speakers know and
use only a relatively small number of words, languages have tens of thousands of words. Each
word has its own part of speech (word class) [2, 17].

Based on parts of speech grammarians classified words into eight major parts of speeches in both
Ge’ez and Amharic. These are Nouns (9°), Adjectives (¢&4), Verbs (20), Adverbs (+@-ah a0),
Pronoun (t+a@-Am ag°), Preposition (evtr+P£), Conjunction (eetrta9°C) and Interjection (Pa A07).
However, many references divide parts of speech in terms of form (Major) and structure (Miner)
classes. The form (major) parts of speeches are Nouns/age, Adjectives/¢éd, Verbs/aa, and
Adverbs/-+@-ah <10, which are words that carry the content or meaning of a sentence. The structure
(minor) parts of speech are Pronoun/+@-am (9°, Preposition/eoir+P£-2:, Conjunction/eei-+29°C, and
Interjection/ A A2%, which are words that serve primarily to indicate grammatical relationships
and are frequently referred to as structure words [2, 16, 17]. Here the major ones are discussed a

little below.

3.4 Major Parts of Speech
3.4.1 Noun (ag°)

A noun is a name that refers to a person, animal, place, thing, feeling, or abstract idea. It can tell
who or what. In Ge’ez and Ambharic, there are different types of nouns such as concrete and
abstract, proper nouns, collective nouns, countable and uncountable nouns. E.g, name of a person
0AT1e+ (Selamawit), places £NNCY7 (DebreBerhan) or feeling £aJ(desta) means Happiness [2].
Ge’ez language has two ways of forming plural forms of nouns [2]. These are:

+«» Pattern replacement (broken or internal): £-0c (debr) to A20c (adbar).

Page 58 of 119

++ Addition of an ending (external): Aot (Amet) to Aged~t (Ametat), a2g°uc (memhir) agPy s
(membhiran), 749° 1997 . .. etc

The two endings used to form external plurals are -an (A7) and -&t (a). -an is to denoting masculine
and -at (at) is for feminine. As Amharic by itself is derived from Ge’ez, it shares both the internal
and external ways of forming plural nouns in addition to its own. E.g. £N1¢ (debr) to Aac (adbar)
or &0¢t (debroch) by adding -af(-och), only in Amharic and a»g9°uc (memhir) to aegPyc-7
(memhiran). However many people say aA&0s-fF (adbaratoch), ev9*ve-5+ (memhiranoch) or
14999+ (gedamatoch) by adding both the Ge’ez and Amharic plurality forms which makes the
words neither Ge’ez nor Amharic and makes any MT model to train in a wrong way. Because the
Ge’ez-Amharic corpus does not have such unknown words and therefore, knowing the exact ways
of forming plurality is vital during corpus preparation in order to get a quality translation.
3.4.2 Adjective/dgd
Adjectives are words or constructions used to identify, qualify, describe, or further define nouns
or pronouns. Adjectives express things behavior or characteristics, such as shape, size, color, type,
and property. For example, 244 coN (ts’e’ada rigibi) equivalent with ‘18> co-0 (nech’i rigibi)
meaning “white dove ”.
The use of adjectives in Ge’ez and Ambharic sentences is not the same. In Ge’ez, language
adjectives are used before and after nouns whereas in Amharic adjectives are mostly used before
nouns [2, 16, 17]. For example, %P7 »1L@- &1 avphirt: (finiwani idewi yinegiru meli ‘ikite) and
hR@ €1P7 L4194 avpkhht (idewi finiwani yinegiru meli’ikite) have the same arrangement in
Ambharic that is e+Ah- @727 avpkht 2514-00x (yetelaku wenidochi meliikiti yinageralu) meaning
“The messenger boys tell the message”.
Adjectives in Amharic are either primary adjectives, derived from nouns or verbs or other
combinations. Examples: Primary adjective: t+c (t’ikur) meaning black, and Derived from the
noun 2&a (hayl) meaning force, 245" (hayilenya) meaning forceful.
3.4.3 Verb (q0)
A verb is a word derived from roots that refers to an action, occurrence, or state of being or
condition, and forming the main part of the sentence. E.g. ~fA (hayele)> A?A (ayele), a2k
(melha)—> aviH (mezeze). Based on an affix Ge’ez and Amharic verbs are divided into regular and

irregular. Regular verbs are main verbs that have four types; $471¢ ®@9° -1a4 (past or perfect)

Page 59 of 119

tense, hhhe @RI° PAU-TG AG PavA, (present and future imperfect), -+éHH (command) or H728: (to be
verbs) [2, 16, 17].

Root Verbs (ACAd1-70)
Root verbs are regular verbs used as base words for other verbs to use and follow their morphology

style. Root Verbs in Ge’ez are eight with having their characteristicsso [61].

Table 3.3 Root or main Verbs (AcAa77a) of Ge'ez

1. | Verbs- Ikt AChdrt 10 Meaning-+Ctg®
(Pronunciation -A10-1) | (Pronunciation -A10-)
1 ¢+ (K etele) 124 (gedele)
2 +L0 (k’'edese) A9P(171 (amesegene)
3 | A ((tenibele), Aavy (lemene)
2712 (denigets 'e) £71m (deneget’e)
4 azh (bareke) a¢sh (bareke)
5 Tchéh (mahireke) a9¢h (mareke)
6 AP (sieseye) a1 (megebe)
7 | hua/xa (kihile/bi’ile) | #a (chale)
8 mav/, (t’omere) 24d. (ts’afe)

Verbs in Amharic mostly are placed at the end of the sentence whereas in most Ge’ez sentences
the verbs are placed in the middle [17]. For example @&k $+h 4704 (wu etu k 'tele anbesa)—> ad-

A704 124 (esu anbesa gedele) meaning “He killed a lion”.

3.4.4 Adverb (t@-4h 90)

Adverbs (-+@-ah <10) are words that give additional meaning to verbs. The job of adverbs is to tell
the verb’s place, time, degree, and so on by giving information how, why, where... etc. about the
verb. Mostly Ge’ez adverbs come after the verb they modify and the Amharic adverbs precede the
verb they modify. For instance in the sentence, 6 224 &m-1 (rozs’e hayilé fit'une)> 220 (&7t
cm (hayilé befit'ineti rot 'e) meaning “Haile ran faster”, the Adverb &m-1 (fit 'une) follow the verb
e (rors’e) in the Ge’ez sentence. However, the adverb a1t (beftinet) precede the verb ¢m

(rot’e) in Amharic sentence [17].

40 Elam Aba, AChdvt a10-29100 A0ST (2) https://www.youtube.com/watch?v=82pcqORVdHw, Jun 24, 2020, Accessed
March 26, 2021

Page 60 of 119

https://www.youtube.com/watch?v=82pcq0RVdHw

3.5 Minor Parts of Speech

As discussed in subsection 3.3.3 the structure or minor parts of speeches are Pronoun (+@-Am A9°),
Preposition (eva+2£:£7), Conjunction (era-+29°C), Interjection ($a A2%), Demonstrative (AeeanT),
possessive (A19H(L), and punctuation marks (+9°vc-+ t#a), which are used to indicate grammatical
relationships between other words [2, 16, 17]. However, we do not do syntactic translation and we
do not use those parts of speech (except punctuations) as a feature in our deep learning-based
machine translation methods. Hence, we only discuss the punctuation marks used in both
languages.

Punctuation Marks

Both Amharic and Ge’ez use similar punctuation marks for different purposes. A few decades
back, the individual word-separator in the sentence “v-At 110 (Hulet netib)”, two dots arranged
like colon (:) were used in both Ge’ez and Amharic. However, today the use of Hulet Neteb is
paused and replaced by space in modern typing systems. The basic punctuation marks include the
sentence-separator, “a¢-t 110 (arat netib)” that is four dots arranged in a square pattern (::), lists
separator “imA aZM (netela serez)” that is two dots like colon with upper bar () which is equivalent
with comma and “£C-1 aZH (derib serez)” that is two dots like colon with upper and lower bars (:
) equivalent with a semicolon. The symbol “?’ is used to represent questions in Amharic but no in
Ge’ez. The interrogative word or character in Ge’ez is placed at the end of a word or sentence. It
is pronounced at a low level and the style of pronunciation by itself shows an interrogation. For
example; v~ (hu), * (nu), & (u), & (1), - (ti), & (), ALk (ayite) used for words such as a0+ (sobenu)
meaning “When?” +a9°¢-'r (te ’‘amirunu) meaning (Do you know?), A7tav-u- (anitimuhu) meaning
“are you?”, +h9°l1h. (te’amireni’T) or +aI°LLr (t€’amireninu) meaning “do you know me?” [2,
17]. However, we removed punctuation marks during preprocessing while preparing the dataset

for Machine Translation.

Page 61 of 119

CHAPTER FOUR: RESEARCH METHODOLOGY

4.1 Overview

This chapter discusses the selected type of research method used for this study, the proposed
architecture of a bi-directional Ge’ez-Amharic MT system, corpus preparation, and how the model
train and translate sentences between the two languages are annotated. In general, this chapter

briefly explains how this study was exhaustively done.

4.2 Research Design

For this study, To develop a Bi-Directional Ge’ez Amharic Machine Translation, a Design Science
Research Methodology (DSRM) is selected as a general approach that is one of the approaches
used in the field of information systems. Creating an applicable solution to a problem is an
accepted research paradigm in different disciplines, such as Computer science, and engineering.
Design science research (DSR) is a process of creating and evaluating information technology
artifacts aimed to solve known organizational or community problems. This problem-solving
approach tries to improve human knowledge through the creation of innovative artifacts and the
creation of design knowledge by innovative solutions to real-world problems [63]. Figure 4.1
below shows a DSR framework for understanding, executing, and evaluating a Bi-Directional
Ge’ez Amharic MT.

Environment Relevance Design Rigor Experiment

Build Develop
People o Artifact + Algorithms
+ Models
» Ambharic Speakers Applicable
+ Ge'ez Stodents Needs p\l} d Methodologies
+ Researchers) Model
Assess Refine . X
Technology <}:| » Literature Review
echnology + Corpus Preparation
« MT Apps Evaluate + Implementation tools -
+ Websites) pvthon (Torch)
+ Expeniment « Evaluation: Automatic
+ Prototype (BLEU) and Marnual

i N]

Figure 4.1 Design Science Research Framework Adopted From [63]

Page 62 of 119

The environment expresses the problem space where the phenomena of interest exist in. It includes
people, existing or planned technologies, and organizations. As well, goals, tasks, problems, and
opportunities are defined in the environment. Needs are assessed and evaluated within the context
of the requirement of language speakers. The Design phase consists of building the artifacts and
evaluating them with different experiments and showing the demonstration or prototype. The
experiment holds development and methodologies where different algorithms and models are
developed. The methodology provides steps and guidelines used in this research. The rigor is

achieved by properly applying existing development and methodologies.

The DSR approach has been selected because of the following reasons.
% DSR is a popular new research methodology and paradigm in the department of

Information Systems, for which numerous research approaches have been developed.

% DSR supports practical problem solving that is solution-oriented, such as developing MT
models that can be used by Ge’ez and Amharic language users [64].

% The DSR can decrease the gap between theory and practice by producing practical
knowledge, which can serve as a reference for the coming researchers. Figure 4.1 depicts
the general DSR framework and the relationship between two essential factors for the

achievement of the investigation: relevance and rigor.

Design Science Research Methodology
For this study, the design science research methodology (DSRM) process model was chosen.
According to [65], DSR is a methodical problem-solving method for producing relevant, new, and
innovative information systems solutions within a specific domain. Iteratively, the alternatives and

revised designs are evaluated until the best solution to the problem is identified.

Peffers, et al. [65], suggest a DSRM, which is reliable with prior literature and provides a design
science research methodology process model to present the DSR. The authors claim that this
process model provides support for researchers, and this is a good way for researching the design
science paradigm. In this section, we justify that the DSRM process model of [65]. Brocke et al.
[64], indicate that the research method can be applied differently according to the type of problem
and the research objective and its starting point can be modified according to the targets of the
researcher. Based on Peffers, et al. [65] Considering these starting points, the entry point of this
research is the problem-centered initiation, the objective-centered solution, and the development-

Page 63 of 119

centered solution. The DSRM process model consists of six activities, which cover the complete
study from the start (motivation) to the end (communication). These phases are problem
identification, objective definition, design and development, demonstration, evaluation, and finally

communication as shown in Figure 4.2 below.

Y A

Id;:n[t\‘;f‘_:t::::li:::enm > Diﬁf:esg::i]:i‘;:;ve > DDfSl‘gI: andL *» D tration > Evaluation » Communication
Problems: Need + A Bi-Directional + Tool: Python t Translate Automatic t Presentation
of decoding Ge'ez-Ambharic with Torch sample Ge'ez (BLEL) ¢ Publication
ancient Ge'ez Neural Machine b Models: and Amharic Manual ¢ hosting and
~—» Docs _ Translation: a Seq25e2 sentences releasing for use
p Translation Deep Learning (Encoder
Pmb.lam.s Approach Decoder)
Motivation: \ Transformer
Researchers
Manuscripts t OpenNMT
Conducted:
Doc Analysis &
¢ Literature review

Problem
Centered
Initiation

Objective
Centered
Solution

evelopmens
Centered
Solution

Possible R ch Entry points

Figure 4.2 DSR Methodology Process Model Adopted from [63]

A brief explanation of each DSR step, shown in Figure 4.2 is discussed as follows:

I. Problem Identification and Motivation
This step describes the specific research problem and justifies the value of a solution. As discussed

in section 1.2, we are motivated to conduct this research for different reasons, such as there are
many ancient scripts encoded in the Ge’ez language and there is a high need to manipulate those
documents using technologies such as NMT for mining old knowledge. As well, there are new
youth researchers that are interested to study the Ge’ez language. Filling the gaps from prior
researches is also another motivation. To achieve these all, vast document analysis and review of

literature are accessed.

ii. Define the objectives for a solution
After the problem definition, the next step is the objectives of a solution and identifying the feasible

solution. E.g., a question like “how the proposed Ge’ez Amharic NMT is useful for society?” can

bring the objective of a solution.

Page 64 of 119

iii. Design and development
The third step is creating an artifact and determining the intended functionality of the artifact, and

its proposed architecture. According to [63], such artifacts are perhaps concepts, models, methods,
and instantiations. In this study, the proposed system architecture shown in section 4.3 and the
implementation tools listed in section 5.3 explain the design and development process of this

research in detail.

Iv. Demonstration
This step proves the use of artifacts or systems to solve the identified problem. This might include

experiments, simulation, proof, or another appropriate step in different fields of study. In this work,

we conducted four experiments to prove the use of the new system as discussed in section 5.4.

V. Evaluation
This step measures how well the artifact is done and how it supports a solution to the problem.

After evaluation, the researchers can decide whether to iterate back to step three to try to improve
the efficiency of the model or to continue to step four and leave further improvement to the
following tasks. In this study, we used two types of evaluation methods namely the automatic

(BLEU score) and the manual (human) evaluations metrics.

vi. Communication
Finally, all parts of the problem and the designed artifact are presented to the relevant stakeholders,

organizations, or departments. Journal publication is also accomplished under this step.

4.3 The proposed system

The architecture of a Bi-Directional Ge’ez-Amharic Machine Translation system depicted in
Figure 4.3 shows the overall workflow of the translation model.

This architecture works through six major different stages, namely the preprocessing, data
splitting, embedding, encoder, decoder, and evaluation phases. First, the bi-lingual corpus goes to
preprocessing and has cleaning, normalization, padding, tokenization, and other preprocessing
tasks. Then the preprocessed corpus is divided into two core sets called to train and test set.
Afterward apply embedding to make the corpus readable to the model, which is transforming
words into vocabulary then converts them to vectors of continuous real value numbers. Next,
Positional encoding is applied to know the relationship between tokens from the sequence by
considering word orders in the case of Transformers. This intern enhances the representation of

the transformer to give attention to any required token from any position in the sequence.

Page 65 of 119

Moreover, the encoder encodes the input sequence to an internal representation called ‘context
vector’, which is used by the decoder to generate the output sequence, as well, the decoder decodes
the encoded sequence as per the input language to be translated to a sentence in the output
language. The output embedding and the output positional encoding are also applied at the end
just like the stages in the input process. Finally, Evaluating the model then go back to data splitting
for another experiment if the translation quality is poor. These concepts are discussed in detail

below and the general structure of system architecture is depicted as follows in Figure 4.3.

{=’
/| Bi-Lingual |/
/ |/
/ L Corpus_ |

Preprocessing N

' .
; Basic —» Normali- =% Tokeni- g "
' Padding ,

Cleaning zation zation

L | 1 y
(o3 o e e e R == i e e m :
. — — . 'h
: Training Test Set Data spliting |
' = Set = —— D "

.’ Input Embedding K
! £ Encoder-Decoder
i (RNNor) PE ? Encoder I '
: Vinput T (Ge'ez) [Oubput 5
' - '
; (RNN or} PE «— Embedding '

| '

) ¢ |E
'] Q
‘ > Decoder =
' @ ' 5
: 3 Lo|E
' Embedding —» PE (OrRNN) T B
' w ' [
1 S - A
(Amharic) {input | / ,'

RSO i pepxinugdfoffepeinpeyei ey oo f e b
l’ \‘
‘ ‘
")
' '
- Select Better Model .
J 1. Seq2Seq with Attention g
% 2. The Transformer !

..

Figure 4.3 Overall architecture of the proposed system

Page 66 of 119

4.4 Preprocessing

We conduct preprocessing, the first and most important task during machine translation. It includes
cleaning text, normalization, padding, and tokenization.

4.4.1 Major Cleaning

Cleaning text includes removal of numerals, special characters, punctuation marks, unwanted
spaces, extremely long sentences, mistranslated sentences, and other non-Ge’ez characters.
Punctuation marks do not have major relevance for translation and are excluded from the corpus.

Algorithm 4.1 Algorithm for general cleaning (Preprocessing) of a corpus

##Defining a Regular-expression R, Containing punctuations and non-Ge ‘ez characters
Then preprocessing the corpus by matching each character in a dataset with regular expression R
DEFINE REGULAR EXPRESSION (R) #R Contains punctuation marks and non-Ge ‘ez characters
OPEN AND READ TEXT FILE #Input
WHILE READING LINE DO
FOR C IN LINE #Read each character from each line
IFCISINR #if C is punctuation or is not in Ge ez characters (not in -7)
THEN
REPLACE C WITH SPACE
END IF
END WHILE
CLOSE FILE

4.4.2 Normalization

In NLP, normalization is a process of mapping different variants of the same word type to a single
string. In the Amharic language, some characters have the same sound and meaning but different
shape and annotations for instance [‘0’, “1’, “’and ‘A’], [‘@” and ‘&’], [‘4’ and ‘0], [‘@’ and ‘v”’'] are
the same, that represents [‘h&’], [‘ts’e’], [‘a], [Se’] respectively. This character normalization is
done for Ambharic but not in Ge’ez. For instance, the word “akd./se ’alr” and “a%A./se‘ali”” have the
same meaning, which means to “Draw” in Amharics1. However, in Ge’ez, the two words have no
similar meaning, which has the meaning of “Beg” [feminine] and “Painter” respectively. Mainly

the normalization function in Ambharic selects homophone Ge’ez characters and replaces

41 However, the right way of writing the word ‘Draw’ is a%A. which is

Page 67 of 119

characters with the same pronunciation into a single character. Algorithm 4.2 in the following box
shows the algorithm of normalization and basic cleaning tasks.

Algorithm 4.2 Algorithm for Amharic text normalization

DEFINE NORMALIZATION LIST (N) WITH VALUE (V) # E.Q. Ztht T=>0, “#r B=>0-... /=> ...
OPEN AND READ AMHARIC CORPORA # This is input
WHILE READING LINE DO

FOR C IN LINE #Read each character from each line
IFCISINN #if C is in a normalization list
THEN

REPLACE C WITH NORMALIZED VALUE (V) #E.g.if Cis % 7or then replace C with ¢ v
END IF
END WHILE
CLOSE FILE

4.4.3 Tokenization

Tokenization is the process of segmenting a given text into a piece of sentence, word, and sub-
words. It includes separating words from running text. E.g. %/9° or 49°. to %ot 9°vi-t, and
segmenting a word into its sub-word elements.

We use Sentencepiece tokenizer for sub-word segmentation for the Transformer model.
SentencePiece is an unsupervised text tokenizer and detokenizer designed primarily for Neural
Network text generation systems and the vocabulary size is known before training the neural
models2. SentencePiece implements sub-word units (e.g. byte-pair-encoding (BPE) and unigram
language model) with the extension of direct training from raw sentences. It helps to make a purely
end-to-end system that does not depend on language-specific pre or post-processing.

The sentence-piece model accepts a set of sentences, then chunks to word as a starting vocabulary
to find out sub-words. The vocabulary is built starting from the characters. Then each possible sub-
word created by concatenating characters is selected based on the frequency then appended to the
vocabulary [66]. Later the most frequent sub-words are concatenated based on probability.

Algorithm 4-2 Shows the segmentation process in the below box.

42 https://github.com/google/sentencepiece accessed on Jan 2021

Page 68 of 119

https://github.com/google/sentencepiece

Algorithm 4.3 Amharic sub-word segmentation Algorithm

#Amharic sub-word segmentation Algorithm
DEFINE TOKENIZATION (STRING_LIST: LIST[STR], INT K) -> VOCAB: LIST[STR]:
VOCAB =<LIST OF UNIQUE CHARACTERS IN STRING_LIST>
OPEN AND READ AMHARIC CORPORA #The Input
WHILE READING LINE DO
FOR I IN RANGE(0, K+1):
C_LEFT,C_RIGHT=MOST FREQUENT PAIR OF ADJACENT TOKENS IN STRING_LIST
C_NEW = C_LEFT + C_RIGHT # Create A new bigram
VOCAB = VOCAB + C_NEW # Add the bigram to teh vocabulary
REPLACE EACH OCCURENCE OF C_LEFT, C_RIGHT WITH C_NEW #Update the corpus
RETURN(VOCAB)
END WHILE
CLOSE FILE

First, the segmentation model accepts the pre-processed sentence and then chunks it into words.
Then we have a tokenized article that is ready for further processing. For example, in the sentences
“@20% Ahtear 8N AWSLPIP O 10$ AIPUP:"43 [Wets e ‘Gnu ikilomu dibe a’idugthomu wehalefu
imihiye.]” the possible sub-word segments are shown as followsaa.

Word: [_@g', '0', "+, 'K, "N, "fean '8!, AN, S, M e, ', iag, ' hgPue,]

ID: [448, 51, 85, 59, 49, 260, 14, 673, 135, 430, 118, 5, 1957, 817, 4]

Here “_" marker is used to show the white space which is used as a delimiter for words. In
addition, all possible sub-words are identified efficiently.

Two tokens, the start of the sentence (<S>) and end of the sentence (</S>)ss are added to every
pair of sentences during training which allows the model to know where to start and end translating
and, we set the maximum sentence length to 32.

4.4.4 Padding

It is inserting zeros to the end of shorter sentences to make them equal to the longest one.

43 WANTF@7 VAV FT @< AL B NHLET° +12+@ 382 [ihilachewini be ahivochachewi layi ch’anu keziyami tenesitewi hédu)
44 Generated with pytorch Sentencepiece
45 We used <SOS> and </EOS> as Start of the sentence and End of the sentence in Seq2Seq

Page 69 of 119

4.5 Input Embedding

Embedding is an initial representation generated for each word of the input language to their
corresponding numeric values for further process. In other words, Word Embedding is turning text
into numbers. The embedding step happens in the most-bottom of the encoder layer. After
embedding the words in the input sequence, each of them flows through each of the two layers of
the encoder. Then, the encoder uses the embedding to generate the key, query, and value vectors
for each of the words in Transformers. Then the encoder receives a list of vectors (the default size
is 512) based on [47]. Though the size of this list is a hyper-parameter we can set, it would be the

length of the longest sentence in the training dataset.

4.6 The Encoder

In the typical Seq2Seq encoder-decoder, the encoder converts the input sequence to an internal
representation known as a context or thought vector, which the decoder uses to create the output
sequence. Because there is no clear one-to-one relationship between the input and output
sequences, the lengths of the input and output sequences can differ. Here the encoder and decoder
are both made up of a stack of RNN, LSTM, or GRU units. It works in two steps. First, the LSTM
in the encoder processes the entire input sentence and encodes it into a context vector, which is the
final LSTM or RNN's hidden state. This should be an accurate summary of the input sentence. All
the other encoder's intermediate stages are ignored, and the last state is taken as the decoder's initial
hidden state. The primary flaw with this strategy is an event, that is the translation will be bad if
the encoder makes a faulty context vector. When the encoder tries to grasp longer sentences, it
provides a terrible summary. It's known as the RNN or LSTM long-range dependency problem.

In the Transformer Model, on the other hand, an encoder consists of a stack of N = 6 equal layers
in which each layer has two major components: a self-attention mechanism and a feed-forward
neural network. It receives a list of vectors as input and processes this list bypassing these vectors
into a self-attention layer, then into a feed-forward neural network, then sends out the output
upwards to the next encoder. The self-attention mechanism accepts input encodings from the
previous encoder and weighs their relevance to each other to generate output encodings. The feed-
forward neural network further processes each output encoding individually. These output
encodings are then passed to the next encoder as its input, as well as to the decoders. The first

encoder takes positional information and embedding of the input sequence as its input, rather than

Page 70 of 119

encodings. The PoE (Positional Encoding) information is necessary for the transformer to make
use of the order of the sequence, and to analyze the relationship between words.

By using the tensors embedding, the encoder processes the input to produce a context vector. The
attention values of the input are passed to the feed-forward network and produce the encoded
representation of the input sequence. After that, the resulted vector is inputted to the multi-headed
self-attention layer. Next, the multi-headed self-attention is computed to calculate the attention
score input sequence. Multi-headed self-attention is expressed by stacking of self-attention N times
and calculated in parallel then concatenate. Thus, self-attention is calculated in terms of Scaled
Dot-Product Attention and Multi-Head attention

The first is a multi-head self-attention mechanism, and the second is a simple, position-wise fully
connected feed-forward network. A residual connection around each of the two sub-layers,
followed by layer normalization is employed. That is, the output of each sub-layer is LayerNorm(x
+ Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer itself. To facilitate
these residual connections, all sub-layers in the model, as well as the embedding layers, produce

outputs of dimension model = 512. This is finally then sent to the decoder as input.

4.7 The Decoder

Similarly, as in the encoder, the decoder of the usual Seq2Seq architecture is made up of LSTM
(or sometimes GRU) models. And this decoder’s first state is initialized to the last hidden states
of the Encoder. Using these initial states, the decoder starts generating the output sequence in the
way that the input to the decoder at each time step is the output from the previous time step. In this
way, it is passing the encoded meaning of the input sentence to the Decoder to be translated to a
sentence in the output language. However, unlike the Encoder, the Decoder shall output a
translated sentence of variable length. Therefore, the Decoder will output a prediction word at each
time step until it has outputted a complete sentence. First, input a <SOS> tag as the input at the
first time step in the Decoder. Just like in the Encoder, the Decoder will use the <SOS> input at
time-step t=1 to update its hidden state. However, Instead of just going on to the next time step,
the Decoder will use an additional weight matrix to create a probability over all of the words in the
output vocabulary. In this way, the word with the highest probability in the output vocabulary will
become the first word in the becoming predicted output sentence and continues until the <EOS>

is predicted.

Page 71 of 119

Whereas In the Transformer model, the decoder functions similarly to the encoder, but an

additional attention mechanism and the masked multi-head attention are added in the decoder,

which instead draws relevant information from the encodings generated by the encoders.

Like the first encoder, the first decoder takes positional information and embedding of the output

sequence as its input, rather than encodings. The transformer must not use the current or future

output to predict an output, so the output sequence must be partially masked to prevent this reverse

information flow. The last decoder is followed by a final linear transformation and Softmax layer,

to produce the output probabilities over the vocabulary. The General Structure of the encoder and

decoder is depicted below in Figure 4.4 with two stacked encoders and one decoder.

Output IFE NIRFuS T NTE WIEnEATY
l- AR ERENE NN 'Y hk;ﬁ-?
1 Context Vector), . 1]
e I RN SoftMax)
> Add & normalize i ' $ }
[| B
: T ' L Linear
' Feed Forward Feed Forward [- -T
ﬁ : 1 1
= e s T AR = Decoder #2
ek} = 1
= > &dd & normalize 4
Sl i a A . ! Decoder
2l : ' / Add & Normalize \
L 1 MH Attention !
S Y A t 1
1 = ® Feed Forward | [Feed Forward
Encoder F/ -\ : ' A A
> ool nkles . e Add & normalize
\en e EE AR $
i 1 S e = -
™ v Feed Forward '
bl FeedFovard) | % ___l.+» MH Attention
% N == ? ---------- # I‘l. [—— # ------- *
=] 0 -
g > Add & normalize > Add & Nommalize
w| .t 1 | A A
' Al T T ! Masked MH Attention
(L)\ e))
PoE { E % ?_(E I_E 6) a
‘? .lr.al e ?
Word - [T s [T]eeexa [] XL L)%l L] e sl
Vector nhe=4 h$ wmnT koAt <5 hPARTY TR oo

Input /nwmﬁwmr-mwnmm/

Figure 4.4 The detailed structure of Transformer’s Encoder and Decoder architecture

Page 72 of 119

4.8 The Evaluation

After the candidate models (The Seq2Seq, the Transformer, and the OpenNMT) have been trained
with the available bi-lingual corpora, and they will be evaluated based on the BLEU score metrics.
However, the type of experiment may differ from one to another by the hyperparameters. The
corpus size and the ratio of dataset split may also be other distinct. The main experiment used for
comparison and evaluation of all models is conducted with the 20,745 corpus size. Hence, we set
a threshold value of a BLEU score of 20. If the result is less than the BLEU score of 20 it has to
be re-experimented iteratively with a different percentage split and hyperparameter until it attained
equal or more than 20 BLEU score. The hyperparameter includes the number of hidden layers, the
dropout rate, and the optimizer. After re-experiment if the result is equal or greater than the
threshold value it will be compared to the corresponding model and the better model will be
selected, otherwise, the experiment will be conducted again. The ratio percentage split is changed
between the minimum of 70% with 30% and the maximum of 90% with 10% training and testing
sets respectively. If the dataset size is different from the main one (20,745) and the result is less
than the threshold value, the experiment will be conducted again and again by changing the
percentage split such as into 90% with10%, 80% with 20%, and 70% with 30% training and testing
sets respectively until no BLEU score increment of change is seen with the respective
hyperparameters. Finally, the better model with a higher BLEU score will be selected. The linguist
evaluation is applied after the better model has been selected at the end to ensure whether the
BLEU score is reliable or not. We are not using the manual evaluation for model comparison and

re-experiment.

Page 73 of 119

CHAPTER FIVE: EXPERIMENT AND RESULT ANALYSIS

5.1 Overview

This chapter presents in detail how the experiments are conducted. It explains how the corpus used
for this study was prepared and used, as well, the challenges during corpus preparation. The chapter
also explains the hardware, software, and tools used for the experiment, the variety of conducted

experiments, and the analysis of the result.

5.2 Corpus Preparation

Deep Learning needs a huge amount of data for training. Neural Machine Translation also uses
deep learning techniques to teach itself to translate texts from one natural language to another.
Most TensorFlow datasets such as “wmtl3_translate/fr-en”ss use at least 250,000 parallel
sentences (44.65MiB) and equal or more than 40.8 million (40,827,433 parallel sentences, which
is about 14.64GiB of data size). Hence, we need a very large amount of bilingual corpus to train
the proposed model and for better translation qualities, as well, to be comparable with those
international workshop translation tasks. However, this is unthought-of and infeasible to collect
this much of bilingual corpus manually in the time available for this work, especially for low-
resource languages such as Ge’ez and Ambharic.

Even so, for this research, we tried to collect manually about 6,958 parallel sentences in addition
to the available domain-specific dataset. The dataset includes domain-generic conversation
sentences prepared from Ge’ez learning books such as “¢910H £7% 79°C “UF916L K 0.0
(yegi‘izi k’wanik’wa nigigiri masitemariya ina megibabiya)” [70] and linguists, as well the
remaining domain-specific parallel sentences were collected from a bible and battel of Saints.
From the collected 6,958 corpora, the 3,021 paired sentences of the corpus were conversations and
the remaining 3,937 were from the religious domain particularly from the 124 #4.0 10 hcafa
(gedile k’idusi gebire kirisitos). Moreover, an additional 3,078 parallel Ge’ez Latin numeric corpus
was prepared to handle numeral translations such as “ft AL® h'1& (-t (3tu idewi hanets u béte =
)” which means “The three boys built a house”. This is discussed in experiment 4. in section 5.4.

Hence, a total of 10,036 Ge’ez Amharic parallel corpora was newly added for this study.

46 https://www.tensorflow.org/datasets/catalog/wmtl4 translate accessed on May 26, 2021

Page 74 of 119

https://www.tensorflow.org/datasets/catalog/wmt14_translate

The previous corpus, with 13,78747 parallel sentences, was prepared by Tadesse Kassa [2]
collected from different online Ethiopian Orthodox Church websites and Mahiber Kidusan
repositories 4s. The data set includes tests from the Old Testament of the Holy Bible.

We also added some extra domain-specific corpus from the bible and the battel of saints that were
not included by the former researcher.49 This includes 78&a ®4%a 0Zhcita [gedile k’idusi
gebirekirisitosi], the book of Baruch (Barok), and some parts of Enoch.

During corpus preparation, we followed a bottom-up approach. That is aligning first each books’
verse level, merge the aligned books and finally merge all the books to the respective languages.
After we collect the whole corpus, we used different python codes as stipulated in the system
architecture and methodology parts for data cleaning purposes. The fragment code is depicted in
Annex D ii, Figure D.2.

The corpus we have used for this experiment has three arrangements. In the first one, the Ge’ez

and the Amharic sentences have been saved in different text files separately, named ge.txt and
am.txt. We use this dataset for the Seq2Seq encoder-decoder (LSTM) Model. The second one is
the Ge’ez and Amharic sentences were divided into six distinct files named ge_train.txt,
ge_test.txt, ge valid.txt, am_train.txt, am_test.txt, am_valid.txt (For Training, Testing, and
validation sets respectively) with different percentage splits. We used this corpus to train the
OpenNMT tool to compare findings with previous works. The last one is the corpus that contains
the Ge’ez and the Amharic parallel sentences in one text file named Geez_Amharic.txt by
separating the source and the target language sentences with the tab (\t) delimiter. Whereas, on the
first two types of file arrangements, the sentence in the first line of say ge_train.txt will have its
translated sentence in the first line of the am_train.txt and so forth. One of these corpus types is

shown in Figure 5.1 below.

47 Reported as 13,833 parallel sentences in their work, but we got 13787 instead, and we added 46 parallel sentences
from new religious domain corpus to be comparable with their work.

48 https://www.ethiopicbible.com, http://ethiopianorthodox.org, http://eotcmk.org, Accessed on May 26, 2021

49 https://www.stepbible.org/?g=version=Geez, https://www.tau.ac.il/~hacohen/Biblia.html Accessed May 2021

Page 75 of 119

https://www.ethiopicbible.com/
http://ethiopianorthodox.org/
http://eotcmk.org/
https://www.stepbible.org/?q=version=Geez
https://www.tau.ac.il/~hacohen/Biblia.html

a) b)

) ATIRA ORE MDA 0

501 n9°P ANSINA Rk hM ANTIAA 10~

: na® HAP ANTIRA BNCRR 502 f1 N9 ANTIAA £NAA
A8t Okt HOPRAN HAD 50 A0 NP+ 10 PAPmhe-
RIN HOPRAN AGRY ACHS O-hk 504 Ah femF h ACHK 0
AT ACHe ®-hk HARRAN: 505 PACHe 10 PeemUm
Nt ACH Rik 506 ACH oA RFLAL
+AOF HNAA ONAAT 507 PoneS AT NATRH
NAhh KrP 5 A2t A2Ch oea
MMHANAC £A0K NAN ATHP 9 RIHANAC 20°A77 RI&F RECA At
aoy paen AUP Py OIL9D AU NI BNAA
KAPH RAGRR 511 Rafh ANAAL
NOOHAP haPh O-Ak L2 f1 h9® haPh £NAA
KAAPN BAGRE hgOP 3 NOQ AAPh £NAA
OISR NOS HAR, 1 PYEN NP MY e
N okk 5 nh £NAA
ANEC ANARR 516 ahEC RNAAL
NOOHAP ANEC O-Ak L7 f1 a9 AhiC 10~
PN 2AGRE hgoP : N hhNl £NAA
MET oAk AN 519 AeMmA Mt e
MEVT Ohk PPHAN 520 AR Mt -
AETE @Rk AZTNR b 521 phNl ARSRA AYE T
MEF ok OPoAN ANEC 522 RAEMAE N 10 ADEC
AEOYe RhG OUTSHE @bk 2 AEARP YP AONF -
B FE O-hk 524 reamp 25 0
HHOAEN NoaCk OHNG+ °0F +N% ®AYI+ a9 (525 P4+oALRF NANG HMT 0% HMG AP a9 o
Ht@ALN NiGPIZ 990 26 eptoAgnt n1989 e o

Figure 5.1 Sample dataset from Ge ez Amharic corpus in distinct files

Challenges during corpus preparation
During the preparation of the bilingual corpus, we encountered numerous difficulties such as
Misaligned parallel sentence verses even from the previously available corpus, prepared for the
earlier research work [2]. For example from ge.txt file line 2781 the Ge’ez verse says “@-hH
AnA Ok a0 @-a+ PO O+NLT 12 OANAD Ahd:: [wetekeze aka’abi wehore wesekebe wisite
misikabthu wetekedine gets’o we’tbeli‘a ikile]” which means, “[Saddened, Ahab went to bed. He
covered his face, He did not eat bread]”” and the Amharic verse says “A,8HeAAPD9° s(l-& PAAFE?
COT AANTYP 1l 04 157D W%l +RPPG 1688 DL (LE 10 NAAID° AL I8 &7 44N
A784I° AANATR: [Tyizira’elawiwimi nabute ye’abatocheni risiti aliset’ihimi bilo sile tenagerewi
aki‘abi tek’ot’itona tenadido wede bétu geba be’dligawimi layi tegadimo fituni teshefafene
inijerami alibelami]” instead of saying “Ah%-(+hH @®L AAI@-I° B2 5% &7 (14497 hTELI°
AANAY®: [aki ‘abi tekizo wede aligawimi hédo tenya : fituni teshefafene ? inijerami alibelami]”. Here
the bolded phrase “A.LHAAPDI? 114 PAAFES COT AANTYIP 1ld° (4 15707 is irrelevant. We
found just such many mistranslated parallel sentences. We have found out that, this type of
mistranslation is caused because the new King James Version of the Amharic Bible with the very
old version of Ge’ez translation was used. Even though the idea is similar, the way of expression

and writing verses is different, as shown in the above sentence. This type of mistranslation leads

Page 76 of 119

the translation model to create undesirable translation patterns. As a result, to solve such a problem,
we try to manually check each sentence in the text file line by line as much as possible with the
help of Ge’ez linguist. Manual preparation of corpus is too tedious and time-consuming. However,
we did not have any option other than validating the paired sentences manually, in order to add

conversation sentences to make the corpus a little bit domain generic.

5.3 Experimental setup

SW and HW Tools Used for Experiment
During the experiment, we used the following hardware and software tools.

Table 5.1 Hardware and Software Requirements

No Hardware Software Purpose

1. | HP laptop with Intel(R) Core(TM) i7- | Windows 10 Pro, 64-bit | For corpus preparation
7500U CPU @ 2.70GHz 2.90 GHz, | operating system and preprocessing, for
x64-based processor. Jupyter Notebook with | writing the thesis
8.00 GB RAM Python 3.7 report, and accessing

Colab.

2. | GPU enabled 25 GB RAM (Colabso, | Colab Jupyter | For coding and

a cloud resource provided by Google) | Notebook with Python | experiment
3.7

We used the HP Laptop for corpus preparation and preprocessing, for writing the thesis report.
The Colab, a Google cloud GPU, is used as the main laboratory environment for training the
proposed model.

Moreover, different neural network modules and libraries such as Pytorch, and Tensor flow 2.0
are used to implement the proposed model and to support tensor-based data structure. Other
libraries like Numpy, Scipy, Pandas, and Transformers are used to vectorize the data at the tensor

level. Sample codes for our experiments are included under Annex D (i, ii, iii, V), Figure D.1, D.2,

D.3)

50 Google Co-laboratory

Page 77 of 119

5.4 Experiments
We conducted two dual (four single) and two quadruple (eight single) experiments with different
corpus sizes and algorithms. For this experiment, we used three distinct corpus types and formats.
% The old corpus collected from the previous researcher [2] has a size of 13,787 parallel
Ge’ez-Amharic sentences and was a domain-specific dataset, which is completely from the
bible. However, the researcher reported as 13,833 parallel sentences were used in their
work, but we got only 13,787 instead, and we added 46 religious parallel sentences from
the new prepared one to be comparable with their work.
% The old preprocessed 13,787 corpus plus the new conversation corpus, has a size of 6,958
and makes the new one 20,745 parallel sentences
%+ The 20,745 parallel sentences with the addition of a new numeric corpus having 3,078
lines, that contains Ge’ez numerals in a different writing system and their corresponding
equivalent values in Latin number and Amharic text, which makes the new corpus 23,823.
This numeral corpus was added to handle number translations.
The experiments are grouped based on the corpus type or size and the type of model. This is
depicted in Figure 5.2 below.
Table 5.2 The different experiments, models, and corpus size used

No | Experiment Model Corpus size | Percentage
Split
1 | Experiment 1: OpenNMT 13787(0ld) 84%:8%:8%
(T:T:V)
2 | Experiment 2: Transformer, OpenNMT | 20,745(new) | 80%:10%:10%
(T:T:V)
3 | Experiment 3: Seq2Seq (LSTM with 20,745(new) | 90%:10%
Attention) (T:T)
4 | Experiment 4: Transformer, OpenNMT | 23,823(new 80%:10%:10%
with numeric) | (T:T:V)

*NB: T:T:V stands for Training, Testing, and Validation sets respectively
The Amharic corpora have 20,745 sentences having 248, 114 tokens (words), with an average of
12 words per sentence which has 1,217,793 characters without line ending, 39437 Types, with the
longest sentence having 142 words and the shortest sentence with 1 word. Similarly, the Ge’ez
corpora have 20,745 sentences having 242,946 words, with an average of 12 words per sentence

and 1,166,242 characters without line ending, with the longest sentence with 152 words and the

Page 78 of 119

shortest sentence with 1 word. The other corpus types and their experimental detail shown below
in table 5.3.

Table 5.3The Ingeth of sentence, token and type used for each experiment

Total corpus Percentage .
P - . g Ge’ez Ambharic
Geez Amharic Split
Sentence | Token | Type | Token | Type Sentence | Token | Type | Sentence | Token | Type
= - 163,321 | 34,229 | 166,131 | 37,672 Training 11,067 | 129,828 | 29,601 | 11,067 | 132,468 | 32,584
;i g 13,833 788,652 819,908 Testing 1,383 16,657 | 4,860 1,383 16,574 | 5,052
w e characters characters Validation 1,383 16,836 | 6,159 1,383 17,089 | 6,605
= o 242,946 | 36,050 | 248,114 | 39,437 Training 16,596 | 201,936 | 34,983 | 16,596 | 205,235 | 38,345
§ § 20,745 1,166,242 1,217,793 Testing 2,075 26,630 | 9,594 2,075 27,936 | 10,115
w £ characters characters Validation 2,075 14,380 | 5,248 2,075 14,943 | 5,772
- 3 248,551 | 38,047 | 253,733 | 40,489 Training 19,059 | 199,885 | 35,974 | 19,059 | 203,184 | 38,184
[T n
o c© | 23,823 Testing 2,382 30,300 | 10,177 2,382 31,344 | 10,740
x @ 1,190,746 1,236,735 —
w e Validation 2,382 18,366 | 6,345 2,382 19,205 | 7,064

Evaluation Metrics: We used both automatic and manual evaluation metrics for this experiment.
Mainly a standard BLEU score is used to evaluate our training results and to be comparable with
the previous researches. However, we also used linguist manual evaluators after the models
generate the final translated texts.

Experiment 1: In this experiment, we used a total of 13,833 parallel sentences (the old corpus
with 13,787 with 46 added parallel sentences) to test how far the NMTs are from the typical SMT
model reported by [2]. To conduct this experiment we used the OpenNMT model, with a standard
Sequential LSTM neural network architecture. Moreover, the dataset was split into three different
filess: as explained in section 5.2, with 84% training, 8% test, and 8% validation sets for each
Ge’ez and Ambharic language after trying different percentage splits. That means the corpus was
split into 11619, 1107, and 1107 parallel sentences for training, testing, and validation sets
respectively. This is why because the dataset we have used in the experiment is smaller than what
the deep neural networks need. We have tried different dataset splitting ratios such as the common
MT dataset split method with 80%, 10%, and 10% for training, testing, and validation respectively.

However, the result was not that much better (a BLEU score less than 17) as the corpus size is

51 Namely am-train.txt, am-test.txt, and am-test.txt for Amharic as well, ge-train.txt, ge-test.txt, and ge-test.txt for
Ge’ez coprus

Page 79 of 119

small and the training set should have a sufficient amount of parallel sentences for the model. We
observed that when the training and testing sets are too large (>15%) and too small (<5%) the
model decreases its learning capability and results in poor translation quality.

In the beginning, before preprocessing and Amharic normalization have been applied, we have
conducted the first experiment with the 13, 833 parallel sentences. After this uncleaned corpus has
been feed to OpenNMT, we got BLEU scores of 1.2 and 1.9 from Ge’ez to Amharic and vice
versa. On the other hand, after preprocessing and the Amharic normalization are applied, 15.79
and 16.94 are achieved for Ge’ez to Amharic and Amharic to Ge’ez with 2 hidden layers, 500
neurons, and 10000 training steps. During this experiment, we observed that the Neural Networks
have an advisable training rate and translation quality than SMT models achieved by Tadesse [2]
which were the BLEU scores of 15.14 and 16.15. Even though it is difficult to compare both
models with this small amount of corpus [23], the new sequential OpenNMT showed an
amendment result over the previous SMT results with a BLEU score of 0.65 and 0.79 from Ge’ez
to Amharic and Ambharic to Ge’ez that is 2.46% and 4.66% improvement respectively.

The following snapshots, (a), (b), and (c) in Figure 5.2 shows the training and result of the
experiment. More than 30 thousand vocabulary size, 2 hidden layers with 500 hidden neurons, a

dropout of 0.3, and a SoftMax activation function were used as shown in Figure (a).

Page 80 of 119

)
)
)

)
)
)

)

M — -)

[2821-86-85 17:54:57,144 INFO]

[2821-86-85 17:54:57,144 INFO]

[2821-86-85 17:54:57,144 INFO] Building model...
[2821-86-85 17:55:88,598 INFO] MMTModel(

(encoder): RNNEncoder(

(embeddings): Embeddings(

(make_smbedding): Sequential(
(emb_luts): Elementwise(
(8): Embedding(3392e, 588, padding_idx=1)

(attn): GlobalAttention(
(linear_in): Linear(in_features=580, out_features=58@, bias=False)

W

‘, ! onmt_train --data /NMT_Code/MyDrive/NMT_Code/OpenNMT-py/0ldCorpus/model2am2ge/am-ge --save_model /NMT_Code/MyDrive/NMT_Code/

* src vocab size = 33828
* tgt vocab size = 38985

(rnn): LSTM(58@, 588, num_layers=2, dropout=8.3)

)
(decoder): InputFeedRNNDecoder(
(embeddings): Embeddings(
(make_embedding): Sequential(
(emb_luts): Elementwise(
(8): Embedding(3e%@5, 588, padding_idx=1)

(dropout): Dropout(p=e.3, inplace=False)
(rnn): StackedLSTM(
(dropout): Dropout(p=8.3, inplace=False)
(layers): Modulelist(
(8): LsTMCell(108@, 588)
(1): LsTMC211l(588, 588)

(@)

Again, as shown in Figure (b), the training epoch is iterating every 50 steps, more than 10 thousand

tokens are processed per second, and the accuracy of each iteration is calculated at each time step.

T T T F T T FF ¥ T T T
c, [2821-86-85 18:86:06,919 INFO] Step 9258/1688@; acc: 77.26; ppl: 2.43; xent: 8.89; 1r: 1.e6ee8; 118e9/11446 tok/s; 658 s4
[2021-86-85 18:@6:06,919 INFO] Loading dataset from /NMT_Code/MyDrive/NMT_Code/OpenNMT-py/0ldCorpus/model2am2ge/am-ge.train.@
[2821-86-85 18:86:€7,236 INFO] number of examples: 11785
[2021-86-85 18:@6:1@,623 INFO] Step 53e@/1868@; acc: 79.16; ppl: 2.2%9; xent: 6.83; 1lr: 1.98808@; 16313/18897 tok/s; 662 =4
[2821-86-85 18:86:14,876 INFO] Step 9358/1688@; acc: 78.92; ppl: 2.2%; xent: 8.83; 1r: 1.e@ee8; 11289/12223 tok/s; 665 s4
[2821-86-85 18:86:17,659 INFO] Step 94@8/1688@; acc: 78.56; ppl: 2.33; xent: 8.85; 1r: 1.208e8; 18651/11458 tok/s; 669 s4
[2021-86-85 18:@6:28,235 INFO] Loading dataset from /NMT_Code/MyDrive/NMT_Code/OpenNMT-py/0ldCorpus/model2am2ge/am-ge.train.@
[2821-86-85 18:86:28,548 INFO] number of examples: 11785
[2021-86-85 18:86:21,576 INFO] Step 545@/1868@; acc: 78.78; ppl: 2.28; xent: 6.83; 1r: 1.9880@; 16183/18673 tok/s; 673 =4
[2821-86-85 18:86:25,866 INFO] Step 95e8/1688@; acc: 78.99; ppl: 2.2%; xent: 8.83; 1r: 1.e@ee8; 11196/11858 tok/s; 676 s4
[2821-86-85 18:86:28,465 INFO] Step 9558/1688@; acc: 81.27; ppl: 2.88; xent: 8.73; 1r: 1.e0ee8; 11818/11944 tok/s; 586 s4
[2821-86-85 18:86:32,875 INFO] Step 96@8/1e88@; acc: 79.31; ppl: 2.25; xent: 8.81; 1r: 1.20808; 18896/11368 tok/s; 583 s4
[2021-86-85 18:@6:33,568 INFO] Loading dataset from /NMT_Code/MyDrive/NMT_Code/OpenNMT-py/0ldCorpus/model2am2ge/am-ge.train.@
[2021-86-85 18:@6:33,887 INFO] number of examples: 11785
[2821-86-85 18:86:35,918 INFO] Step 9658/1€88@; acc: 79.59; ppl: 2.28; xent: 8.79; lr: 1.208e8; 18155/18688 tok/s; 687 s4
[2021-86-85 18:@6:39,430 INFO] Step 97ee@/1808@; acc: 79.54; ppl: 2.23; xent: ©0.88; lr: 1.0000@; 11140/12859 tok/s; 591 =4
[2821-86-85 18:86:42,745 INFO] Step 9758/1€88@; acc: 82.37; ppl: 1.87; xent: 8.68; 1r: 1.eeee8; 11114/11892 tok/s; 594 s4
[2821-86-85 18:86:46,589 INFO] Step 98@@/1e88@; acc: 78.79; ppl: 2.2%; xent: 8.83; 1r: 1.e06e8; 18911/11427 tok/s; 698 =4
[2821-86-85 18:86:46,923 INFO] Loading dataset from /NMT_Code/MyDrive/NMT_Code/OpenNMT-py/0ldCorpus/model2am2ge/am-ge.train.@
[2821-86-85 18:86:47,238 INFO] number of examples: 11785
[2021-86-05 18:@6:5@,262 INFO] Step 985@/1808@; acc: 81.24; ppl: 2.1@; xent: 6.74; 1lr: 1.00008; 10260/10871 tok/s; 782 =9
[2821-86-85 18:86:53,724 INFO] Step 9%@8/1e88@; acc: 88.21; ppl: 2.16; xent: 8.77; 1r: 1.eeeea; 11228/12112 tok/s; 785 s4
[2821-86-85 18:86:57,236 INFO] Step 9958/1688@; acc: 88.33; ppl: 2.14; xent: 8.76; 1lr: 1.20008; 182€4/11683 tok/s; 789 =4
[2821-86-85 18:87:88,273 INFO] Loading dataset from /NMT_Code/MyDrive/NMT_Code/OpenNMT-py/0ldCorpus/model2am2ge/am-ge.train.@
[2821-86-85 18:87:€8,581 INFO] number of examples: 11785
[2021-86-85 18:@7:@1,251 INFO] Step leeee/leeee; acc: 88.28; ppl: 2.13; xent: @.76; lr: 1.80000; 18021/18374 tok/s; 713 4
[2021-86-85 18:@7:01,251 INFO] Loading dataset from /NMT_Code/MyDrive/NMT_Code/OpenNMT-py/0ldCorpus/model2am2ge/am-ge.valid.@
[2821-86-85 18:87:01,268 INFO] number of examples: 1681
[2021-86-85 18:@7:81,767 INFO] Validation perplexity: 158172
[2821-86-85 18:87:01,767 INFO] Validation accuracy: 14.276
[2@21-@6-85 18:087:81,958 INFO] Saving checkpoint /NMT_Code/MyDrive/NMT_Code/OpenNMT-py/0ldCorpus/model2am2ge/ethic-ge-am-mode)

(b)

Page 81 of 119

Finally, after the training is completed, the model starts to predict translation patterns based on
what it has learned before. Figure (c) shows some of the predicted Amharic output sentences of

the model given a Ge’ez corpus as a source language.

[] [2821-85-18 28:23:58,286 INFO]

PRED 4: %A@ hhy3T AEF “LARFT A1 PRLILPR@-T PaATY AF %87 PARFEMD- PAN°T AF 96 POASFT AUANTTT
PRED SCORE: -6.1937

[2021-85-18 28:23:58,286 INFO]

SENT 5: ['enaf+', "@At+', 'ed®ha’, "hiET, TASHAT]
PRED 5: FaM™ThaT &4F fF17 AT naf+y

PRED SCORE: -8.@994

[2021-85-18 28:23:50,286 INFO]

SENT 6: ['@@ARR', '424', 'dkA&EH', 'OLATER, COARE', 'AcMRA]
PRED 6: 38 A%AD héidHT CART MATI SFRAT OART

PRED SCORE: -1.1154

[2021-85-18 28:23:58,286 INFO]

SENT 7: ['@R&f', "@ARE", "Afdd’, "@ALTIA’, '@ASS", A", "Ré%’, 'A%a@', "hA', "+@A&T, “aed’, "0fRRZ', "DEATT]
PRED 7: AUANTIP fo-T F3AF7 $47 @ART AM19T RC PHOAGAT PRA0- AET RIHU GFO-

PRED SCORE: -@.7795

[2021-85-18 28:23:58,286 INFO]

SENT 8: ['®w~h', '%Ac-', '£28', ‘GRS, ‘Omnt', 'Wa', ‘ad', 'oOw’, 'RWAc’, 'emrs’, W', 'HATZe', 'ofPec’, 'heat',
PRED 8: BA4@-® Tipb} AGH ACTT NP0M AT@AT ACTA OFCT ORS ANFCE AT PAD ¥ RIRHE T AOPACA ARCY AMFC-

PRED SCORE: -5.6153

[2021-85-18 28:23:58,287 INFO]

SENT 2: [‘hhem', "', "7PPem’, ‘@rlwke’, s, Cwud’, OAM, Camt, e]
PRED 9: AXMATE ALSGE-FI® AFPAN ARNFCT PFOENT® AfPAD S

PRED SCORE: -8.2754

SENT 4: ["@i~h", "#ek’, "RWEP, "R, "RPAL', 'NCRY, ‘A4E0T, @A, kT, "ILTPE', T@RATT, "OA+T, 457, T@AR', "AmAT,

" B

"Wt

2

(©)
Figure 5.2 Snapshot of OpenNMT (a) training, (b) loss, and (c) output
Experiment 2: In this trial, we conducted two sub experiments with the written Transformer
model and OpenNMT. The first experiment was conducted using the available optimum corpus
(20,745)s2 parallel sentences with a split ratio of 80% training, 10% of testing, and 10% of
validation sets. That is an old preprocessed corpus plus new 6,958 added parallel sentences. The
corpus is prepared under distinct single text files, labeled “Geez-Amharic.txt” and “Amharic-
Ge’ez.txt”, having a parallel sentence with a “\t” delimiter in between both languages. We feed
this datasetss for the state-of-the-art architecture, the Transformer, with the following hyper-

parameters.

52 We put the corpus we have used for this study at this Git Address: Geez-Amharic-DS/README.md at main -
Amdework21/Geez-Ambharic-DS (github.com)
53 In this thesis, dataset indicates a bilingual parallel Corpus.

Page 82 of 119

https://github.com/Amdework21/Geez-Amharic-DS/blob/main/README.md
https://github.com/Amdework21/Geez-Amharic-DS/blob/main/README.md

+ o B 9N

° num_layers = 4
d_model = 128
dff = 512
num_heads = 8

input_vocab_size = geez_ sentence_tokenizer.vocab_size + 2
target vocab size = amharic_sentence tokenizer.vocab size + 2
dropout_rate = 8.1

Figure 5.3 Hyper-parameters of the Transformer model

The values of the parameters from the image are initial and we adjusted them with different values
in different experiments. We overserved that once the number of layers (num_layers) is increased
the training time and the result are increased as well.

We experimented with the Transformer model with the default parameters having only 2 hidden
layers but shown smaller BLEU scores of 19.8 and 24.8 from Ge’ez to Amharic and Ambharic to
Ge’ez. Once the number of the hidden layers has increased the result is also increased. As a result,
with 4 hidden layers, a BLEU score of 22.9 and 29.7 was achieved from Ge’ez to Amharic and
vise versa. The state-of-the-art optimizer, Adaptive Moment Estimation (Adam) was used because
it is the best among the adaptive optimizers and its simplicity of implementation. Besides,
Rectified Linear Unit (ReLu) activation function is used as a threshold value in hidden layers and
a Softmax activation function is used in the Decoders output. Because the ReL.U function is faster
to compute and is a general activation function that is used in most cases these days. As well,
SoftMax is helpful in the output probabilities range.

The second experiment was conducted with OpenNMT using the same amount of corpus size.
Why we used OpenNMT is because, it is a product-ready model, verified by many companies, and
in order to ensure our model is acceptable or reliable based on its result.

As the OpenNMT requires separated text files for each training, testing, and validation sets, we
split the corpus into three distinct files with 80%, 10%, and 10% for training, testing, and validation
sets respectively as of in the first sub-experiment. Here the corpus size is a bit larger than the size
of the corpus used in experiment 1 and we had to try a different percentage split ratio. Even so, we
had tried to use the percentage split ratio of experiment 1 for this experiment. However, the result
decreases and we have tried any other dataset split ratios up and down. The 80%, 10%, and 10%

split for training, testing, and validation respectively attained better results.

Page 83 of 119

Consequently, we got BLEU scores of 21.7 and 28.2 from Ge’ez to Amharic and from Amharic to

Ge’ez respectively on OpenNMT (same hyper-parameters with Transformer).

[13]
[20821-86-85 19:080:41,828 INFO] PRED AVG SCORE: -8.6759, PRED PPL: 1.9658

[14] ! pip install sacrebleu

Collecting sacrebleu
Downloading https://files.pythonhosted.org/packages/7e/57/8c7cadel1a126189dab0Cc10951018bd@81deatbbd25f24b77187756eaa7 /sacrabl:
| | 61kB 5.4MB/s
Collecting portalocker==2.8.8
Downloading https://files.pythonhosted.org/packages/89/a6/3814b718720738046870288252ebf214d72166adf656ba7d4bf14759a86a/portalo
Installing collected packages: portalocker, sacrebleu
Successfully installed portalocker-2.8.@ sacrebleu-1.5.1

[15] ! sacrebleu /NMT_Code/MyDrive/NMT_Code/ge-am/ge-test.txt < /NMT_Code/MyDrive/NMT Code/ge-am/run/predicted.txt

BLEU+case.mixed+numrefs.l+smooth.exp+tok.13a+version.1.5.1 = 28.2 56.4/41.8/33.7/28.@ (BP = 8.731 ratioc = 8.762 hyp_len = 18304

3

[16] # from google.colab import files
files.download("/NMT_Code/MyDrive/NMT_Code/ge-am/predicted.txt")

[17] wuser_input= input('Enter your sentence: ')
%cd /NMT_Code/MyDrive/NMT_Code/ge-am/run
= open(user-input.txt’, ‘'w")
f.write(user_input)

Figure 5.4 Results shown by the OpenNMT model with the new corpus

According to [67] Even though the capability of Transformer models under low-resource
conditions has not been fully investigated yet, different subsets of the IWSLT!* training data show
that their effectiveness under low-resource conditions is highly dependent on the hyper-parameter
settings. Hence in this experiment, the Transformer model achieved a higher result than the
OpenNMT model.

Experiment 3: The third experiment was conducted using the same corpus size of experiment 2
(20,745 parallel sentences) with 90% and 10% for training and testing sets respectively in a written
seg2seq (LSTM encoder-decoder) with the help of an attention mechanism. This percentage split
ratio is also selected after different exhaustive trials of other ratios. The training process and some

of the hyper-parameters used are shown in Figure 5.5.

Page 84 of 119

+ Code + Text

?» ALY ACTERF T (FLF Te KoMUY ACOE YWLACFF ATOT AN
© - cen aare aper aman AARDR PP e HIE 204

< @EL ANGATD A@OF AMTL: AhSJE OIS O At <EOS>
> KIMANARC 20001 RIEPT ARoFrr OIRPE
= hIANAL 2A0A hE ILChe™ Ao
< ALANMAC KA PATNEA hIANAC @Phtndh <E0S>
» AALANACT B8 RO KWP PRLET NRE AMdd ATFAr Ad
= DELMT™ RALANAC S8 FOCT ®Sp- ATNANT ATPEC @it ki
< DELME RAHANAC BB POCE @G hANRNF @t AFPEC <EOS>
> hALANAC AP ARBIS ATLAE FECOTT &fld ARLTATE- AANATO-T®

= OHIL AMHLANAL AR OANALE AdBA HTIAD GRANAE™
< OMIL AMLATAC AR EANAAE AJBA HTIAN @RANA™ <EOS>

Iter: 95

Learning Rate: 1

Time: 8h 2m 6s

Train Loss: ©.9572288827598572

[1 1s

"Geez-Amharic (1).txt’
Geez-Amharic.txt
sample_data/
testdata.Geez-Amharic_trim.18_vocab.20@0@_directions.2_layers.2_hidden.44@_dropout.8.2_learningrate.l_batch.32_epochs.18@.png
testdata.Geez-Amharic_trim.1@_vocab.2888@_directions.2_layers.2_hidden.44@_dropout.e.2_learningrate.l_batch.32_epochs.18@.txt

[1 from google.colab import files

Figure 5.5 Output results shown by the Seq2Seq model with the new corpus

The seg2seq model with attention has used two hidden layers with the hidden neuron size of 440,
dropout of 0.2, a batch size of 32 for the training set and test set (1 in case of CPU), 100 number
of epochs, and 1 initial learning rate with Stochastic gradient descent (SGD) optimizer. SGD was
selected because the increased model update frequency can result in faster learning in Seq2Seq
models and it is simple to understand and implement. Here also the ReLu is used as an activation
function. After many changes of hyper-parameters and trials, using the above hyper-parameters
finally, the model takes 10h 46m 33s (on CPU) and only Oh 30m 7s on Colab’s GPU for training.
After training the model with the aforementioned hyper-parameters, it results in a BLEU score of
19.3 and 23.4 from Ge’ez to Amharic and vice versa. This indicates the written Seg2seq (LSTM
encoder-decoder) has achieved a smaller BLEU score than the results of OpenNMT with a
difference of 2.4 (11.05%) and 4.8 (17.02%) and a smaller BLEU score than the results of the
Transformer with a difference of 3.6 (15.72%) and 6.3 (21.21%) from Ge’ez to Amharic and
Ambaric to Ge’ez as shown in Experiment 2. We have tried to figure out why this much difference

happened between the written Seq2seq model and the seg2seq of OpenNMT. Yet, we found no

Page 85 of 119

clear reason for that; it could be the unbalanced percentage split of the dataset, the difference of
unknown hyperparameters, and or the hardware facilities they run on.

Experiment 4: The last experiment was conducted with the addition of more numeric corpora on
the available optimum corpus (The 20,745 parallel sentences). The numeric dataset was prepared
manually from Ge’ez books and has 3,078 parallel Ge’ez-Latin numbers with their description.
The numeric dataset looks like as shown in Figure 5.6. The aim of preparing these numeric corpora
was to handle the numeric translations. Because Ge’ez language mostly uses numbers and numeral
descriptions for days, names, and other quantitative things. For example, “Aa7%H g ik OAH Pk B
LULAN NANAT DR FDhS NavAbt::s, (enze 1 (ahddu) Selesitu (3) we'inize 3tu (Selesitu) 1 (ahadu)
yiselesu be’akalati weyitiwehadu bemelekot)” meaning (When they are one, three, when they are
three, one, When they are three in body, they become one in divinity), and “8kss A%vt aPZh A9°
thcate7: (2°¢ anisiti mets'i’a I'm bétekirisitiyan)”, meaning (two girls come from church) are

some instances of Ge’ez sentences with numeral description.

0 0 Fia 111 ¥ia 111

AN RC 359 goz 111 fioz 111

: 1 60 oF owlE OAhE TF AdG MIE PoF oWCk OAMS TF Khe ML

Ah® RIZ ¢ BIE 112 7IE 112

Ahf MIE KR ¢ meg 112 o 112

PAE ML 363 ot owCk OhAkk ®F Adg UAT ot owlk OhaE TR ANG AT

A094. GUEaDZP 64 mr 113 ar 113

ATE WY \ fiof 113 e 113

2 5 66 0% owlk OWANE ®E KNG dhE ot owlk BOwANE S Y VAP ES
32 1z { ey 114 fiog 114

#3992 $8Y g8m 114 m 114

$R098, KIOT 369 96F owlk OACNOE @% KNG AeT Po6F owlk OACNO+E a$ xhé AT
. 2 37 Fie 115 a7y 115

nan UAT fez 115 @z 115

nanE AT ot owCk @IPhE @ ke APhF] oot owCk ®I°Nk 0% AN ATONF
NN LAY m 116 5 m 116

NASe A4 e 116 4 moi 116

wHe AtE 0% owlE NN a@% xé NENE] Po6F owlk NN+ af khé AEhF
:L i m 117 6 m 117

e ¥ o 117 g 117

B B : POt owCk oAfot @®E whe AN PoF owCk ®NN0F @F A ANF
£, 3 9 mE 118) m 118

wAhE AhF) mos 118 , Fox: 118

WAl (e | 6% owCk OGN ™% AhG NPTF 3 POT owlE OATYE % ANG NFOVH
whir AT 3 g 119 2 m 119

WAL AT giog 119 giog 119

L) . |384 wer owck othok o Ane HAVE 1 ot owCk _othok OF A HVE

Figure 5.6 The numeric corpus

After adding the numeric dataset to the available corpus, We conducted two separate experiments
with the developed Transformer model and the OpenNMT model using similar hyperparameters

54 ATH hch% WANE ORTH wWAlE A 2PB0G (hhAT ORFOHME. (1PAh e = A28 AT 00T O0F AR A28 (AN
OOt (WP NePADT AT RUPTAE TINT 10
s5 It reads like hak (kili’é) which means two

Page 86 of 119

and percentage split of experiment 2. Thus, we got a BLEU score of 11.2 and 18.4 from Ge’ez to
Ambharic and vice versa on OPenNMT. Besides, a BLEU score of 16.5 and 20.1 from Ge’ez to
Ambharic and from Amharic to Ge’ez on the proposed Transformer model. Here as the result shows,
after the numeric corpus has been added to the existing corpus the BLEU score is decreased
incredibly. That is a -48.38% and -34.75% from Ge’ez to Amharic and vice versa on OpenNMT
and a -27.95% and -32.32% from Ge’ez to Amharic and vice versa on the Transformer model.
Hence, the models treated the numeral dataset as noise. However, even though the BLEU score is
degraded, the translation quality of the test set was not bad as per the linguist's rough evaluation.
Whereas the numeric values were unknown tokens and not detected at all. It needs further research
to handle Ge’ez numerals in translation. Maybe it is because of the small size of the numeral data
set the model was confusing. Although Google Translate started to translate some Ge’ez numerals

to Latin numbers, it is also suffering from a wrong translation of Amharic sentences with Ge’ez

numbers.
Ha Text B Documents
DETECT LANGUAGE AMHARIC ENGLISH SPANISH v Pl ENGLISH AMHARIC SPANISH v
& APF ET F ALPF 219° 3 ATPY h9AR X RNNNNNNNNNNNNNNNNINNNNININNNNINTINNIT *

1 sthonu 37 3 sthonu degimo 1 lemihoni amilaki

30/ 5000 - L D] oDz <

Send feedback

Figure 5.7 Google Translate is still suffering from mistranslating Ge'ez numeral translation

As shown in Figure 5.7 above, Google Translate is also not able to handle G’e’ez numerals
properly and these numbers forced the system to predict unknown patterns. Hence, in section 6.4
of this study, we suggested future works on Ge’ez numerals for further investigation. Finally, we
summarised the four distinct experiments in the two tables below. Table 5.2 shows the general

results obtained from the four experiments arranged based on the different types of models.

Page 87 of 119

Table 5.4 The proposed Models and their BLEU score result

, . | Hidden size of
decoder
13833(0ld) 15.79 16.94 2 18m 8s -
OpenNMT 20,745(new) 21.7 28.2 4 20m 25s -
23823(new with |y, 5 18.4 4 13m 54s :
numeric)
Sequential .
) 20,745(new) 19.3 4 with 440 10h 46m
(LSTM.W'th 234 hidden neurons 30m 7s 33s
Attention)
19.8 24.8 2 s
20,745(new) 21m:15s:5
Transformer 22.9 29.7 4 oms -
23,823(ne_/v with 165 20.1 4 28m:23s:1 i
numeric) 2ms

Again Table 5.4 below depicts the four experiments and their corresponding results arranged based

on the type of experiment conducted.

Table 5.5 The four Experiments and their BLEU score result

. . CPU
: Ge’ez to | Amharic | Hidde : Percentage GPU .
N E Model
° Xperiment ode Amharic | to Ge’ez | nsize Corpus size Split (T:T:V) Time T'em
1 | Experiment1: | OpenNMT 15.79 16.94 2 13833(0ld) 80%:10%:10% 18m 8s -
19.8 24.8 2 18m:13s:46ms | 24.8
Transformer 20,745(new) | 80%:10%:10%
2| Experiment 2: 22.9 29.7 4 21m:15s:52ms
OpenNMT 21.7 28.2 4 20,745(new) | 80%:10%:10% 20m 25s -
Seq2Seq 10h
3 | Experiment 3: | (LSTM with 19.3 23.4 4 20,745(new) | 90%:10%(T:T) Oh 30m 7s 46m
Attention) 33s
Transf 23,823
. ranstorm 1165 20.1 g | 2382308W g 10%:10% | 28m:23siioms | -
Experiment 4: er with numeric)
4 23,823(new
OpenNMT 11.2 18.4 4) . 80%:10%:10% 13m 54s -
with numeric)

Page 88 of 119

Some of these experimental results are depicted furthermore on the following histogram in Figure

5.8. The histogram shows the BLEU scores of the experiments conducted with 20,745 corpus size.

i.-
Deep Learning Models Experimented with 20,745 corpus
size for Ge'ez to Amharic & vice versa

w
W

w
o

N
w

N
o
I

M Ge'ez to Amharic

[y
o
|

B Ambharic to Ge'ez

BLEU Score
t

(=) |
|

OpenNMT Seq2Seq Transformer
Deep Learing Models

Figure 5.8 Comparison of Deep Learning models

5.5 Linguist Evaluation

As we have already noted in the experiment (Section 5.4), we used a standard BLEU score
evaluation metric to evaluate translated results of the proposed model. Besides this automatic
evaluation, the linguist manual evaluation is also applied in order to ensure whether the proposed
model is acceptable or not. Hence, we asked five Ge’ez language experts (2 Merigetas, 1 priest,
and 2 deacons) selected purposively, to evaluate the translated Ge’ez Ambharic texts by the
OPenNMT, Seq2Seq, and Transformer models. These scholars were selected purposively because
they know Ge’ez and Amharic languages very well and sufficient knowledge of Ge’ez was
required for preparing Ge’ez and Amharic Corpus, evaluating results, and corrective actions. Table
5.5 below shows how the translated texts are prepared for manual evaluation as well Points of
Translation Quality (PTQ) and their corresponding values are listed below.

1. 9°79° Advi+teiarge =0 (Nothing Translated = 0) Or Bad Translation (abbreviated as NT)

2. NHo Adtteiarge=1 (Most not Translated =1) (abbreviated as MnT)

Page 89 of 119

3. (h&A héviteiaoge =2 (Partially not Translated = 2) (abbreviated as PnT)
4. +HCrolA T10t eFAN =3 (Almost Translated = 3) (abbreviated as AT)
5. 0thha Hcroia=4 (Correctly Translated = 4) Or Nice Translation (abbreviated as CT)

The snapshot of a sample manual evaluation is shown under Annex E, Figure E.1, and E.2.

Table 5.6 Parallel sentences prepared for manual evaluation (Translated by OpenNMT)

HCTI° et
NOPenNMT ¢+chae a/ et Points of Translation Quality (PTQ) Average

(Sentences Translated via OpenNMT) NT (0) ('\f;ﬂ ?2n)T AT@) | CT(@) | (pts)
INYH626: ['O4', '@FIC, ALY, T, IR, e, 'L Pav 2 3 3.6
'ALeP', ANGHO', W4T (40%) | (60%) (90%)
O-ZFH626: 10 ChNGHAT AT AT RAPP HTE ATNS T
ALCET 7IC
MYF627: [0+512, ', 'ORN, PV’ WALK', 'SU-, "Rk, 2 3 3.6
‘WACRA, BOIP0-L, LET, K6, BNIP0YL, DAY, (179] (40%) | (60%) (90%)

DKGF627: a0 AT ANNC &1 AP CAGhO ABT hdaaoigo
W1 ACPT LATIEA LARTI® AL N2l RAG T e +G1L D

MFT628: [DL, RANK', ‘A0, ' DARCT, 'OhHHI 2 3 2.6
'CNAP, ALCET, TIW, AOR’, ' PD-Thav, AR, hACHA', (40%) | (60%) (65%)
WL,]

DL%F628: ANLANNCI® aP0I5 ACTT (AEIOLN TOLC NHEIOLN
SCHF QAD- AC téd STo- AT o

PNYF629: [DhR', WPt 'avaht, 'O, (A, AORPar-] 1 3 1 3
O-FF629: PANFFO9° (LA AAST RILY GF@- PANG-h PTG S (20%) | (60%) | (20%) (75%)
PN%T630: [P, 'CON', N4, 'AANGHA', "BET, 'OFA(', 2 2 1 2.8
'OANCTY, 'ONCT, "HOWE, FO-ALU, 'ACLA] (40%) | (40%) | (20%) (70%)
@-%%630: LA AZT 25 4t ANCT NCTL ATHY PCOLA ALT
Cfo-
AMNGTO31: ['Lbd', ALY, 'PhA', ' DL, DAL, 'OPNY, 1 3 1 1
'DARC, 'OOKA, AT, 4, NTSRT, oW, FOAS, (20%) | (60%) | (20%) (25%)
‘angeey
Y631 P0G HI° AST AIHLY TFO- WTPFOI° 0RU-% AT ATHY
ST~ 08,079° AST ALY GF@-

Total Average | 1 3 6 12 8 2.766

(3.3%) | (10%) | (20%) | (40%) | (26.7%) | (69.15%)

*The average 69.15% is only for the six sentence pairs of this table.
Average is calculated as shown in equation 2.22 below.

L o(PTQ * ValueGivenByEvaluator)
noOfTotalEvaluators (5 here)

Average = (2.25)

For example, in Table 5.6, the average of the “IN%+881” could be calculated as 1*3 +4*4 (1
evaluator gave it 3 or AT and 4 evaluators gave it 4 or CT) divided by the total number of

evaluators, which is 5 and 19/5 will be 3.8.

Page 90 of 119

Table 5.7 Parallel sentences prepared for manual evaluation (Translated by Transformer)

TCTI° et
0 Transformer ¢-~¢3av< 9/1cTF Points of Translation Quality (PTQ) Average

(Sentences Translated via Transformers) NT (0) '(\f)”T E)Z”)T AT(@) | CT() (4pts)
MNGT88L:<hHOI° APOHE D 7 HHOE. OL ARFTu- APl 1 4 3.8
ha (20%) | (80%) | (95%)
O-%%+881: @LN, AchH: TLAD. Arie(Ot OAAFPLN A
MN%882: <INID-L79° (.LETS NALINE NELATET AL NAC 2 3 3.6
OTTU- LH A AMAOdC AT PI0- $O-Pie> (40%) | (60%) (90%)
O-L%882: PRI Nk INZ hav At AMLANMC TALAL 016.C87
DALY OO AF SOV
1% T883: <av-(LI° PATHET PO 17T PADTI° Uk hLLT> 2 3 3.6
@-g% 1883 ®AI°0 vy, PN chavu- DML, (40%) | (60%) (90%)
P%+884: <-RCI° hoINID-L75 Ne.CPT hE L8GTU- hN90-279° 3 2 3.6
AP WHET 291 hLANMAC 2020 Ad> (60%) | (40%) (90%)
@KGF8B4: MLN, TFC (4 ATHANMC HAL YT dvHO ATPAL MK
OAIPhL 4.CO7T
MN%YT885: <hlE +77V 1524 L Ak 7% AEY mART? 5 4
0tFo-- (100%) | (100%)
@-KYF885: 0777 AvHA +Och 11LA 2771 AL AolHLA Wl D-Fav
aec
PMN%t886: <hIMANMC +P1. 10 1929 hAHANC 10> 1 4 3.8
@-%%1886: hMANMC LPmPT 0Nh OATMANNC Oov (20%) | (80%) (95%)

Total Average 9 21 3.733
(30%) | (70%) (93.33%)

*NB: These two tables have only six sample sentence pairs, which are selected randomly from the

models’ output. However, the total number of sentence pairs from each model evaluated by Ge’ez

linguist is 20 (In the beginning 100 pairs of sentences were prepared but minimized to 20 based

on the evaluators' comment). Accordingly, the OpenNMT, the Transformer, and the Seq2Seq

(Encoder-Decoder) models achieved an average of 81.3%, 83.2%, and 63.1% of translation quality

from Ge’ez to Amharic and 85.2%, 86.7%, 65.5% from Ambharic to Ge’ez respectively. The

outputs of the first two models are taken from experiment 2 and that of the Seq2Seq is taken from

experiment 3. This is depicted in Table 5.5 below.

Table 5.8 Manual evaluation results compared with the BLEU score

No | Evaluation | OpenNMT (Ex2) Transformer (Ex2) Seq2Seq (Ex3)
Type G-Aand A-G G-A and A-G G-A and A-G

1 |BLEU 21.7 and 28.2 22.9 and 29.7 19.3and 23.4

2 | Manual 81.3% and 85.2% | 83.2% and 86.7% 63.1% and 65.5%

*G-A and A-G stands for Ge’ez to Amharic and Ambharic to Ge’ez respectively
As shown in table 5.7 the Transformer model achieved the higher result on both automatic and
Linguist evaluation. It improved the translation quality by 2.28% and 1.73% of the OpenNMT as
well, it improved the translation by 24.15% and 24.45% of the Seq2Seq encoder-decoder model.

Page 91 of 119

5.6 Answering Research Questions

At the beginning of this work, we have formulated three research questions to be answered after

the experiment, hence, here is their answer with the findings of the study.

QL1: “How effective are Deep Learning NMT models in MT for low resourced languages such as
Ge’ez and Amharic?” Based on the experiments, we have seen that deep learning models are
effective and efficient for low-resourced languages such as Ge’ez and Amharic, but sensitive to
hyper-parameters and quality of corpus. As compared to the previous works using the same
dataset, the deep learning models achieved the promising result by improving over 0.65 and 0.79
BLEU scores from Ge’ez to Amharic and Amharic to Ge’ez in OpenNMT. Which was an
improvement of 2.46% and 4.66% respectively.

Q2: “Which NMT algorithm is better for low resource languages like Ge’ez and Ambharic?”
Section 5.4 discussed different experiments with two state-of-the-art models namely: The Seq2Seq
or encoder-decoder (LSTM) with the help of attention and the Transformer model. The seq2seq
(encoder-decoder) models are two types: the OpenNMT tool and the Seq2Seq, written by hand.
From those models, the Transformer model outperforms the other. we have said that the capability
of Transformers in different subsets of the IWSLT?* training data showed that their effectiveness
under low-resource languages is highly dependent on the hyper-parameter settings [67]. As well,
we have observed in our experiments, the Transformer model is better for such low-resourced

languages if there is a quality corpus and more hidden layers for training.

Q3: What are the main challenges of translation between Ge’ez and Amharic? This is answered

below in section 5.7.

Page 92 of 119

5.7 Challenges of Ge’ez and Amharic during machine translation

We faced different challenges during an experiment of Ge’ez and Amharic MT. Some of them are:
Metaphors or Proverbs: Such as “A704 1 05 &&!” (anibesa nehi yene liji!) perhaps translated as,
“You are a Lion! My son” intended to say, “You are brave”. Such translations of metaphors are
yet not handled even by Google translatess. A large Ge’ez-Ambharic and vice versa proverb corpus
might be required to handle such translations.

Smooth and accentuated words: There are words, which have a different meaning when they are
spoken strongly and smoothly in both Ge’ez, such as eohz (mekan), and Amharic such as 74 (gena).
These words are not comfortable for text translation, as they have a different meaning when they
are spoken. E.g. the sentence “19 (LepM Tj@-¢-t Tav” (gena simet’a mawirati jemeru) can be
translated as “as soon as he came, they began talking” or “when X-mass came, they began talking”
based on the context and the stress of sound. This type of translation is not handled on text
translation; even Google Translate suffered from miss translating these types of sentencessz.
Improper use of Ge’ez similar letters: section 3.1.3 shows similar (-+e?h.A2£7) Letters of the
Ge’ez language, and they make words such as @°0Z > A0t and 9°dhd. > ¢C hA to have a
different meaning. We found words with improper use of characters in Ge’ez corpora. We have
tried to search and replace with the correct words as much as we can. Yet, there might be such
words existing, that lead the model to train in a wrong way.

Translation of Ge’ez numerals: As discussed in section 5.4, experiment 4, we have tried to handle
Ge’ez numeral translation by adding 3,078 parallel Ge’ez-Latin numbers. However, the translation
result was decried dramatically. We suggested this as future work for the coming researchers.
Corpus quality: Deep learning models are sensitive to hyperparameters and the training data they
have fed. However, as discussed in subsection 5.2.1 the corpus collected from the previous
researcher lacks quality. Though we have tried to fix this issue manually with linguists line by line,
it was inefficient and time-consuming, we have been unable to do the whole corpus. This makes
the training challenging for the models.

Handling of Punctuation: Because punctuations of both languages have been removed from the

corpus during preprocessing (before training), we are not able to use them on the trained model.

s6 The sentence “oLak 70 5= (misitu nibi nati=)” is translated as “His wife is a bee”, intended to say “Cleaver”
57 The sentence “ 75 .oo7) “7w¢1 Povg.” as “When he arrived, they began talking”. It didn’t understand the word
“19” (gena) is referring to X-mass, unless it is preceding to the word “n%A” (be “al) indicating the festival.

Page 93 of 119

CHAPTER SIX: CONCLUSION AND RECOMMENDATION

6.1 Overview
This chapter finalizes the whole work and gives a general conclusion about the study, contribution,

and findings of the work, and suggests some feature works for the upcoming researchers.

6.2 Conclusion

From the first chapter until now, we have seen a vast concept about machine translation and the
process of text translation from one language to another (Ge’ez to Amharic). Although there is still
work to be done, various researches including this study show that deep learning methods have
performed better quality than other machine translation approaches so far. The purpose of this
study was to design and develop a bidirectional Ge’ez-Amharic machine translation using deep-
learning-based Neural Machine Translation models. From the available NMT models, the
Transformer model is the state of the art and has a promising result over the other. Since deep
learning algorithms need a huge amount of data, a talked corpus was manually prepared and added
to the previously available dataset so it has played a great role in higher translation quality.

Four major experiments were conducted and results were recorded for all translations with BLEU
score metrics. In addition, questionnaires were prepared for Ge’ez and Amharic linguists to
evaluate the translated texts between the two languages via the proposed models. In the automatic
evaluation, the Transformer model achieved a higher result than the other models. Particularly, it
improved the translation quality by 1.2 and 1.5 BLEU scores from Ge’ez to Amharic and vice
versa over the OpenNMT model. Moreover, with the human manual evaluation, the transformer

model outperforms the OpenNMT with 5.4% translation quality.

6.3 Contribution of the Study

Even though the models trained in this study are not deployed and released (hosted) for use, we
think this study contributes numerous values for the Ge’ez and Amharic languages, their users,
and the coming researchers. We found that the Deep Learning models are good in modeling MT
algorithms for low-resourced languages such as Ge’ez and Ambharic.

Adding about 6,958 conversations and domain-specific, as well, 3,078 numeric datasets (Total

10,036) to the existing one is also another contribution.

Page 94 of 119

6.4 Future Works and Suggestions

Though our proposed model performs well on the provided corpus, it needs further improvement

to reach human-level translation. As we have noted from the above chapters, deep learning requires

a huge amount of dataset for training. In contrast, the corpus taken for this study was not enough

and cannot represent the languages. Hence, future researches should be conducted using a larger

set of corpus for better quality. If the corpus used for this study were large enough, well prepared,

and properly reviewed the proposed model would score higher results than the achieved.

The following areas could be explored further as a continuation of this study.

R/
A X4

Experimenting either by adding much more Ge’ez-Latin numeral corpora to the existing
one or by adding a real-world conversation corpus having those numbers in them may
enhance the handling of numeral translation.

The conversation corpus added for this study was too small as compared to the total. Hence
the model is biased to the dominating corpora, adding more talked corpus may improve the
translation quality.

Using other MTs with deep learning (hybrid) may enhance the translation result.

Adding multi-domain corpus for Ge’ez using OCR, Speech to Text, and manual writing
from movies, news, and other talked conversions can enhance the quality of translation.
Preparing a large Ge’ez-Amharic proverb and metaphor corpus can be used to handle
proverbs and metaphors

Next Researchers should try to add Geez language in Google Translate.

Applying semi-supervised approaches such as adding a monolingual corpus for each

language can improve the translation quality.

Page 95 of 119

[1]

(2]

(3]

[4]

(5]

(6]

[7]

(8]

(9]

[10]

[11]
[12]
[13]

[14]

[15]

[16]

[17]

References

E. Teshome, "Bidirectional English-Amharic Machine Translation: An Experiment using
Constrained Corpus," Masters Thesis summited to Addis Ababa University, Addis Ababa, 2015.

T. Kassa, "Morpheme-Based Bi-directional Ge’ez -Amharic Machine Translation, Masters Thesis
Submitted to Addis Ababa University," Addis Ababa University, Addis Ababa, 2018.

S. I. A. aTilde, "Improving SMT for Baltic languages with factored models," In Human Language
Technologies: The Baltic Perspective: Proceedings of the Fourth International Conference, Baltic
HLT IOS Press, vol. 219, p. 125, 2010.

M. D. Okpor, "Machine Translation Approaches: Issues and Challenges,” International Journal of
Computer Science Issues, vol. 11, no. 5, pp. 159-165, 2014.

"omniscien," 20 May 2021. [Online]. Available: https://omniscien.com/blog/migrate-from-smt-to-
nmt/. [Accessed 26 May 2021].

M. L. Forcada, "Making sense of neural machine translation,” John Benjamins Publishing
Company , p. 291-309, 2017 (also available as: http://orcid.org/0000-0003-0843-6442).

M. HARGRAVE, "InvestoPedia," investopedia, 30 April 2019. [Online]. Available:
https://www.investopedia.com/terms/d/deep-learning.asp. [Accessed 17 December 2019].

C. Nicholson, "Pathmind,” Pathmind, 21 Jan 2018. [Online]. Available:
https://pathmind.com/wiki/neural-network. [Accessed 23 November 2019].

Missinglink.Al, 12 Feb 2018. [Online]. Available: https://missinglink.ai/guides/neural-network-
concepts/perceptrons-and-multi-layer-perceptrons-the-artificial-neuron-at-the-core-of-deep-
learning/. [Accessed 21 Sep 2019].

C. K. OGN, "Medium,” Medium.com, 31 August 2018. [Online]. Available:
https://medium.com/@chethankumargn/artificial-intelligence-definition-types-examples-
technologies-962ea75¢c7b9b. [Accessed 17 December 2019].

W. Leslau, " Introductory Grammar of Amharic.," Wiesbaden: Harrassowitz, 2000.
h. @. h&h, P& hd. APOHD D0 OFPHIN PAT A0, A%.0 AN ACEOER 771979 0F, 1948,

merriam-webste, "merriam-webste,” merriam-webste, 1828. [Online]. Available:
https://www.merriam-webster.com/dictionary/geez. [Accessed 10 October 2019].

M. T. Bame, "Transformer Based Amharic Headline Generation Using Sub-word2Vec
Representation,”" A Thesis Submitted to the School of computing in Partial Fulfilment for the Master
of Science in Information Technology, Jimma University, Jimma, 2020.

W. L. Belcher, "wendybelcher,” 23 June 2018. [Online]. Auvailable:
https://wendybelcher.com/african-literature/african-language-literature/ethiopic-language-courses/.
[Accessed 26 May 2021].

B. Abel, "Geez to Amharic Machine Translation," Masters Thesis Submitted to Addis Ababa
University, Addis Ababa, 2018.

D. Mulugeta, "Geez to Amharic Automatic Machine Translation: A Statistical Approach, Masters
Thesis Submitted to Addis Ababa University,” Addis Ababa, 2015.

Page 96 of 119

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

opennmtGroup, "opennmt.net,” opennmt, [Online]. Available: http://opennmt.net. [Accessed 11
October 2019].

H. P. C. D. M. Minh-Thang Luong, "Effective Approaches to Attention-based Neural Machine
Translation," -, 2015.

A. Kaufmann, Using Natural Language Processing to Support Interview Analysis. PhD diss.,
Master Thesis, Friedrich-Alexander University Erlangen-Nurnberg: Department of Computer
Science Lanham, ML, 2014.

T. B. Il, Applied Natural Language Processing with Python, San Francisco, California, USA:
Apress Media LLC: Welmoed Spahr, 2018.

M. A. Chéragui, "Theoretical Overview of Machine translation," Proceedings ICWIT, vol. 1, pp.
160-169, 2012.

"Tilde," tilde, 2017. [Online]. Available: https://www.tilde.com/about/news/316. [Accessed 22
September 2019].

S. T. a. J. K. Sarkhel, "Approaches to machine translation,” Annals of Library and Information
Studies, vol. 57, pp. 388-393, 2010.

P.F.D.P.S.A.D.P.V.J. & M. R. L. Brown, "The mathematics of statistical machine translation:
Parameter estimation," Computational linguistics, 19(2), vol. 2, pp. 63-311, 1993.

N. a. B. P. Kalchbrenner, "Recurrent continuous translation models,” Association for
Computational Linguistics, no. Proceedings of the ACL Conference on Empirical Methods in
Natural Language Processing (EMNLP), pp. 1700-1709, 2013.

0. V. Q. V. L. llya Sutskever, "Sequence to Sequence Learning with Neural Networks," In
Advances in neural information processing systems, p. 3104-3112, 2014.

M. S. Z. C. Q. V. M. N. Yonghui Wu, "Google’s Neural Machine Translation System: Bridging
the Gap between Human and Machine Translation," arXiv:1609.08144v2 [cs.CL], vol. 2, 8 Oct
2016.

C. J. Dale Janssen, "TechoPedia," techopedia, 15 January 2019. [Online]. Available:
https://www.techopedia.com/definition/5967/artificial-neural-network-ann. [Accessed 17
December 2019].

Andovar, 21 July 2018. [Online]. Available: https://blog.andovar.com/machine-translation.
[Accessed 13 November 2019].

D. P. Lambert, "Iconic," Iconic, February 2019. [Online]. Available:
https://iconictranslation.com/2019/10/issue-55-word-alignment-from-neural-machine-translation/.
[Accessed 12 May 2020].

I.S. Q. V.L O.V.W. Z Minh-Thang Luong, "Addressing the Rare Word Problem in Neural
Machine Translation,” arXiv preprint arXiv 1410.8206, 2015.

R. K. Philipp Koehn, "Six Challenges for Neural Machine Translation," arXiv:1706.03872v1
[cs.CL], vol. 1,12 Jun 2017.

G.L.L.L.M.M.S.S. Xintong Li, "On the Word Alignment from Neural Machine Translation,"
in Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
Association for Computational Linguistics, Florence, Italy, August 2, 2019.

Page 97 of 119

[35]

[36]

[37]

[38]

[39]

[40]
[41]
[42]
[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

G.E.S.0.a. Y.-W. T. Hinton, "A fast learning algorithm for deep belief nets,” Neural computation
18.7, pp. 1527-1554, 2006.

J. Schmidhuber, "Deep Learning in Neural Networks: An Overview," Technical Report IDSIA-03-
14 arXiv:1404.7828v4, vol. 4, p. 85-117, 8 Oct 2014.

K. S. &. A. Zisserman, "Very deep convolutional networks for large-scale image recognition,"”
ICLR arXiv:1409.1556v6 [cs.CV], 10 Apr 2015.

K. H. X. Z. S. R. J. Sun, "Deep Residual Learning for Image Recognition," arXiv:1512.03385v1
[cs.CV] , vol. I, 10 Dec 2015.

"Encoding Source Language with Convolutional Neural Network for Machine Translation,"
Fandong Meng, Zhengdong Lu, Mingxuan Wang, Hang Li, Wenbin Jiangl Qun Liu, no. Proceedings
of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing, pp. 20-30, July 26-31, 2015.

D. Gupta, "Introduction to Recurrent Neural-Networks," Analytics Vidhya, December 7, 2017.
T. M. Y. B. Razvan Pascanu, "On the difficulty of training recurrent neural networks," 2013.

S.a.J. S. Hochreiter, "Long Short-Term Memory," Neural computation 9.8, vol. 9, no. 8, pp. 1735-
1780, 15 November 1997.

C. Olah, "Understanding LSTM Networks," 27 August 2015. [Online]. Available:
http://colah.github.io/posts/2015-08-Understanding-LSTMs/. [Accessed 22 August 2019].

K.B. V.M. C.G.D.B.F.B.H. S.a. Y. B. Cho, "Learning phrase representations using RNN
encoder-decoder for statistical machine translation,” arXiv preprint arXiv:1406.1078, no. In
Proceedings of the Empiricial Methods in Natural Language Processing (EMNLP), 2014.

D. K. C.a. Y. B. Bahdanau, "Neural machine translation by jointly learning to align and translate,"
ICLR, arXiv preprint arXiv:1409.0473, 2014.

N. a. K. S. Adaloglou, "How attention works in deep learning: understanding the attention
mechanism in sequence models," https://theaisummer.com/, no. https://theaisummer.com/attention/,
2020.

A.N.S.N.P.J.U. L. J. A.N. G. L. K. a. [. P. Vaswani, "Attention is all you need," in 31st
Conference on Neural Information Processing Systems (NIPS), Long Beach, CA, USA, pp. 5998-
6008, 2017.

T. C. K. C. G. a. D. J. Mikolov, "Efficient estimation of word representations in vector space,"
arXiv:1301.3781, 2013.

P.G.E.J. A. a. M. Bojanowski, "Enriching word vectors with subword information," Transactions
of the Association for Computational Linguistics, vol. 5, pp. 135-146, 2017.

M.O.N.G.J.D.M.J.D.C.O.L.M.L.L.Z.V.S.Yinhan Liu, "RoBERTa: A Robustly Optimized
BERT Pretraining Approach,” arXiv:1907.11692v1 [cs.CL], 26 Jul 20109.

S.R. T.W. a. W.-J. Z. Kishore Papineni, "BLEU: a Method for Automatic Evaluation of Machine
Translation,”" in Proceedings of the 40th Annual Meeting of the Association for Computational
Linguistics (ACL), Philadelphia, July 2002.

Page 98 of 119

[52]

[53]

[54]

[55]
[56]
[57]
[58]
[59]
[60]
[61]
[62]
[63]
[64]
[65]

[66]

[67]

[68]

[69]

J.Y.C. X. W. P. L. a. W. X. Zhou, "Deep recurrent models with fast-forward connections for
neural machine translation,” Transactions of the Association for Computational Linguistics, vol. 4,
pp. 371-383, 2016.

Y. Solomon, "Optimal Alignment for Bi-directional Afaan Oromo-English Statistical Machine
Translation," A Thesis Submitted in Partial Fulfillment of the Requirement for the Degree of Masters
of Science in Information Science, Addis Ababa, June, 2017.

A. Birhanu, "Bi-directional English-Afaan Oromo Machine Translation using Convolutional
Neural Network," A Thesis Submitted to the School of Graduate studies of Addis Ababa University
in Partial Fulfillment of the Requirement for the Degree of Masters of Science in Computer
Engineering, Addis Ababa, 14 October 2019.

I. G. a. H. L. Shashirekha, "Amharic-Arabic Neural Machine Translation," CS & IT-CSCP, arXiv
preprint arXiv:1912.13161, pp. 55-68, 2019.

M. M. W. a. M. Meshesha, "Experimenting Statistical Machine Translation for Ethiopic Semitic
Languages: The Case of Amharic-Tigrigna," ICST, p. 140-149, 2018.

H. Mekonnen, "Amharic-Awngi Machine Translation: An Experiment Using Statistical
Approach," IJCSE, vol. Vol.7, no. 8, pp. 2347-2693, Aug 2019.

G. T. Heyi, "Bidirectional Amharic-Afaan Oromo Machine Translation Using Hybrid Approach,"
A Thesis Submitted to the Department of Computer Science in Partial Fulfilment for the Degree of
Master of Science in Computer Science, Addis Ababa, March 2020.

aq. & Ak, AP WU, G0 ANQ: F20R TOHTLE LCET, ToeTe.

H. A&, aPC-T-APO@- HAAT-10M (MA%0 TO) PX G PE1L, ALN ANOE ATEEEL: 1CY7S AAT° , TueTs
(1996) A A. A..

A.. £ ap9PyC, a1l KAIPC 910U 09°4 @4 AAACXE, 128C: 'k 1L (., 2012 4/9°.
av_ k. 18P, PUNH 7L LAPAD- avZh&:, £NC NCYT: 4C A0t 497 2A.2+.29.9940C¢, 2010.

A. H. A. M. Jan vom Brocke, "Introduction to Design Science Research," Researchgate, pp. 1-19,
2020.

A. H. A. M. Jan vom Brocke, "Introduction to Design Science Research,” Research Gate, no. In:
vom Brocke J., Hevner A., Maedche A. (eds) Design Science Research. Cases, Cham., 2020.

T. T. M. A. R. S. C. Ken Peffers, "A Design Science Research Methodology for Information
Systems Research," Journal of Management Information Systems, vol. 24, no. 3, pp. 45-78, 2014.

J. R. Taku Kudo, "SentencePiece: A simple and language-independent subword tokenizer and
detokenizer for Neural Text Processing,”" Conference on Empirical Methods in Natural Language
Processing (System Demonstrations), pp. 66-71, 2018.

A. A. C. Monz, "Optimizing Transformer for Low-Resource Neural Machine Translation,"
arXiv:2011.02266v1 [cs.CL] 4 Nov 2020, 2020.

lios, "Medium.com," Lios Hyper translation echo system , 29 June 2018. [Online]. Available:
https://medium.com/systran-lios/what-is-opennmt-1-smt-vs-nmt-2ad56003ccOe. [Accessed 11
October 2019].

D. Demissie, "Amharic Named Entity Recognition Using Neural Word Embedding as a Feature,"
Addis Ababa University, Addis Ababa, 2017.

Page 99 of 119

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

(80]

[81]

(82]

(83]

T. Dutoit, "MonkeyLearn," 21 May 20109. [Online]. Available:
https://monkeylearn.com/sentiment-analysis/. [Accessed 16 May 2019].

A. S. Y. G. Barbara Plank, "Multilingual Part-of-Speech Tagging with Bidirectional Long Short-
Term Memory Models and Auxiliary Loss," arXiv, 2016.

L.J. G.D. L. a. H.-Y. S. Zhou, "The design and implementation of xiaoice, an empathetic social
chatbot," Computational Linguistics 46, vol. 1, pp. 51-93, 2020.

C. V. J. Million Meshesha, "Optical Character Recognition of Amharic Documents,” AJICT, vol.
I11, no. 2, pp. 53-66, 2007.

"TutorialsPoint," TutorialsPoint, 12 January 2019. [Online]. Available:
https://www.tutorialspoint.com/artificial_neural_network/artificial_neural_network_basic_concept
s.htm). [Accessed 21 September 2020].

J. Brownlee, "Machine Learning Mastery," Machine Learning Mastery Pty. Ltd, 6 August 2019.
[Online]. Available: https://machinelearningmastery.com/how-to-configure-the-number-of-layers-
and-nodes-in-a-neural-
network/#:~:text=A%20n0de%2C%20also%20called%20a,layers%20t0%20comprise%20a%20net
work.. [Accessed 7 August 2020].

a. Ng, "Coursera," [Online]. Available:
https://www.coursera.org/courses?query=neural%20networks. [Accessed 5 Jun 2019].

S.R.T.W. a. W.-J. Z. Kishore Papineni, "BLEU: a Method for Automatic Evaluation of Machine
Translation,” Proceedings of the 40th Annual Meeting of the Association for Computational
Linguistics (ACL), Philadelphia, pp. 311-318, July 2002.

M. A. Chéragui, "Theoretical Overview of Machine translation," Proceedings ICWIT, vol. 1, pp.
160-169, 2012.

av, ¢ KTD, P0H KR 11°C TNHTISL KT ap0(Le (Conversation) 0H-A%ICE €TC-1, TC &PZ, 9.9°
15 wtge.

Y. M. Omer Osman Ibrahim, "Stemming Tigrinya Words for Information Retrieval," in
Proceedings of COLING 2012, Mumbai, December 2012.

M. S. M. a. G. Donaj, Machine Translation and the Evaluation of Its Quality, IntechOpen: Recent
Trends in Computational Intelligence, September 7th, 2019.

M.-W. C. K. L. a. K. T. Jacob Devlin, "BERT: Pre-training of Deep Bidirectional Transformers
for Language Understanding," arXiv:1810.04805v2 [cs.CL], 24 May 2019.

Y. J.-D. R. a. E. J. Xin, "Deep hybrid neural network for named entity recognition,” eBay Inc, U.S.
Patent Application No. 15/692,392, 20109.

Page 100 of 119

Annex A

w

ATt

N | O

T7

eo- 3

Annex-Table A.1 Vocabulary and One-Hot encoding Vector

(a) Word Vocabulary with 10 unique words

Annex B
A 4D dense Word embedding

Annex-Table B.1 Word embedding of a sentence " /A 27 7% f@- A2+ 1/

Annex C

Krt= 23
Tr = 1.2
Lo => 0.6
W = 2.1

Annex

(b) One —Hot-Encoding Vector

0.6
0.3
0.4
0.1

1.1
-0.5
1.8
4.1

2.0
0.4
0.7
0.3

The Complete Ge’ez script arrangement. The former (a), current (b) and derived (c&d)

Annex-Table C.1 Ge'ez Script Arrangements

AR | 101 | o0 | YIAG | &6 | hTPD | AL | AND ®TC | 9100 | MO0 | “AO | SN0 | hT°Q | A0 | AN
3 A A |h |A& h A A 3 v v |1 7 3 v v
g n |0 a 0 1 |0 g A & A A A A °
F 1 * 1L D 1 q Y] F h | [| A ch |
] [4 % A 4 L, L & [ao | goe @] @y |y KR
E v v |7 ¥y 3 v v E wo e Y Y v »~o
Z ®o |o | P ® o | P 3z 2 4 6 2 & C [
7 H v [H [H t n o |H 7 a (o o [a 0. no|a
7 h | [| che ch | ch 7 ¢ ¢ & > ¢ ¢ $
B | | > b | q] n |] 0 a |0
T m |m |m |1 m T m I + t (N & t + +
B ? 2 £ 4 £ [s B |1 | > . | 3
i€ |n b [h [h . h |[b K | % G 3 7| ¢
it A & A A 0 A e I | A A |h |A& b A A
io go | ao. | @) aq o, g° i 10 h h- n n n h h
& 1 ' . q 3 7 3 g |0 o [P ® o | P
% wo e v Y v, »” |y 7 |0 0 | A 9 9 o s

Page 101 of 119

7 o |o [a & |% o |° % |0 |[H i |4 M TR
ZE & |+ & & & | |& = |f ¢ |% |[f |® e |
M (A |[& |a |4 % & |2 M | L |8 |4 [A L, & A
R 6 |e |4 q % 6 | f & |1 + |1 |2 1 a |7
x5 |+ & & & & ¢ $ 8 |m |m |[m. |1 m, T m
7€ | < 2 13 2 é C [7€ |4 A | A A % & 2
&C 0 (x . q (8 0 (O AL | & 2 I A % & 2
&6 |t |t |t |F |*E T w4 |0 |6 |4 9 9 6 | °
RE |4 4 A) % X 2 RE | & 2 é 4 bo G 3
& |T |F* |t |7 |% T |7 & |T |F* |t |7 |7% T [T
(@) (b)
Al fafald]alx[A]a[R]%[P[a]g]a]am|a[a[&[T]
(©)
Family | a0 YL | SN0 | PO | A
1 To ™ A 2 P
il “ro “r e s “p
h e I o, 0 G
¢ B P] ® P
(d)

Previous (a), Current (b), Derived (c), special derived, (d) #cP?7 1487 @LIP 4,94 £.€47 (Zirwan,

Hits 'uts ‘an weyim dik ala fidelat.)Ge ez Scripts.

ii. Ge’ez Numerals
Annex-Table C.2 Ge ez and Amharic numerals
8 g E g & % Z x i I
RO | A | DARE | wARE | ACObE | ek | R0k anok ATk ek WG
+
0 1 2 3 4 5 6 7 8 9 10
A a a g & e T 3 i3 I3 e
W | wAA | ACOG | 794 A ang o778 o PnT 0wCE PRE | T
Ph
+
20 30 40 50 60 70 80 90 100 1000 9,00
0
e Te¢ %8 el ieed Teee eoeg Teeee aeeed feees
haT | 0WCE | Th% | AT owCE | 0 ThadAT | 0vCHE e PhOLT
has | haE | has Pt Pt Thaddt | Fhaddt
(AhA) (A4 | hA hAG
) (Fhdast)
10,0 | 100,0 | 900,0 | 1000,0 | 10,000,0 | 90,000,0 | 100,000, | 1000,000, | 90,000,000, | 100,000,000,
00 00 00 00 00 00 000 000 000 000

Page 102 of 119

Annex D
I. Sentencepiece tokenizer and Detokenizer

+ Code + Text

Processing triggers for man-db (2.8.3-2ubuntue.1)

[14] import sentencepiece as spm

train sentencepiece model from ~Geez-Amharic.txt™ and makes “m.model”™ and “m.wvocab®

“m.vocab™ is just a reference. not used in the segmentation.
spm.SentencePieceTrainer.train(' --input=/NMT_Code/MyDrive/NMT_Code/ge-am/ge-train.txt --model_prefix=m --vocab_size=2868")
makes segmenter instance and loads the model file (m.model)

sp = spm.SentencePieceProcessor()

sp.load('m.model")

encode: text => id

print(sp.encode_as_pieces("m§ ahC @aT A8 EAFF Ats"))

print(sp.encode_as_ids("m¢ amc @O NE LAFRT Aivs"))

[, ", "6, C_aact, ', @ert, e, ‘A", TR, BT, O, AR, RN, AT, R, twt]

-

[3, 238, 45, 367, 3, 956, 88, 369, 413, 353, 118, 113, @, 32, 8@, 8]

° # decode: id => text
print(sp.decode_pieces(['_",
print(sp.decode_ids([3, 238, 45, 367, 3, 956, 88, 2369, 413, 353, 118, 113, e, 32, 8@, 8]))

M, e, _amct, t_, e, e, _at, R, 1, Ca, AT, FL, _a, w21

= —_ -

O» S ahc ®aT M SAFF Ats
mME amc @AT N Sk 17T AT 7T

Annex-Figure D.1 Snapshot of fragment code of Sentencepiece tokenizer and detokenizer

ii. Python Code for Preprocessing

In [3]: import re

In [4]: ##Printing a unicode character with thier code
#uni‘code_str'ing = "\u2665\u8a8C4\ubBCe" # output= WAL
This python code removes punctuations, non Geez and special characters #####E
"""Lowsrcase, trim, and remove non-letter characters (from pytorch)
def normalizeString(s):
#s = re.sub(r"=(?=\ui28@-\ul37c)", r"", s) #right

s = re.sub(r"\s(? s P, 8)

s = re.sub(r"([.!25a2])", r"", s)

s = re.sub{r"[*\wi2@80-\ul37c\s\d]", r"", s)
return s

#unicode string = "\ul280-\ul37c”

#print(unicode_string)

print{normalizeString(f"the quotation @MZ AIHANKE AKRT® OANRAE AdRA HOTRA @hANAS> from bibledid 1192 "))

print{normalizeString(f" =—hicof® 4% Ah= PLPT LR= HAI'm !!To 2334 he's AaMANACT = you re avoid!!! tl!! his error, make sure y
print(normalizeString(f"al2349MmaNdeCf™ = N!ICYT B0-7F5 A2AD NCYI4569°!! 1Py = @by ACYT = ATES6R Pris AfI AAIRAACP NCYTS @7 = "))
print{normalizeString(f" @ = @y = ®AnI'm !!To 2334 he's RAHAKCI® = you re avoid!!! t!!! his error, make sure your .tloook.:

@M AOHLANGC ARATT CANALE ASAA HTTAD CAANAC™ FrE 119
NACAF® 4@ AA PHET LH AA 2334 RIHAANRCT
R12349ANACTR NCYT BrvT AA NCYI56F0 PY @0 NCYT RT56R FY AP AGRAACT NCYTIE 077
©7F FiE omAT 2334 ATIHANARCT

Annex-Figure D.2 A Snapshot for fragment code of preprocessing

Page 103 of 119

iii. Normalization

In [17]: #method to normalize character Level missmatch such as Sug and A2
def normalize_char_level_missmatch(self,input_token):

repl=re.sub(' [¥13440]", 0", input_token)
rep2=re.sub(' [&*T]", 'v=",repl)
rep3=re.sub('[‘taf]’, "L ,rep2)
repd=re.sub(' [®=+~8]", %" ,rep3)
repS=re.sub('[4%]", 'V’ ,repd)
repé=re.sub(’'[€+0]", "P',rep5)
rep7=re.sub('[®]", 4" ,rep6)
rep8=re.sub('[=]", &' ,rep7)
rep9=re.sub("'[*%]", '@’ ,repd)
replB=re.sub([%]", 4" ,repg)
repll=re.sub(’ [*]", & ,reple)
repl2=re.sub(’[#]", h',repll)
repl3=re.sub([+]", 0" ,repl2)
repld=re.sub([340]", A" ,repl3)
repls=re.sub([¢-]", &' ,repld)
replé=re.sub(’[%]", '&",repl5)
repl7=re.sub(’[%]", &' ,replé)
repl8=re.sub('[4]", &' ,repl7)
repl8=re.sub('[#]", &' ,repls)
rep28=re.sub('[&]", 8" ,repl?)
rep2l=re.sub(’[&]", 's",rep28)
rep22=re.sub('[&]", 'L ,rep21)
rep23=re.sub(’'[&]", "% ,rep22)
rep2d=re.sub(’[&]", %' ,rep23)
rep25=re.sub(’'[&]", 4" ,rep24)
rep26=re.sub('[2]",'#",rep25)
#Normalizing words with Labialized Amharic characters such as fd£Fd or ad444 to adzd
rep27=re.sub(’ (f[FA])", "0",rep26)
rep28=re.sub(’ (e=[?4])", '8 " ,rep27)

Annex-FigUre D.3 Snapshot of fragment code of Normalization

Iv. Sample Codes from Experiments

#Fragment Code from the Transformer Model
#Importing important libraries
import time
import numpy as np
//jumped code
from sklearn.model selection import train test split
import unicodedata
import re, os, io

..// Jumped codes

Code for the encoder Layer of the Transformer

class Encoderlayer (tf.keras.layers.lLayer) :

def init (self, d model, num heads, dff, rate=0.1):

super (EncoderlLayer, self). init ()
self.mha = MultiHeadAttention (d model, num heads)
self.ffn = point wise feed forward network(d model, dff)
self.layernorml = tf.keras.layers.LayerNormalization (epsilon=1le-6)
self.layernorm2 = tf.keras.layers.LayerNormalization (epsilon=1le-6)
self.dropoutl = tf.keras.layers.Dropout (rate)

self.dropout?2 tf.keras.layers.Dropout (rate)

def call(self, x, training, mask):

Page 104 of 119

attn output, = self.mha(x,x,x,mask)# (batch size, input seq len,
d model)

attn output = self.dropoutl (attn output, training=training)

outl = self.layernorml(x + attn output) # (batch size, input se
g _len, d model)

ffn output = self.ffn(outl)# (batch size, input seqg len, d model)

ffn output = self.dropout2(ffn output, training=training)

out2 = self.layernorm2(outl + ffn output) # (batch size, input
seq len, d model)

return out2

Annex E
i Manual Translation Evaluation (For OpenNMT Model)

Annex-Figure E.1 A sample photo of the OpenNMT translation manual evaluation

Page 105 of 119

Manual Translation Evaluation (For Transformer Model)

Annex-Figure E.2 A sample photo of the Transformer translation manual evaluation

Page 106 of 119

A Bi-Directional Ge’ez-Amharic Neural Machine Translation: a Deep

@ Learning Approach

Amdework Asefa Belay

Declaration

I hereby declare that this thesis represents my own work, which has been done after registration
for the degree of Masters at Debre Berhan University and has not been previously submitted for
any other degree or professional qualification. | confirm that the work of this thesis is my own,

and all sources of materials used for the thesis have been duly acknowledged.

Name: Amdework Asefa

Signature:

Date of submission:

Place: Debre Berhan University, Debre Berhan, Ethiopia

This thesis has submitted for examination with my approval as a university advisor.

Advisor Name Signature Date

18

(2
Wondwossen Mulugeta (Phl 7 b : g%%

Page 107 of 119

