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Abstract

In this paper, we present approximate and exact solution of initial value problems of ordi-
nary differential equations (Odes) by using Differential Transform method (DTM). The concept
of differential transform and some properties of differential transform also presented.
Various examples of ordinary differential equations solved analytically and numerically, in order
to test the ability and accuracy of differential transform method we compare the numerical and
exact solution in graphically.
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Chapter 1

Introduction

1.1 Background of the study

Ordinary or partial differential equations(PDEs) are commonly encountered in several branches
of sciences including Biology, Physics, Chemistry and Mathematics [12,15]. A variety of meth-
ods, exact, approximate and purely numerical are available for the solution of differential equa-
tions. Most of these methods are computationally intensive because they are trial-and error in
nature, or need complicated symbolic computations. The differential transformation technique
is one of the numerical methods for ordinary differential equations.
The concept of differential transformation was first proposed by Zhou in 1986 [6,7,8,19] and it
was applied to solve linear and non-linear initial value problems in electric circuit analysis.

This method constructs a semi analytical numerical technique that uses Taylor series for the
solution of differential equations in the form of a polynomial. It is different from the high-order
Taylor series method which requires symbolic computation of the necessary derivatives of the
data functions. The Taylor series method is computationally time-consuming especially for
high order equations. The differential transform is an iterative procedure for obtaining analytic
Taylor series solutions of differential equations. The Differential transformation method is very
effective and powerful for solving various kinds of differential equation.

For example, it was applied to two point boundary value problems [8], to differential-algebraic
equations [4], to the KdV and mKdV equations [11], to the Schrodinger equations [13] to linear
differential equations [9] to fractional differential equations [3] and to the Riccati differential
equation [5]. Jang et al. [10] introduced the application of the concept of the differential
transformation of fixed grid size to approximate solutions of linear and non-linear initial value
problems. Abdel Hassan [1] applied the differential transformation technique of fixed grid size
to solve the higher-order initial value problems. The transformation method can be used to
evaluate the approximating solution by the finite Taylor series and by an iteration procedure
described by the transformed equations obtained from the original equation using the oper-
ations of differential transformation. The main advantage of this method is that it can be
applied directly to nonlinear ODEs as a linear.
Another important advantage is that this method is capable of greatly reducing the size of
computational work while still accurately providing the series solution with fast convergence
rate and also does not generate secular terms (noise terms) and does not need to analytical
integration as other semi-analytical numerical methods [16].

In this paper, the differential transformation technique is applied to solve initial value prob-
lems of ordinary differential equation (variable coefficient, constant coefficient, homogeneous
and non homogeneous). The method can be used to evaluate the approximating solution by an
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iteration procedure described by the transformed equation obtained from the original equation
using the operations of differential transformation. The differential transformation technique
can be used to obtain both the numerical and analytical solutions of both linear and nonlinear
differential equations. The organization of this paper is as follows:

Section (1) describes the DTM and fundamental theorems of differential transform method
in order to solve initial value problems.
In section (2), some analytical and numerical examples are presented to illustrate the efficiency
of the DTM and obtained numerical results are compared to the exact solution in graphically.
Finally, we give the conclusion.
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1.2 Statement Of The Problem

Ordinary differential equation arises in different area of applied sciences such as Engineering,
Physics and Chemistry.

But finding the solution of such problems are not easy specially nonlinear differential prob-
lems (non linearity of logarithmic, non linearity exponential) because of the difficulties that are
caused by the nonlinear terms.

There are several analytic and numerical methods of solving initial value problems of ordi-
nary differential equation. One of those methods is Taylor series method.

However, the traditional Taylor series method requires the calculation of higher order deriva-
tives, a difficult symbolic, and it takes time.

this project focused on the Differential Transformation method (DTM) applied to solve ini-
tial value problems of ordinary differential equations (variable coefficient, constant coefficient,
homogeneous and non homogeneous), since differential transform method is simple and easy to
use and produce reliable results. The method also minimize the computational difficulties of
the Taylor series method

1.3 Objectives

1.3.1 General Objective

• The main objective of this project is solving initial value problems of ordinary differential
equations by Differential Transform.

1.3.2 Specific Objectives

1. To describe the fundamental theorem with proof of Differential Transform method .

2. To demonstrate different examples of initial value problems of ordinary differential equa-
tions and show its applicability for this kind of equation.

3. To describe the basic definition of Differential Transform method.

4. To compare the exact solution with DTM to test the efficiency and the accuracy of DTM.
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1.3.3 Significance of the study

This study will be conducted basically on solution of initial value problems of ordinary differ-
ential equations.

The purpose of this paper will be understand how to solve initial value problems of ordi-
nary differential equations with the help of differential transform method.

• The main advantage of the method is that, it can be applied directly to various types
of differential and integral equations, which are linear and nonlinear, homogeneous and
non-homogeneous, with constant and with variable coefficients.

• Differential transform method is easy to handle and compute the works in less time even
when apply nonlinear differential equation.
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1.4 Preliminary

1.4.1 The Kronecker Delta

Definition 1.4.1.1: The Kronecker Delta δi,j is a function of two argument i and j.
If i and j are the same value (i.e i = j) then the function δi,j = 1, other wise the Kronecker
Delta is equal to zero.

Formally this is written by, δi,j =

{
1 if i = j.

0 if i 6= j.

Caution: Of course that the variables i and j don’t always have to be specifically the letter i
and j. They could be m and n letters or the authors what they like.
Furthermore, some authors prefer to leave out the comma entirely.

i.e δi,j = δij.

1.4.2 Differential Equation

Definition 1.4.2.1: A differential equation is an equation containing the derivatives of one
or more dependent variable, with respect to one or more independent variable. In general,
the unknown function may depend on several variables and the equation may include various
partial derivatives.
However, in this paper we consider only the differential equation for a function of a single real
variable such equations are an ordinary differential equations and may be classified as either
initial value problems (IVPs) or boundary value problems (BVPs).
As we know, most differential equations have more than one solution. For a first order differen-
tial equation, the general solution usually involves an arbitrary constant c with one particular
solution corresponding to each value of c.
What this means is that knowing a differential equation that a function y(x) satisfies is not
enough information to determine y(x).

Definition 1.4.2.2: Initial value problem The problem of finding a function satisfying
a differential equation and an initial condition is an initial value problem (IVP). In other word
a differential equation together with some specific conditions on the dependent variable and its
derivatives which are given at the same value of the independent value is Initial Value Problems.
The specific conditions are said to be initial conditions.
On the other hand, if the specific conditions are given at different values of the independent
variable, the problems known as Boundary Value Problem and the specific conditions are said
to be boundary conditions.

1.4.3 Initial-Value problem

Example for n-th order initial-value problem : An n-th order initial-value problem con-
sists of n-th order differential equation

F (x, y, y′, y′′, ...y(n))

Together with n (initial) conditions of the form

y(x0) = c0, y
′(x0) = c1, y

′′(x0) = c2, ..., y
(n−1)(x0) = cn.
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at the same value of x = x0, where F is a given function of n + 2 variables and y = y(x) is
unknown function of a real variable x.
The maximal order of the derivative y(n) in the above ordinary differential equation called the
order of the ODE.
Where x0 and c0, c1, c2, ..., cn−1 are given numbers.
Example :

y′′ + 9y = 0

y(0) = 0, y(π) = 0

Is not initial value problem; the two conditions are not the form in the definition, namely
y(x0) = α, y′(x0) = β.
Example for n-th order boundary value problem :

F (x, y, y′, y′′, ...y(n))

Together with n (initial) conditions of the form

y(x0) = c0, y
′(x0) = c1, y

′′(x1) = c2, ..., y
(n−1)(xn) = cn

At different value of x = x0, x = x1, x = x2, ..., x = xn

Definition 1.4.3.1: A differential equation which is given by in the form
an(x)y(n) + an−1(x)y(n−1) + an−2(x)y(n−2) + a1(x)y′ + a0(x)y = q(x) is a linear DE of order n.
The above DE is linear since function y and all derivatives occur only in the first power and
there are no products of y, y′, ...y(n) i.e it is linear in the dependent variable. The function ai(x)
for i = 1, 2, ..., n depend on variable x and can be arbitrary, other wise nonlinear differential
equation.

Definition 1.4.3.2: If q(x) = 0 in the above equation then the differential equation is ho-
mogeneous (differential equation is homogeneous if it has no terms that are functions of the
independent variable alone), otherwise i.e q(x) 6= 0, i.e an equation in which there are terms
that are functions of the independent variables alone then the differential equation is non-
homogeneous
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1.5 Differential transform

In this section, we introduce the concept of one dimensional differential transform and some
basic fundamental theorems .

The basic definition of one dimensional differential transform of the kth derivatives of a function
f(x) is defined as follow.
An arbitrary function f(x) can be expanded in Taylor series about x = a as:

f(x) =
∞∑
k=0

(x− a)k

k!

[ dk
dxk

f(x)
]∣∣∣
x=a

(1.1)

The particular case of Eq.(1.1) when a = 0 is given by

f(x) =
∞∑
k=0

xk

k!

[ dk
dxk

f(x)
]∣∣∣
x=0

(1.2)

Now, the differential transform is given by

F (k) =
1

k!

[ dk
dxk

f(x)
]∣∣∣
x=0

(1.3)

Where f(x) is the original function and F (k) is the transformed function and k is a set of non

negative integer and
dk

dxk
means the kth derivative with respect to x. In this paper the lower

case and upper case letters represent the original and transformed function respectively.
The Differential inverse transform of F (k) is defined as:

f(x) =
∞∑
k=0

(xk)F (k) (1.4)

Eq.(1.4) can be obtain as follow:

f(x) =
∞∑
k=0

xk

k!

[ dk
dxk

f(x)
]∣∣∣
x=0

. (1.5)

Then expand it, we get

f(x) =
x0

0!

[ d0
dx0

f(x)
]∣∣∣
x=0

+
x1

1!

[ d1
dx1

f(x)
]∣∣∣
x=0

+
x2

2!

[ d2
dx2

f(x)
]∣∣∣
x=0

... (1.6)

From Eq.(1.3), we get

F (0) =
1

0!
[
d0

dx0
f(x)]

∣∣∣
x=0

F (1) =
1

1!
[
d1

dx1
f(x)]

∣∣∣
x=0

F (2) =
1

2!
[
d2

dx2
f(x)]

∣∣∣
x=0

F (3) =
1

3!
[
d3

dx3
f(x)]

∣∣∣
x=0
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...

Since

F (k) =
1

k!
[
dk

dxk
f(x)]

∣∣∣
x=0

⇒ f(x) = x0F (0) + x1F (1) + x2F (2) + ...

f(x) =
∞∑
k=0

(xk)F (k)

It is clear that the concept of differential transform is derived from Taylor series expansion,
but the method does not evaluate symbolically. However, relative derivatives are calculated by
an iterative ways which are described by the transformed equations of the original functions.
Differential transform method is easy to handle and compute the works in less time even when
apply nonlinear differential equation.
From equation (1.2) and (1.3) the following fundamental theorem can be proved.

Theorem 1 : If f(x) = h(x) + g(x), then F (k) = H(k) +G(k)

Proof : By using the definition of differential transform

H(k) =
1

k!
dk

dxk
h(x)

∣∣∣
x=0

h(x) =
∞∑
k=0

(xk)H(k)

G(k) =
1

(k)!
dk

dxk
g(x)

∣∣∣
x=0

g(x) =
∞∑
k=0

(xk)G(k)

Now,

H(k) +G(k) =
1

(k)!
dk

dxk
h(x) +

1

(k)!
dk

dxk
g(x)

=
1

(k)!
dk

dxk
[h(x) + g(x)]

But from the hypothesis

f(x) = h(x) + g(x)

⇒ H(k) +G(k) =
1

(k)!
dk

dxk
[f(x)]

⇒ H(k) +G(k) = F (k) �

Theorem 2 : If f(x) = ch(x), then F (k) = cH(k), where c, it is a constant
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Proof : By using the definition of differential transform

h(x) =
∞∑
k=0

(xk)H(k)

F (k) = c
[ 1

(k)!
dk

dxk
h(x)

]
= cH(k) �

Theorem 3 : If f(x) = d
dx
h(x), then F (k) = (k + 1)H(k + 1)

Proof : By using the definition of differential transform

h(x) =
∞∑
k=0

(xk)H(k)

= H(0) + xH(1) + x2H(2) + x3H(3) + ...

Differentiate both sides with respect to x.

⇒ d
dx
h(x) = H(1) + 2xH(2) + 3x2H(3) + ...

=
∞∑
k=0

(xk)(k + 1)H(k + 1)

⇒ f(x) = d
dx
h(x)

=
∞∑
k=0

(xk)(k + 1)H(k + 1)

Consequently we obtain F (k) = (k + 1)H(k + 1) �

Theorem 4 : If f(x) = dn

dxn
h(x), then F (k) = (k+n)!

k!
H(k + n)

Proof : By using the definition of differential transform

h(x) =
∞∑
k=0

(xk)H(k)

= H(0) + xH(1) + x2H(2) + x3H(3) + ...

Differentiate both sides with respect to x

⇒ d
dx
h(x) = H(1) + 2xH(2) + 3x2H(3) + ...

d
dx
h(x) =

∞∑
k=0

(xk)(k + 1)H(k + 1)

d2

dx2
h(x) = 2H(2) + 6xH(3) + ...

d2

dx2
h(x) =

∞∑
k=0

(xk)(k + 1)(k + 2)H(k + 2)
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...

f(x) = dn

dxn
h(x)

=
∞∑
k=0

(xk)(k + 1)(k + 2)...(k + n)H(k + n)

We have

F (k) = (k + 1)(k + 2)...(k + n)H(k + n)

=
(k + n)!

k!
H(k + n) �

Theorem 5 : If f(x) = h(x)g(x), then F (k) =
∑∞

k=0H(m)G(k −m)

Proof :By using the definition of differential transform

f(x) =
∞∑
m=0

xmH(m)
∞∑
j=0

xjG(j)

f(x) =
∞∑
k=0

xk
k∑

m=0

H(m)G(k −m)

F (k) =
k∑

m=0

H(m)G(k −m) �

Theorem 6 : Let f(x), be an analytic function, with DT{f(x)} = F (k), then

DT{eaxf (n)(x)} =
∑k

i=0
ak

k!
(k+n−i)!
(k−i)! F (k + n− i)

Proof : Using the definition of differential transform let

F1(k) = DT{eax} =
ak

k!

F2(k) = DT{f (n)(x)} =
(k + n)!

k!
F (k + n)

Then by using theorem (5)

DT{eaxf (n)(x)} =
k∑
i=0

F1(i)F2(k − i)

⇒ DT{eaxf (n)(x)} =
k∑
i=0

ai

i!

(k + n− i)!
(k − i)!

F (k + n− i) �

Theorem 7 : If f(x) = c then, F (k) = cδ(k)
Where c is a constant and δ(k) is Kronecker delta
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Proof : By using the definition of differential transform

f(x) =
∞∑
k=0

xkF (k)

Since f(x) = c

⇒ c = F (0) + xF (1) + x2F (2) + x3F (3) + ...

From the definition of the polynomials.

F (0) = c

F (1) = F (2) = ... = 0

⇒ F (k) =

{
c if k = 0

0 if k 6= 0

⇒ F (k) = c

{
1 if k = 0

0 if k 6= 0

⇒ F (k) = cδ(k). �

Theorem 8 : If f(x) = x, then F (k) = δ(k − 1)

Proof :By using the definition of differential transform

f(x) =
∞∑
k=0

xkF (k)

Since f(x) = x

⇒ x = F (0) + xF (1) + x2F (2) + x3F (3) + ...

From the definition of the polynomials

F (1) = 1

F (0) = F (2) = ... = 0

⇒ F (k) =

{
1 if k = 1

0 if k 6= 1

⇒ F (k) =

{
1 if k − 1 = 0

0 if k − 1 6= 0

⇒ F (k) = δ(k − 1) �

Theorem 9 : If f(x) = xm, then F (k) = δ(k −m)

Proof : By using the definition of differential transform

f(x) =
∞∑
k=0

xkF (k)

Since f(x) = xm

⇒ xm = F (0) + xF (1) + x2F (2) + x3F (3) + ...+ xmF (m) + ...
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From the definition of the polynomials.

F (0) = F (1) = F (2) = ...F (m− 1) = 0 and F (m) = 1

⇒ F (k) =

{
1 if k = m

0 if k 6= m

⇒ F (k) =

{
1 if k −m = 0

0 if k −m 6= 0

⇒ F (k) = δ(k −m) �

Theorem 10 : Let f(x), be an analytic function, with DT{f(x)} = F (k),

then DT{xmf (n)(x)} =
∑k

i=0 δim
(k+n−i)!
(k−i)! F (k + n− i)

Proof : By using theorem 5
Since, DT{xm} = δkm

⇒ DT{xm} = F1(k) = δkm

F2(k) = DT{f (n)(x)} =
(k + n)!

k!
F (k + n

⇒ DT{xmf (n)(x)} =
k∑
i=0

F1(i)F2(k − i)

Therefore, DT{xmf (n)(x)} =
k∑
i=0

δim
(k + n− i)!

(k − i)!
F (k + n− i). �

Theorem 11 : If f(x) = eλx, then F (k) = λk

k!

Proof : By using the definition of differential transform

f(x) =
∞∑
k=0

xkF (k)

We use Taylor series expansion of eλx

1 + λ× x+ λ2

2!
x2 + λ3

3!
x3 + ... = F (0) + xF (1) + x2F (2) + x3F (3) + ...

F (0) = 1

F (1) = λ

F (2) =
λ2

2!

(3) =
λ3

3!

...
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F (k) =
λk

k!
�

Theorem 12 : If f(x) = (1 + x)m, then F (k) = m(m−1)...(m−k+1)
k!

Proof : By using the definition of differential transform

f(x) =
∞∑
k=0

xkF (k)

We use Binomial theorem of (1 + x)m

1 +mx+
m(m− 1)

2!
x2 +

m(m− 1)(m− 2)

3!
x3 + ... = F (0) + xF (1) + x2F (2) + ...

Then, F (0) = 1

F (1) = m

F (2) =
m(m− 1)

2!

F (3) =
m(m− 1)(m− 2)

3!

...

F (k) =
m(m− 1)(m− 2)...(m− (k − 1))

k!
�

Theorem 13 : If f(x) = sin(ωx), then F (k) = ωk

k!
sin(πk

2
)

Proof : By using the definition of differential transform

f(x) =
∞∑
k=0

xkF (k)

We have,

ωx− (ωx)3

3!
+

(ω x)5

5!
− (ωx)7

7!
+ ... = F (0) + xF (1) + x2F (2) + x3F (3) + ...

F (0) = F (2) = F (4) = F (6) = ...F (2k) = 0

F (1) = ω, F (3) = −ω
3

3!
, F (5) =

ω5

5!
, ...F (2k + 1) = (−1)k

ω(2k + 1)

(2k + 1)!

Thus we get F (k) =
ωk

k!
sin(

πk

2
) �
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Theorem 14 : If f(x) = cos(ωx), then F (k) = ωk

k!
cos πk

2
)

Proof : By using the definition of differential transform

f(x) =
∞∑
k=0

xkF (k)

We have, 1− ω2

2!
x2 +

ω4

4!
x4 − ω6

6!
x6 + ... = F (0) + xF (1) + x2F (2) + x3F (3) + ...

F (1) = F (3) = F (5) = F (7) = ...F (2k + 1) = 0

Then F (0) = 1

F (2) = −ω
2

2!

F (4) =
ω4

4!

F (6) = −ω
6

6!

...

F (2k) = (−1)k
ωk

k!

Finally, by substituting all we have F (k) =
ωk

k!
cos(

πk

2
) �
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Chapter 2

Application to differential transform
method for solving initial value
problem of ordinary differential
equations

Differential transform is widely applicable to solve many real life problems. Especially
it is useful to solve initial-value problems, integral equations and system of differential
equations. Here we can see some applications of differential transform solving ordinary
differential equations.
In this section we will show how the differential transform can be used to solve initial-value
problems of ordinary differential equations (i.e homogeneous, non homogeneous, variable
coefficient, constant coefficient, linear and nonlinear). And the numerical solution is com-
pared to the exact solution.

2.1 How to solve nonlinear function

Case 1. Exponential nonlinearity: f(y) = eay, y = y(x)
From the definition of the transform,

F (0) =
[
eay(x)

]
x=0

= eay(0) = eaY (0) (2.1)

Now, taking a differentiation of f(y) with respect to x, we get:

df(y)

dx
= aeay

dy(x)

dx
= af(y)

dy(x)

dx
(2.2)

Application of the differential transform to Eq.(2.1) gives:

(k + 1)F (k + 1) = a

k∑
m=0

(m+ 1)Y (m+ 1)F (k −m) (2.3)

Replacing k+1 by k gives:

15



F (k) = a
k−1∑
m=0

m+ 1

k
Y (m+ 1)F (k − 1−m), k ≥ 1 (2.4)

Combining Eq.(2.1) and (2.4), we obtain the recursive relationship for calculating the
function f(y) = eay:

F (k) =

{
eaY (0) if k = 0

a
∑k−1

m=0
m+1
k
Y (m+ 1)F (k − 1−m) if k ≥ 1

Case 2. Logarithmic nonlinearity: f(y) = ln(a+ by), a+ by > 0.
By the definition of transform,

F (0) =
[
ln(a+ by(x))

]
x=0

= ln(a+ by(0)) = ln(a+ bY (0)). (2.5)

Further, differentiating f(y) = ln(a+ by) with respect to x, we get:

df(y(x))

dx
=

b

a+ by

dy(x)

dx
, (2.6)

Or equivalently,

a
df(y)

dx
= b
(dy(x)

dx
− ydf(y)

dx

)
(2.7)

Take the differential transform of Eq.(2.7) to get:

aF (k + 1) = b
(
Y (k + 1)−

k∑
m=0

m+ 1

k + 1
F (m+ 1)Y (k −m)

)
(2.8)

Replacing k+1 by k yields:

aF (k) = b
(
Y (k)−

k−1∑
m=0

m+ 1

k
F (m+ 1)Y (k − 1−m)

)
, k ≥ 1 (2.9)

Substitute k=1 in to Eq.(2.9) to get:

F (1) =
b

a+ bY (0)
Y (1). (2.10)

For k ≥ 2, Eq.(2.8) can be rewritten as:

F (k) =
b

a+ bY (0)

(
Y (k)−

k−2∑
m=0

m+ 1

k
F (m+ 1)Y (k − 1−m)

)
, k ≥ 2

F (k) =


ln(a+ bY (0)) if k = 0

b
a+bY (0)

Y (1) if k = 1

b
a+bY (0)

(
Y (k)−

∑k−2
m=0

m+1
k
F (m+ 1)Y (k − 1−m)

)
if k ≥ 2
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2.1.1 Procedure to solve IVPs using Differential transform:

Given the IVP{
F (x, y, y′, y′′, ...y(n)) = 0.

y(x0) = c0, y
′(x0) = c1, y

′′(x0) = c2, ..., y
(n−1)(x0) = cn.

.

Then, to find y(x) satisfying the IVP, we use the following procedures.
Step 1: The differential transform of each term in the given differential equation is com-
puted
Step 2: The recurrence equation is obtained
Step 3: Y(0), Y(1), Y(2), Y(3), ... are calculated by the recurrence equation and given
initial condition
Step 4: Finally, these values are substituted in to y(x) =

∑∞
k=0 x

kY (k)

Example 1: Let us consider the second order nonlinear initial-value problem:

y′′(x) = 2y + ylny, y > 0, (2.11)

Subject to the initial condition

y(0) = 1, y′(0) = 0 (2.12)

Solution: Taking the differential transform of Eq.(2.11), leads to

(k + 1)(k + 2)Y (k + 2) = 2Y (k) + 4
k∑

m=0

Y (m)F (k −m) (2.13)

From the initial condition, given by Eq.(2.12)

Y (0) = 1, Y (1) = 0 (2.14)

Where F (k) is the transform function of lny

F (k) =


ln(Y (0)) if k = 0
Y (1)
Y (0)

if k = 1
Y (k)
Y (0)
−
∑k−2

m=0
m+1
kY (0)

F (m+ 1)Y (k − 1−m) if k ≥ 2

(2.15)

Substituting Eq.(2.14) and k = 0 in to Eq.(2.15) and (2.13) to get

F (0) = 0, Y (2) = 1 (2.16)

Substitute Eq.(2.14) and (2.16) and k = 1 in to Eq.(2.15) and (2.13), we have:

F (1) = 0, Y (3) = 0

Following the same recursive procedure, we obtain:

Y (4) =
1

2!
, Y (5) = 0, Y (6) =

1

3!
, Y (7) = 0, Y (8) =

1

4!
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And so on. In general, we find:

Y (2k) =
1

k!
, Y (2k + 1) = 0 k = 0, 1, 2, ...

Substituting all Y(k) in to the function y(x) =
∑∞

k=0 x
kY (k), we obtained the exact solu-

tion as:

y(x) = 1 + x2 +
1

2!
x4 +

1

3!
x6 +

1

4!
x8 + ... =

∞∑
k=0

1

k!
(x2)k = ex

2

Example 2: Let us consider the third order non homogeneous ordinary differential equa-
tion.

y′′′ + 2y′′ − y′ − 2y = ex, 0 ≤ x ≤ 3 (2.17)

Subject to initial conditions

y(0) = 1, y′(0) = 2, y′′(0) = 0 (2.18)

With exact solution

y(x) =
43

36
ex +

1

4
e−x − 4

9
e−2x +

1

6
(xex)

Solution: Taking the differential transform of (2.17), leads to

y(k+3) =
1

(k + 1)(k + 2)(k + 3)
×
[
k+1)y(k+1)−2× (k+1)(k+2)y(k+2)+2(k)+

1

k!

]
(2.19)

From the initial condition given by Eq.(2.18), we obtain:

Y (0) = 1, Y (1)) = 2, Y (2) = 0 (2.20)

Substitute Eq.(2.19) in to Eq.(2.20), and by recursive methods the results are listed as
follow.
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Y (3) =
5

6

Y (4) =
−5

24

Y (5) =
2

15

Y (6) =
−13

360

Y (7) =
59

5040

Y (8) =
−37

13440

Y (9) =
17

30240

Y (10) =
−1

9072

Y (11) =
87

4435200
...

The solution is y(x) = 1 + 2x + 5
6
x3 − 5

24
x4 + 2

15
x5 − 13

360
x6 + 59

5040
x7 − 37

13440
x8 + 17

30240
x9 −

1
9072

x10 + 87
4435200

x11 − ...

Octave Code:

> x=0:0.1:3;

> f = 43./36 ∗ exp(x) + 1./4 ∗ exp(−x)− 4./9 ∗ exp(−2 ∗ x) + 1./6 ∗ x. ∗ exp(x);

> g = 1 + 2 ∗ x+ 5./6 ∗ x.3 − 5./24 ∗ x.4 + 2./15 ∗ x.5 − 13./360 ∗ x.6 + 59./5040 ∗ x.7

−37./13440 ∗ x.8 + 17./30240 ∗ x.9 +−1./9072 ∗ x.10 + 87./4435200 ∗ x.11;

>plot(x,f,’r’,’linewidth’,2,x,g,’o’,’linewidth’,2)
> title(’comparison between the exact solution and DTM’)
>legend(’exact’, ’approximate(DTM)’)
>ylabel(’y(x)’)
>xlabel(’0 ≤ x ≤ 3′)

We obtain the following graph, that is the comparison of approximate and exact solution
of the given differential equation depend on the order of expansion using Octave.
The line (graph) in the red color indicates the actual solution, while the ring line (o)
indicates the approximate solution.
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Figure 2.1: Comparison between exact solution and 5-order DTM

Figure 2.2: Comparison between exact solution and 11-order DTM

The above two graphs show that the comparison between the exact solution and 5 and
11 order of DTM. The first graph shows that the error is large for the 5th order, but on
getting 11th order, the error is minimal for small values of x, by increasing the order of
approximation more accuracy can be obtained.
Then, we can say that the DTM is more accurate and converges to the exact solution.

Example 3 Let us consider the second order non homogeneous ordinary differential equa-
tion.

y′′ − 3y′ + 2y = 2x− 3 (2.21)

Subject to initial condition

y(0) =, y′(0) = 2 (2.22)
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Solution: Taking the differential transform of Eq.(2.21), leads to

Y (k + 2) =
1

(k + 1)(k + 2)
×
[
(k + 1)Y (k + 1)− 2Y (k) + 2δ(k − 1)− 3δ(k)

]
(2.23)

From the initial condition given by Eq.(2.22) we have

Y (0) = 1, Y (1) = 2 (2.24)

Substituting Eq.(2.23) into Eq.(2.24) and by recursive method, the results are listed as
follows

Y (2) =
1

2
=

1

2!

Y (3) =
1

6
=

1

3!

Y (4) =
1

24
=

1

4!

Y (5) =
1

120
=

1

5!

...

Therefore the closed solution can be easily written as

y(x) =
∞∑
k=0

xkY (k)

= 1 + 2x+
1

2!
x2 +

1

3!
x3 +

1

4
x4 + ...

= x+ (1 +
1

2!
x2 +

1

3!
x3 +

1

4
x4 + ...)

= x+ ex

Example 4 Let us consider the fourth order ordinary differential equation.

y(4) = ex 0 ≤ x ≤ 1. (2.25)

With initial conditions

y(0) = 3, y′(0) = 1 , y′′(0) = 5 and y′′′(0) = 1 (2.26)

The exact solution by integration and evaluation integral constant is

y(x) = 2 + 2x2 + ex = 2 + 2x2 + 1 + x+
x2

2!
+
x3

3!
+ ...

= 3 +
5

2
x2 +

1

3!
x3 + ...
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Solution: From the initial condition Eq.(2.26) we get

Y (0) = 3, Y (1) = 1, Y (2) =
5

2
and Y (3) =

1

6
(2.27)

Applying the differential transform Eq.(2.25) we get,

Y (k + 4) =
1

k!(k + 1)(k + 2)(k + 3)(k + 4)
(2.28)

Substituting Eq.(2.28) into Eq.(2.27) and by recursive method, the results are listed as
follows

Y (4) =
1

24

Y (5) =
1

120

Y (6) =
1

720

Y (7) =
1

5040

Y (8) =
1

40320

Substituting all Y (k) in to the function y(x) =
∑∞

k=0 x
kY (k), we obtained the series solu-

tion as the following.

y(x) =
∞∑
k=0

xkY (k) = Y (0)+Y (1)x+x2Y (2)+x3Y (3)+x4Y (4)+x5Y (5)+x6Y (6)+x7Y (7)+x8Y (8)+...

y(x) = 3 + x+
5

2
x2 +

1

6
x3 +

1

24
x4 +

1

120
x5 +

1

720
x6 +

1

5040
x7 +

1

40320
x8

x Exact DTM DTM error
0.1 3.1252 3.1252 0.0000
0.2 3.3014 3.3014 0.0000
0.3 3.5299 3.5299 0.0000
0.4 3.8118 3.8118 0.0000
0.5 4.1487 4.1487 0.0000
0.6 4.5421 4.5421 0.0000
0.7 4.9938 4.9938 0.0000
0.8 5.5055 5.5055 0.0000
0.9 6.0796 6.0796 0.0000
1.0 6.7183 6.7183 0.0000

Table 2.1: Numerical result of example 4
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Table 2.1 shows the comparison between results of DTM and the exact solution computed
for 8th order and selected values of x on the given interval. And also table 2.1 gives the
absolute errors between the the exact results and DTM.
We can see from table 2.1, that the errors are minimal (zero) for small values of x.
We can then say that DTM is more accurate and converges to the exact solution.

Figure 2.3: Comparison between exact solution and DTM

Example 5: Let us consider second order differential equation with variable coefficient{
y′′ + y − z′′ − 4z = 0.

y′ + z′ = cos(x) + 2 cos(2x).
. (2.29)

With the conditions {
y(0) = 0, y′(0) = 1.

z(0) = 0, z′(0) = 2.
(2.30)

The exact solution of this problem is y(x) = sin(x), z(x) = sin(2x)
Solution: Applying Differential Transform, we have

(k + 1)(k + 2)Y (k) + Y (k)− (k + 1)(k + 2)Z(k + 2)− 4Z(k) = 0.

(k + 1)Y (k + 1) + (k + 1)Z(k + 1) = 1
k!

cos(kπ
2

) + 2k+1

k!
cos(kπ

2
).

Y (0) = 0, Y (1) = 1

Z(0) = 0, Z(1) = 2

.

Consequently, we find
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Y (2) = 0, Z(2) = 0

Y (3) =
−1

3!
, Z(3) =

−8

3!
Y (4) = 0, Z(4) = 0

Y (5) =
1

5!
, Z(5) =

32

5!

Therefore, the solution is given by

y(x) = x− 1

3!
x3 +

1

5!
x5 = sin(x)

z(x) = 2x− 8

3!
+

32

5!
x5 = sin(2x)

The rate of change
dp

dt
= birth − death + immigration − migration is a conservation

equation for the population.
Where
p0 = initial population (population you that with) at time t = 0,
r= relative growth rate that is constant
t = the time the population grows.
p(t) = the population of the species at time t

2.2 Solution of the Malthus model for population growth

The simplest model (the Malthus model for population growth) has no immigration and
migration and thus the birth and death terms are proportional to p (linear). That is
dp

dt
= bp − dp, subject to the initial condition p(0) = p0 where Mathematically b and d

are positive constant and the biological meaning of b and d respectively are birth rate and
death rate of the species p.

Let us consider the first order simple growth model

dp

dt
= rp where r = b− d (2.31)

Subject to the initial condition

p(0) = p0 (2.32)

Where
dp

dt
is the rate of change of the population and p(t) be the number of individual in

a population at a time t
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Solution: Taking the differential transform of Eq.(2.31), leads to

(k + 1)P (k + 1) = rP (k)⇒ P (k + 1) =
1

k + 1

[
rP (k)

]
(2.33)

From the initial condition, given by Eq.(2.32)

P (0) = p0, (2.34)

is obtained. Substituting Eq.(2.33) in to Eq.(2.34) and by recursive method, the results
are listed as follows

P (1) = rp0,

P (2) =
1

2
r2p0

P (3) =
1

3!
r3p0

P (4) =
1

4!
r4p0

P (5) =
1

5!
r5p0

P (6) =
1

6
r6p0

...

Substituting all P(k) in to the function p(t) =
∑∞

k=0 t
kP (k), we obtained the series solu-

tion as the following

p(t) =
∞∑
k=0

tkP (k)

= p0 + p0rt+
1

2!
p0(rx)2 +

1

3!
(rx)3p0 +

1

4!
(xr)4p0 +

1

5!
(xr)5p0 +

1

6!
(xr)6p0...,

= p0(1 + rt+
1

2!
(rx)2 +

1

3!
(rx)3 +

1

4!
(xr)4 +

1

5!
(xr)5 +

1

6!
(xr)6

= p0e
rt

• Here we are not interested negative values of p since it now represents the quantity that
has to be positive to have biological relevance i.e population size.

• If the death rate exceeds the birth rate, then r < 0
Mathematically:
As t→∞, p(t)→ 0, meaning for long t, the number of human population decreases.

• If the death rate equal to the birth rate, then r = 0
Mathematically:
As t→∞, p(t)=constant, meaning for long time t the population is unchanged
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• However, if r > 0 then the population exponential growth Mathematically:
As t → ∞, p(t) → ∞, meaning for long time t, the population increases indefinitely
which is unrealistic

That result is unrealistic because as p becomes sufficiently large other factors will be will
undoubtedly come in to play, such as insufficient food or other resources.

Figure 2.4: The Malthus model for population growth: p(t) = p0e
rt

• The population of a community is known to increase at a rate proportional to the
number of people present at a time t. If the population has doubled in 6 years, how
long it will take to triple?

Solution: Let p(t) denote the population at time t. Let p(0) denote the initial population
(population at t = 0).

p(t) = Aert, where A = p(0)

Ae6r = p(6) = 2p(0) = 2A

e6r = 2 or r =
1

2
ln2

Find t when p(t) = 3A = 3p(0)

p(0)ert = 3p(0) or

3 = e
1
6
ln(2)t or

ln(3) =
(ln2)t

6
or

t =
6ln3

ln2
≈ 9.6 years approximately 9 years 6 months

Example 6: Let us consider nonlinear initial value problem

y′′ + 2(y′)2 + 8y = 0 (2.35)

With initial values
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y(0) = 0, y′(0) = 1 (2.36)

Using the definition of differential transform, we get the following recursive relation:

Y (k+2) = − 1

(k + 1)(k + 2)

[
2

k∑
m=0

(m+1)(k−m+1)Y (m+1)Y (k−m+1)+8Y (k)
]
. (2.37)

For k = 0 we have: Y (2) = −1
2

[
2(Y (1))2 + 8Y (0)

]
= −1,

For k = 1 : Y (3) = −1
6
[2(2Y (1)Y (2) + 2Y (2)Y (1)) + 8Y (1)

]
= 0

For k = 2 : Y (4) = −1
6
[2(3Y (1)Y (3) + 4(Y (2))2 + 3Y (3)Y (1)) + 8Y (2)

]
= 0

Using the same procedure finally we have, Y (k) = 0 for k = 3, 4, ..., the exact solution of
the initial value problem is:

y(x) =
∞∑
k=0

Y (k)xk = Y (0) + Y (1)x+ Y (2)x2 = x− x2

Example 7:
Consider the initial value problem

y′′ =
8y2

1 + 2x
(2.38)

y(0) = 1, y′(0) = −2 (2.39)

Eq.(2.38) can be written as

y′′ + 2xy′′ + 8f(y) = 0, f(y) = y2 (2.40)

The differential transform is then applied to obtain

(k+1)(k+2)Y (k+2)+2
k∑

m=0

(k−m+1)(k−m+2)δ(m−1)Y (k−m+2)−8F (k) = 0 (2.41)

Where F(k), are given by

F (0) = Y 2(0),

F (1) = 2Y (1)Y (0)

F (2) = Y 2(1) + 2Y (0)Y (2),

F (3) = 2[Y (0)Y (3) + Y (1)Y (2)],

F (4) = Y 2(2) + 2[Y (0)Y (4) + Y (1)Y (3)].

In this initial value problem we have the transformed initial conditions accordingly:

Y (0) = 1, Y (1) = 2, (2.42)

In view of the recurrence scheme (2.41) and (2.42) the following results are obtained for
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k = 0, 1, 2, . . . , 8:

Y (0) = 1, Y (5) = −32

Y (1) = −2, Y (6) = 64

Y (2) = 4, Y (7) = −128

Y (3) = −8, Y (8) = 256

Y (4) = 16,

The series solution is now given by

y = 1− 2x+ 4x2 − 8x3 + 16x4 − 32x5 + 64x6 − 128x7 + 256x8 + ...,

Which gives the exact solution: y =
∑∞

k=0(−2x)k = 1
1+2x
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Conclusion

In this paper, the Differential Transformation Method (DTM) has been successfully ap-
plied to find exact and approximate solution of the first, second, third and fourth order
initial value problems of ordinary differential equations (variable coefficient, constant coef-
ficient, homogeneous and non homogeneous). First, some fundamental theorems of DTM
are provided and then used to solve initial value problems of ODEs. We have obtained
approximate analytical solution of the given problem.
If the approximate solution of the given problems are compared with their analytical solu-
tions, the differential transform method is very effective and convergence are quite close.
It may be concluded that DTM is very powerful and efficient in finding analytical as well
as numerical solutions for wide classes of linear and nonlinear differential equations.
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