
 | P a g e

 DEBRE BERHAN UNIVERSITY

 COLLEGE OF COMPUTING

 DEPARTMENT OF INFORMATION SYSTEMS

TEXT-BASED LANGUAGE IDENTIFICATION FOR TYPOLOGICALLY

RELATED ETHIOPIAN LANGUAGES USING DEEP LEARNING

 BY

MIKRE GETU MIHRETE

DEBRE BERHAN, ETHIOPIA

JUNE 26, 2023

I | P a g e

 DEBRE BERHAN UNIVERSITY

 COLLEGE OF COMPUTING

 DEPARTMENT OF INFORMATION SYSTEMS

TEXT-BASED LANGUAGE IDENTIFICATION FOR TYPOLOGICALLY

RELATED ETHIOPIAN LANGUAGES USING DEEP LEARNING

BY

 MIKRE GETU MIHRETE

A THESIS SUBMITTED TO THE DEPARTMENT OF INFORMATION

SYSTEMS OF DEBRE BERHAN UNIVERSITY IN PARTIAL FULFILMENT

OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF SCIENCE IN

INFORMATION SYSTEMS

 ADVISOR

 MICHAEL MELESE (Ph.D.)

DEBRE BERHAN, ETHIOPIA

JUNE 26, 2023

II | P a g e

This is to certify that the thesis prepared by Mikre Getu Mihrete, titled: Text-Based Language

Identification for Typologically Related Ethiopian Languages Using Deep Learning and

submitted in partial fulfillment of the requirements for the degree of master of science in

information systems complies with the regulations of the university and meets the accepted

standards concerning originality and quality.

Name and signature of members of the examining board:

 Name Signature Date

Advisor: Michael Melese (Ph.D.) ______________ ______________

Internal Examiner: Kindie Biredagn (Ph.D.) ______________ ______________

External Examiner: Tibebe Beshah (Ph.D.) ______________ ______________

...

 DEBRE BERHAN UNIVERSITY

 COLLEGE OF COMPUTING

DEPARTMENT OF INFORMATION SYSTEMS

July-07-2023

June-15-2023

July-07-2023

I | P a g e

DECLARATION

This thesis has not previously been accepted for any degree and is not being concurrently

submitted in candidature for any degree in any university. I, the undersigned, declare that the

thesis is the result of my own investigation unless otherwise stated. I conducted the study

independently with the guidance and support of my research advisor. Other sources are

acknowledged with citations with clear references.

Signature: ________________________

Mikre Getu, Debre Berhan University

This thesis has been submitted for examination with my approval as a university advisor.

Advisor’s Signature: ________________________

Michael Melese (Ph.D.), Addis Ababa University

II | P a g e

ACKNOWLEDGMENT

First and foremost, I would like to thank the almighty God, for letting me through all the

difficulties. You are the one who let me finish my degree. I will keep on trusting you for my

future.

I would like to express my special appreciation and thanks to my advisor, Dr. Michael Melese

for his invaluable guidance and support throughout this research work. His expertise and

encouragement have helped me to complete this research and write this thesis. I am also

thankful for teaching me the vital lessons that helped me to work this research.

I would like to express my sincere gratitude to Dr. Kindie Biredagn and Dr. Million Meshesha

for their encouragement and for their valuable suggestions during the proposal defense that

helped me to follow the right direction in this research study. I am also thankful for teaching

me the fundamental and advanced lessons that helped me to work this research. Thank you for

spending your valuable time teaching me. I am also thankful to Alebachew Chiche (Assistant

Professor) and Birhanu Ebisa (Doctoral Candidate) for their valuable suggestions and feedback

during the defense of the research proposal.

Words cannot express my gratitude to my parents, my father Kes Getu Mihrete and my mother

Mrs. Tesfaye G/Kidan. I believe that I live in their prayers. Your prayers for me were what

sustained me this far. Their faith in me has kept my spirits and motivation high throughout this

process. I am also thankful to my brothers and sisters for encouraging me to complete this

research and for everything in my life.

Finally, I would like to thank my classmates and office mates, especially Ermiyas Abebe, for

their moral support and for everything. Thanks should also go to the post graduate digital

librarians of the Debre Berhan University for their services. I am grateful to everyone who has

supported me throughout this process.

 Mikre Getu Mihrete

June 26, 2023

III | P a g e

ABSTRACT

Today we live in a world where there are more multilingual than monolingual. There is an ever-

increasing amount of information on the world wide web that is written in different languages.

Ethiopia is a multilingual country par excellence and multiple languages are used as media of

administration, education and mass communications. But, these textual contents may not be

expressed in a monolithic format. To use such textual resources for various purposes, language

identification (LID) is an important preprocessing task for understanding, organizing and

analyzing these contents. LID is the detection of the natural language of an input text. It is also the

first necessary step to do any language-dependent natural language processing tasks. Although

text-based LID has been extensively studied, there is still no comprehensive understanding of the

factors that determine its identification accuracy. Factors such as the size of the text fragment to

be identified, the amount and variety of training data available, the classification algorithm and

the embedding techniques used. LID in very closely related languages is another unsolved problem.

Current LID applications and models are unable to accurately identify the language for given text

written in the Ge’ez script due to their similarity. The Ethiopic script is an alpha-syllabary or

abugida “አቡጊዳ” writing system used for several languages spoken in Ethiopia and Eritrea.

In this work, we presented a LID model for six typologically and phylogenetically related low-

resourced Ethiopian languages that use the Ge’ez script as their writing system; namely Amharic,

Awngi, Ge'ez, Guragigna, Tigrigna and Xamtanga. The corpus used was collected automatically

from various sources including Ethiopian mass media websites, social media, Bibles and related

publications. We used the chars2vec embedding technique as a feature and DNN model for

classification. To train and evaluate the proposed LID model, the researchers conducted several

experiments with sample texts of different lengths using the best hyperparameter setting. Finally,

the proposed LID model correctly identified the languages with an accuracy of more than 99% for

texts longer than 50 characters and an accuracy of 77.68% for texts 5 characters long. The

developed model also performed well for the out-of-vocabulary texts. In cases where languages

are closely related and texts are very short, the identification performance of the proposed model

was relatively poor. Therefore, it would be of interest to keep exploring LID models that handle

closely related languages with short texts in the future.

Keywords: Amharic, Awngi, Bag-of-Characters, Closely Related Languages, Deep Neural

Network, Ethiopic Script, Guragigna, Language Identification, Tigrigna, Xamtanga

IV | P a g e

TABLE OF CONTENTS

DECLARATION ... I

ACKNOWLEDGMENT... II

ABSTRACT ... III

LIST OF FIGURES ... VII

LIST OF TABLES .. VIII

LIST OF ALGORITHMS .. IX

LIST OF ACRONYMS AND NOTATIONS ... X

CHAPTER ONE .. 1

INTRODUCTION.. 1

1.1. Background ... 1

1.2. Motivation ... 3

1.3. Statement of the Problem .. 3

1.4. Objective of the Study .. 6

1.4.1. General Objective .. 6

1.4.2. Specific Objectives .. 6

1.5. Scope and Limitation of the Study.. 6

1.6. Significance of the Study .. 7

1.7. Organization of the Thesis .. 8

CHAPTER TWO ... 9

LITERATURE REVIEW ... 9

2.1. Overview ... 9

2.2. Natural Language .. 9

2.3. The Ethiopic Script ... 10

2.4. Typologically Related Ethiopian Languages .. 11

2.4.1. Amharic (አማርኛ) Language .. 11

2.4.2. Awngi (አውጚ) Language ... 12

2.4.3. Ge’ez (ግእዝ) Language .. 13

2.4.4. Guragigna (ጉራጌኛ) Language ... 14

2.4.5. Tigrigna (ትግርኛ) Language ... 16

2.4.6. Xamtanga (ኽምጣጘ) Language .. 17

2.5. Natural Language Processing ... 18

2.5.1. Text Classification ... 18

2.5.2. Language Identification ... 19

V | P a g e

2.6. Language Identification Approaches .. 19

2.6.1. Embedding Techniques .. 20

2.6.2. Classification Techniques .. 25

2.6.3. Evaluation Techniques ... 37

2.7. Related Works ... 40

2.7.1. Summary of Related Works ... 43

2.8. Research Gaps ... 45

CHAPTER THREE ... 46

METHODOLOGY .. 46

3.1. Overview ... 46

3.2. The Proposed Research Design .. 46

3.3. The Proposed System Architecture ... 47

3.3.1. Data Collection .. 49

3.3.2. Text Preprocessing ... 50

3.3.3. Text Representation ... 54

3.3.4. Data Scaling ... 57

3.3.5. Dataset Splitting ... 59

3.3.6. The Proposed Deep Neural Network Model .. 61

3.3.7. Model Training .. 65

3.3.8. Model Evaluation ... 68

CHAPTER FOUR .. 69

EXPERIMENTAL RESULTS AND DISCUSSION .. 69

4.1. Overview ... 69

4.2. Experimental Setup ... 69

4.2.1. Hardware and Software Tools ... 69

4.2.2. Dataset.. 70

4.3. Experiments and Discussion of Results to Select Best Hyperparameter Set 70

4.3.1. Experiment One Using AdaGrad Optimizer .. 70

4.3.2. Experiment Two Using Adam Optimizer .. 72

4.3.3. Experiment Three Using RMSprop Optimizer .. 74

4.3.4. Summary of the Experiments... 76

4.4. Model Evaluation Using Different Text Lengths ... 77

4.4.1. Experiment One Using Text Length of 5 Characters ... 78

4.4.2. Experiment Two Using Text Length of 10 Characters .. 80

4.4.3. Experiment Three Using Text Length of 50 Characters .. 82

VI | P a g e

4.4.4. Experiment Four Using Text Length of 100 Characters .. 84

4.4.5. Summary of the Experiments... 86

4.5. Prototype and Predictions ... 87

4.5.1. Language Predictions on Out-of-Vocabulary Texts .. 91

4.6. Answering Research Questions .. 93

CHAPTER FIVE ... 94

CONCLUSION AND RECOMMENDATIONS ... 94

5.1. Overview ... 94

5.2. Conclusion .. 94

5.3. Contributions... 96

5.4. Recommendations ... 96

5.5. Future works ... 97

REFERENCES ... 98

APPENDIXES .. 106

Appendix I: Closely Related Ethiopic and South Arabian Abjad Scripts 106

Appendix II: The Current (HaLeHaMe “ሀለሐመ”) Arrangement of the Ge'ez Alphabet 107

Appendix III: The Earlier (ABeGeDe “አበገደ”) Arrangement of the Ge'ez Alphabet 108

Appendix IV: The Ge’ez Numbers and Punctuation Marks ... 108

Appendix V: The Amharic Alpha-syllabic (Fidel) ... 109

Appendix VI: The Awngi Alpha-syllabic (Fidel) ... 110

Appendix VII: The Guragigna Orthography (Fidel) ... 111

Appendix VIII: The Tigrinya Alpha-syllabic (Fidel) ... 114

Appendix IX: The Xamtanga Alpha-syllabic (Fidel) ... 115

Appendix X: Sample Python Source Code .. 116

VII | P a g e

LIST OF FIGURES

Figure 1.1 Google language detector for Ethiopic-based texts .. 4

Figure 2. 1 The structure of CBOW and Skip-gram model [60] ... 24

Figure 2. 2 Structural similarity of biological and artificial neurons [82] 26

Figure 2. 3 A simple multilayer neural network .. 28

Figure 2. 4 Deep neural network with multiple number of hidden layers [86] 29

Figure 2. 5 The architecture of a character-level CNN model [68] ... 31

Figure 2. 6 A standard RNN with a feedback connection inside the hidden layer 32

Figure 2. 7 Neural network with dropout and without dropout [97] .. 37

Figure 3. 1 General architecture of the proposed language identification model 48

Figure 3. 2 Lexical similarity between the Geez-based languages at character and word-level.... 54

Figure 3. 3 The reference of all unique alphanumeric and symbols .. 56

Figure 3. 4 The occurrences of symbols and the total number of input size for a given sample text ... 56

Figure 3. 5 Sample data before data scaling .. 58

Figure 3. 6 Sample data after applying data scaling technique .. 59

Figure 3. 7 Summary of the proposed deep neural network model architecture 61

Figure 3. 8 The proposed DNN model training process with backpropagation algorithm 66

Figure 4. 1 Learning curves of accuracy and loss over 10 epochs with the AdaGrad optimizer 71

Figure 4. 2 Learning curves of accuracy and loss over 15 epochs with the Adam optimizer 73

Figure 4. 3 Learning curves of accuracy and loss over 15 epochs with the RMSprop optimizer 75

Figure 4. 4 Confusion matrix of the model evaluated on sample text length 5 characters 78

Figure 4. 5 Classification report of the model evaluated with 5 chars of sample text length 79

Figure 4. 6 Confusion matrix of the model evaluated on sample text length 10 characters 81

Figure 4. 7 Classification report of the model evaluated with 10 chars of sample text length 82

Figure 4. 8 Confusion matrix of the model evaluated on sample text length 50 characters 83

Figure 4. 9 Classification report of the model evaluated with 50 chars of sample text length 84

Figure 4. 10 Confusion matrix of the model evaluated on sample text length 100 characters 85

Figure 4. 11 Classification report of the model evaluated with 100 chars of sample text length 86

Figure 4. 12 Accuracy and loss of the proposed model with different character length of texts 87

Figure 4. 13 Prediction result for the given short and long Amharic text 88

Figure 4. 14 Prediction result for the given short and long Awngi text ... 88

Figure 4. 15 Prediction result for the given short and long Geez text ... 89

Figure 4. 16 Prediction result for the given short and long Guragigna text 89

Figure 4. 17 Prediction result for the given short and long Tigrigna text 90

Figure 4. 18 Prediction result for the given short and long Xamtanga text 90

Figure 4. 19 Prediction results for the given Amharic Out-Of-Vocabulary texts 91

Figure 4. 20 Prediction results for the given Guragigna Out-Of-Vocabulary texts 92

VIII | P a g e

LIST OF TABLES

Table 2. 1 Example of text snippets with ISO 639-3 code for six Geez-based languages 18

Table 2. 2 Confusion Matrix .. 37

Table 2. 3 Summary of related works .. 43

Table 3. 1 The corpus size of each language ... 51

Table 3. 2 Word and character distributions of each language in the corpus 53

Table 3. 3 The alphanumeric and special characters distribution of the six languages 53

Table 3. 4 Label encoding of each language .. 57

Table 3. 5 One-hot-encoding of each language ... 58

Table 3. 6 Distribution of sample text dataset ... 60

Table 3. 7 The distribution of dataset splitting .. 60

Table 4. 1 Hyperparameters for experiment one ... 70

Table 4. 2 A summary of experimental results using AdaGrad optimizer 72

Table 4. 3 Hyperparameters for experiment two ... 72

Table 4. 4 A summary of experimental results using Adam optimizer 74

Table 4. 5 Hyperparameters for experiment three ... 74

Table 4. 6 A summary of experimental results using RMSprop optimizer 76

Table 4. 7 The chosen hyperparameter settings ... 77

Table 4. 8 Test accuracy and loss results of the proposed model with variety of sample text lengths . 86

IX | P a g e

LIST OF ALGORITHMS

Algorithm 3. 1: Algorithm for data cleaning ... 51

Algorithm 3. 2: Algorithm for word tokenization ... 52

Algorithm 3. 3: Algorithm for character tokenization ... 52

Algorithm 3. 4: Algorithm for bag-of-characters model ... 55

Algorithm 3. 5: Algorithm for Adam optimizer .. 63

Algorithm 3. 6: Algorithm for AdaGrad optimizer ... 64

Algorithm 3. 7: Algorithm for RMSprop optimizer .. 65

Algorithm 3. 8: Backpropagation algorithm for training the proposed DNN model 67

X | P a g e

LIST OF ACRONYMS AND NOTATIONS

AdaGrad: Adaptive Gradient

Adam: Adaptive Moment Estimation

ANN: Artificial Neural Network

AMC: Amhara Media Corporation

AMH: Amharic

AWN: Awngi

BOC: Bag-of-Characters

BOW: Bag-of-Words

CBOW: Continuous Bag of Words

CFA: Cumulative Frequency Addition

Chars2vec: Characters to Vector

CNN: Convolutional Neural Networks

CPU: Central Processing Unit

Doc.: Document

Exp.: Experiment

FFNN: Feedforward Neural Networks

GEZ: Geez

GloVe: Global Vectors

HTML: Hypertext Markup language

ISO: International Organization for

Standardization

LID: Language Identification

LSTM: Long Short-Term Memory

MAX_LEN: Maximum Length of Characters

MB: Megabyte

MLPs: Multilayer Perceptrons

NBC: Naïve Bayes Classifier

NLP: Natural Language Processing

NLTK: Natural Language Toolkit

NN: Neural Network

OOV: Out-of-Vocabulary

POS: Part-of-speech

ReLU: Rectified Linear Unit

RNNs: Recurrent Neural Networks

RMSprop: Root Mean Squared Propagation

RQ: Research Question

SGW: Guragigna

SOV: Subject-Object-Verb

SVM: Support Vector Machine

TB: Terabyte

TF-IDF: Term Frequency-Inverse Document

Frequency

TIR: Tigrigna

URLs: Uniform Resource Locators

VSO: Verb-Subject-Object

Word2Vec: Word to Vectors

XAN: Xamtanga

1 | P a g e

CHAPTER ONE

INTRODUCTION

1.1. Background

Ethiopia is the homeland of a remarkable diversity of community, culture, and language [1].

The cultural and linguistic diversity is believed to result from a complex historical background,

as well as geographic and social differences. Human language is a communication system that

consists of speech, sign language, and written symbols used by people of a particular country

or region to speak and write. Ethiopia is a multilingual country where more than 80 languages

are spoken by different ethnic groups and up to 200 different dialects are spoken [1] [2].

Ethiopian languages are categorized into four main groups: Semitic, Cushitic, Omotic and

Nilotic. Most of these languages belong to the Semitic, Cushitic, and Omotic groups, all part

of the Afro-Asiatic language family, while a small number of languages belong to a fourth

group Nilotic, which is part of the Nilo-Saharan language family [1] [2].

A language writing system, technically referred to as a script or an orthography, is an organized

regular method of information storage and transfer for the communication of messages in a

language by visually encoding and decoding with a set of visible symbols, forms or structures

called characters [3]. Every language has its own writing system for visual representation of

verbal communication, based on script and rules governing its use. Ethiopic script, also known

as Ge’ez script, is an alpha-syllabary or abugida “አቡጊዳ” writing system in which each letter

represents a consonant-vowel syllable, locally referred to as Fidel “ፊደል”. Ethiopic is the most

commonly used script in the writing systems of the majority of languages spoken in Ethiopia

and the neighboring country, Eritrea [4].

The Semitic languages use the Ge’ez script for their writing system. Some of the Ethio-Semitic

languages spoken in Ethiopia include Adarigna, Amharic, Argoba, Birale, Gafat, Ge’ez,

Guragigna, the Chaha group (Chaha, Muher, Ezha, Gumer and Gura), the Inor group (Inor,

Enner, Endegegna, Gyeto and Mesemes), Silt'e group (Silt'e, Ulbareg, Enneqor and Walane),

Soddo group (Soddo, Gogot and Galila) and Tigrigna [2].

2 | P a g e

Ethiopians speak a variety of languages from the Cushitic language families like Afaan Oromo,

Afar, Awngi, Somali and Xamtanga. Most of the Cushitic languages use the Latin script in

their writing system [1]. However, some languages are written in Ethiopic scripts, such as

Gedeo, Awngi and Xamtanga. Basketo is one of the Omotic languages which use the Ethiopic

script. In general, more than 15 well-known languages1 use the Geez script as their writing

system, such as Amharic, Awngi, Ge’ez, Guragigna, Tigrigna, Xamtanga and others [5].

Human language can be developed naturally or constructed on purpose, but in all cases the

defining feature is that it is used to communicate between people through speaking, signing or

writing. A subfield within artificial intelligence, computer science and linguistics called natural

language processing (NLP) covers the area of how languages can be described, represented,

used and constructed in a computational manner. NLP enables computers to process human

language and understand meaning and context [6] [7].

Language identification (LID) is an application of NLP that automatically identifies the

language in which the contents of the text are written [8] [9]. It is also called language detection

or language guessing, it is a well-known research topic in NLP [9]. LID is the task of giving a

language label to a text. LID is most commonly modeled as a supervised multi-class single-

label, which is generally considered as a special case of text categorization [10] [11].

Language identification can be done by applying two main approaches: statistical approach

and non-statistical approach [8] [12] [13]. Non-statistical approaches are basically linguistic

approaches that require sufficient knowledge about the rules of the language used, while

statistical approaches basically rely on machine learning and deep learning approaches which

require less human effort and a large dataset for training and testing the language identification

model [13].

Traditionally, the identification of written language was done manually by identifying frequent

words and letters known to be characteristic of particular languages [8] [14]. Statistical

approaches consist of the training phase and classification phase [13]. Recently, the progress

of NLP research on text classification has arrived at the state-of-the-art [15]. It has achieved

terrific results, showing deep learning methods as the cutting-edge technology to perform such

tasks.

1 Languages written with the Ge’ez script: Aari, Amharic, Argobba, Awngi, Basketo, Blin, Chaha, Dizin,

Geddeo, Harari, Harari, Inor, Qimant, Sebat Bet Gurage, Silt'e, Tigre, Tigrinya, Xamtanga and others.

https://www.ethnologue.com/browse/names

3 | P a g e

A set of well-known methods for dealing with language data are using supervised machine

learning algorithms, that attempt to infer usage patterns from a set of pre-defined input and

output pairs [16]. Deep learning approaches are gaining popularity due to their superior

accuracy, ability to represent the data with features extracted on their own, good solution for

complex architectures in high-dimensional data, faster and easier interpretation of big data and

transform it into meaningful information [15]. Therefore, we implemented this state-of-the-art

technology for the proposed research work.

1.2. Motivation

Today we live in the world where there are more bilinguals than monolinguals, however

multilingualism does not mean that we have extensive knowledge of multiple languages. There

is an ever-increasing amount of information on the world wide web that is written in different

languages. In Ethiopia, the number of people using information written in Ge'ez script in

administrative, educational, social media, and mass media is growing [3]. Human beings will

be interested in retrieving, analyzing, organizing or understanding information written in

different languages. However, performing these tasks is challenging unless the users are

language experts or one must know the language in which they are written or translate them

into someone's mother language. Therefore, it is interesting to develop an automatic language

identifier that automatically identifies the language in which the contents of the text are written

that considers Ethiopian languages that use Ge’ez script as their writing system.

1.3. Statement of the Problem

The internet is an ever-expanding supply of textual data. A wealth of helpful textual data is

available on the web in a multilingual environment like Ethiopia. Social media users, especially

in multilingual societies, generate multilingual content in which at least two languages or

language varieties are used. Information is usually provided in a context that excludes

ambiguity. However, if web users do not recognize the language, it is difficult to understand

the information written on the web. In this case, it would be helpful to know the name of the

language.

Although textual based language identification problem has been extensively studied, there is

still no comprehensive understanding of the factors that determine classification accuracy [4]

[13] [15]. Factors such as the size of the text fragment to be identified, the amount and variety

of training data available, the classification algorithm, and the embedding techniques used.

4 | P a g e

Another unsolved issue in language identification is identifying language categories for closely

related languages as these languages use the same writing system [4] [15]. Languages written

with the Ge'ez script are very closely related, like Amharic, Awngi, Ge’ez, Guragigna, Tigrigna

and Xamtanga. Low-resourced languages and closely related languages are generally confused

with each other in real-world applications like machine translation, impacting the user

experience. Therefore, there is still a considerable room for improvement in terms of such

factors.

Research in the area of language identification has grown steadily over the years. However,

most researchers have concentrated attention on English and the other European languages for

obvious reasons [17]. Natural language models are usually specific to discrete languages.

Currently, various language detection applications have been developed for different

languages, such as Google Language Detector2 and Text Language Detector3, as well as pre-

trained multilingual language detection models such as langdetect4, lingua-language-detector5,

langid6 [18] and spacy-langdetect7. Although some applications can recognize the Amharic and

Tigrigna languages, most of these pre-trained models and applications cannot correctly identify

the language for the given text written in the Ethiopic script due to their similarity. This suggests

that little attention is paid to the Ethiopian languages written in the Ethiopic script. In order to

identify the language of the texts written in Ethiopic script, the researchers tested each of the

selected languages ten times on Google language detector.

Figure 1.1 Google language detector for Ethiopic-based texts

2 Google Language Detector: https://translate.google.com/?sl=auto&tl=am&op=translate
3 Text Language Detector: https://www.dcode.fr/language-recognition
4 langdetect: https://pypi.org/project/langdetect/
5 lingua-language-detector: https://pypi.org/project/lingua-language-detector/
6 Langid: https://github.com/saffsd/langid.py
7 Spacy-langdetect: https://pypi.org/project/spacy-langdetect/

5 | P a g e

For example, Figure 1.1 shows the language identification result of the Google language

detector application for the given six Ethiopic-based texts. The Google language detector

correctly identifies the given Amharic and Tigrigna texts, while as shown in the second

screenshot the actual language of the text was Awngi but the Google language detector classified

it as Amharic. The third, fourth, and sixth screenshots also show the incorrect classifications.

Thus, it is one of the real problems of language identification in Geez-based languages due to

their similarity. Therefore, there is a need to develop a language identification model for

Ethiopian languages that use the Ge’ez script as the writing system.

The literature indicates that various approaches have been explored to address the language

identification problems. To develop a LID model for different Ethiopian languages, most

previous researchers Biruk Tadesse [19], Legesse Wedajo [20], Rediat Bekele [21], Fitsum

Gaim [4] and Kidst Ergetie [22] have applied related statistical classification approaches and

N-gram embedding techniques. However, the word-level N-gram model has limitations in

handling out-of-vocabulary (OOV) words [23]. Intuitively, character N-grams should work

better than word N-grams for LID, especially for languages with rich morphology [23].

However, regular morphological features like suffixes and prefixes repeat much more often

than entire words, and can be representative of a language. They are more likely to be learn

during the training and be indicators when predicting the language for a new unseen text.

To the best of our knowledge, there is no previous research work on LID using a deep learning

approach with character-level embedding technique for Geez-based Ethiopian languages.

However, currently, the progress of NLP research on LID has arrived state-of-the-art deep

learning approach. Classical machine learning often requires researchers to write hand-crafted

algorithms to extract and represent high-dimensional features from the raw data. Deep learning

models, on the other hand, extract and manipulate these complex features automatically. Deep

neural network approaches have been explored to remove the limitations due to the use of

handcrafted features, and have achieved unprecedented success by achieving human-level

performance when training with large datasets. Finally, the study aims to answer the research

questions presented below:

 RQ1: To what extent does the proposed language identification model correctly identify

Geez-based Ethiopian languages?

 RQ2: How robust is the language identifier when tested against a prototype for out-of-

vocabulary texts?

6 | P a g e

1.4. Objective of the Study

In an attempt to develop the proposed language identification model, the general and specific

objectives of the study formulated as follows.

1.4.1. General Objective

The general objective of the study is to design and develop an automated text-based language

identification model for typologically related Ethiopian languages using a deep neural network.

1.4.2. Specific Objectives

In order to achieve the general objective of the study and to answer the research questions,

the following specific objectives are formulated as follows:

 Explore the orthographic and phylogenetic characteristics of all selected languages.

 Collect monolingual corpus for each target language from different sources.

 Perform appropriate text preprocessing tasks.

 Design the general architecture of a deep neural network model for the proposed study.

 Design several hyperparameters and experimental setups.

 Conduct experiments with different hyperparameter settings and select the best set.

 Conduct experiments with sample texts of different character lengths using the selected

hyperparameter set.

 Evaluate the performance of the developed LID model for OOV texts using a prototype.

 Forward recommendations for future research direction based on the findings.

1.5. Scope and Limitation of the Study

In a broad sense, language identification refers to all forms of language, including speech,

gestures language, and written texts. The main focus of this study is to develop a textual-based

language identification model for Geez-based Ethiopian languages using a deep learning

approach.

7 | P a g e

The first step is to identify some reliable content sources for each language. There are more

than 15 known languages8 that use the Geez script in their writing system [5], however many

of them have small corpora and are not in digital content. Of these languages, Amharic

(አማርኛ), Awngi (አዊጚ), Ge’ez (ግዕዝ), Guragigna (ጉራጌኛ), Tigrigna (ትግርኛ) and Xamtanga

(ኽምጣጘ) are available on digitization platforms. Therefore, we chose these six Ethiopic-based

languages because of their easy access and sufficient data for training and testing. In other

words, the study does not cover the issue of identifying Ethiopian languages that use non-

Ethiopic scripts as their writing system.

Language identification aims to detect the language(s) given a text in one or more languages.

In this study, we focused on multi-class, single-label classification problems. One of the

limitations of this study, which could be addressed in future research, is that the model cannot

correctly recognize the texts of code-switching languages. In this study, we trained and

evaluated the proposed model on the sample text lengths of five and more characters. Because

the corpus distribution analysis showed that the average word length of all languages is about

5 characters.

1.6. Significance of the Study

Language identification is an increasing field of importance in today's world, especially for

multilingual eminent people like Ethiopia. Automatic LID becomes an important tool due to

the increasing variety of textual data on the web that are written in different languages.

Therefore, by using the LID application, users can easily understand these textual contents and

finally apply them for the intended purpose. The ability to accurately identify the language in

which a document is written is a fundamental technology that increases the accessibility of data

and has a wide variety of applications. For example, it has been found that presenting

information in a user's native language is a key factor in attracting website visitors.

8Languages written with the Ge’ez script: Aari, Amharic, Argobba, Awngi, Basketo, Blin, Chaha, Dizin,

Geddeo, Harari, Harari, Inor, Qimant, Sebat Bet Gurage, Silt'e, Tigre, Tigrinya, Xamtanga and others.

https://www.ethnologue.com/browse/names

8 | P a g e

Solving automatic LID problem is necessary for many tools that work with multilingual data.

Multilingual systems generally work on multiple languages because they use universal features

of natural languages. LID is an important pre-processing task to develop multilingual NLP

applications such as machine translation, sentiment analysis, spell and grammar checkers, spam

filtering, plagiarism detection and information retrieval. For instance, in multilingual machine

translation, the language in which the original text is written must be known in order to convert

an unknown original language text into the desired target. Once it is detected, then using a

machine translation system it can be translated into the required target language. In short, it is

used to detect the language of the written text before machine translation.

Due to the diversity of information on the Internet, language detection is an important task for

retrieving the right information. LID is a process present in many web services today. When

searching the web, many websites have a language detection for the typed text in the search

bar and the most relevant search results are then displayed first.

Spam filtering services that support multiple languages must identify the language that emails,

online comments, and other input are written in before applying true spam filtering tasks.

Without such detection, content originating from specific countries, regions, or areas suspected

of generating spam may not be adequately eliminated from online platforms. Finally, this

research work could serve as a basis for future research studies and future research in this area

could benefit from the collected and prepared corpus.

1.7. Organization of the Thesis

The remaining section of this research is organized as follows: The second chapter provides a

brief description of the Ethiopian languages that use the Ge'ez script as their writing system,

language identification approaches, and related works. Chapter three covers the proposed

research methodology. In the fourth chapter, the experimental results and discussions are

described in detail. Finally, the paper ends with a general conclusion and recommendations.

9 | P a g e

CHAPTER TWO

LITERATURE REVIEW

2.1. Overview

This section extensively provides a conceptual discussion about natural language in general

and specifically Ethiopic script writing system, Ethiopian languages that use Geez script as

their writing system, natural language processing, and language identification approaches

(classification, word embedding, and evaluation metrics). In addition to this, the conceptual

discussion of deep learning besides the related work attempted for language identification for

different languages.

2.2. Natural Language

Natural language is a human language that represents the universal means of communication

and is constantly changing to meet the needs of users as individuals interacting with a changing

world. Language is a set of rules or symbols in which symbols are combined to convey

information [24]. Humans express themselves as members of a social group and as participants

in a community using a system of conventional spoken, signed or written symbols.

Language Writing Systems: Written languages use visual symbols to represent the sounds of

spoken languages. A language writing system, technically referred to as a script or an

orthography, is an organized regular method of information storage and transfer for the

communication of messages in a language by visually encoding and decoding with a set of

visible symbols, forms or structures called characters [25]. Writing system can be divided into

six categories namely Alphabetic, Abjads, Abugidas, Syllabic, Logographic (logo-syllabaries)

and Featural writing system [26] [27].

Abugida Writing System: The name abugida (አቡጊዳ) is derived from the first four characters

of an order of the Ge'ez script specifically, አ(a), ቡ(bu), ጊ(gi) and ዳ(da). An abugida,

sometimes known as alpha-syllabary, syllabic alphabets or pseudo-alphabet, is a segmental

writing system in which consonant-vowel sequences are written as units, each unit is based on

a consonant letter and vowel notation is secondary. In abugidas writing system each character

represents a consonant and vowel pairing [3]. For example, the current writing system of the

10 | P a g e

Ethiopic script used in Ethiopia and the Devanagari script used in South East Asia (modern

times to write Hindi) is an alpha-syllabary writing system [24].

2.3. The Ethiopic Script

The script refers to the visual appearance of a writing system. Ethiopic script is known by

various names: The Ge’ez (ግእዝ) script, Abyssinian, Ethiopian or Amharic writing system.

Ethiopic script is also called Fidel (ፊደል) or Saba scripts. Fidel is the local name of the writing

system widely used in Ethiopia and Eritrea. The Ethiopic script has a long history, in the course

of which it was modified in several ways. There are two pieces of historical literature on the

origins of Ethiopic script.

The first acceptance, according to various researchers [24] states that the Ethiopic script derives

from the South Arabic abjad or consonantal script, but soon morphed into an alpha-syllabary

script likely inspired by Indic scripts which also included additional graphemes and numerals

because of Greek influence. The original Ge'ez script was an Abjad writing system which

means the script represented only consonant ones like, አ, በ, ገ, ደ, so forth. The ancient South

Arabian script and Ethiopic abjad script are closely related as depicted in Appendix I. There

are 24 correspondences of Ge’ez and the ancient South Arabian writing system [24].

According to the beliefs of the Ethiopian and Eritrean Orthodox Tewahido Church, the script

was divinely revealed to Enos, grandson of the first man, Adam. The era of Henos witnessed

the inception of the alphabet. Henos was a faithful and righteous servant of God. He was

rewarded for his honest work through a divine gift of the alphabet, which would serve as his

instrument for codifying the law. That is, the heavens opened their gates to him, and the

scriptures were revealed to him. From then on he used the alphabet as a medium of literature.

It has been in use since the fifth century BC and is currently used as a writing system for several

local languages [28] [29].

The earlier Ge’ez script was written from A (አ) to P (ፐ) and the revised script still in Ethiopia

starts with H (ሀ) and ends with P(ፐ). The current and former arrangement of the Ge'ez alphabet

is described in Appendix II and Appendix II, respectively. The Ge’ez script is the only actively

used native African writing system and one of the oldest in the world. The current Ethiopic

script is classified as abugida writing system, used for several Afro-Asiatic and Nilo-Saharan

languages of Ethiopia and Eritrea in the Horn of Africa [24]. Its writing system is left-to-right

11 | P a g e

in horizontal lines. There are no uppercase or lowercase letters in the Ethiopic script. Ethiopic

is a modification-based script where the modifiers (‘vowels’) are usually added to the base

character to give a derived vocal sound. Sometimes, the modification can also be achieved by

slightly deforming the shape of the base character. It is typically done by adding a horizontal

line at the top of a similar-sounding consonant. Some letters were modified to create additional

consonants for use in languages other than Ge'ez. The pattern is most commonly used to mark

a palatalized version of the original consonant. Some of the new symbols represent

phonological processes such as palatalization and labialization [24] [28]. The Geʽez script has

been adapted to several modern languages of Ethiopia and Eritrea, frequently requiring

additional letters. The script has since been extended for other languages.

2.4. Typologically Related Ethiopian Languages

This research paper discusses the six closely related Ethiopian languages that use the Ethiopic

script as their writing system, namely Amharic, Awngi, Geez, Guragigna, Tigrigna and

Xamtanga.

2.4.1. Amharic (አማርኛ) Language

Amharic language, also called Amarigna is an Ethio-Semitic language family derived from

Ge’ez. Amharic language uses a writing system called Ge’ez script (alpha-syllabic), which is

written left-to-right and its basic word order is Subject-Object-Verb (SOV). It is one of the five

official languages of Ethiopia and a widely spoken. Amharic is the primary language of the

Amhara region and also the most widely spoken language in Addis Ababa, the country's capital

city [30] [31]. In most regions, it is the primary second language in the school curriculum. Of

all the Ethio-Semitic languages, Amharic has the most speakers.

Amharic is written using a slightly modified form of the Ge'ez script known as Fidel (ፊደል).

The Ge'ez similar characters have no difference in the Amharic writing system except for trends

taken from Ge’ez. For example, the word Ethiopia is spelled in the same way as ኢትዮጵያ.

There are 33 basic characters in the Amharic language, each of which denotes 7 vowels namely,

ä (አ), u (ኡ), i (ኢ), a (ኣ), e (ኤ), ǝ/ï (እ) and o (ኦ), making a total of 231 characters [32] [33].

The first order represents the base character and other orders are modifications that represent

vocalized sounds of the base character. There are also 4 labialized consonants and 5 vowels

with a total of 20 (4x5) characters.

12 | P a g e

The 26 of the 33 characters derived from the Ge’ez language. Alphabets are closely similar,

only differing the addition of letters in Amharic language. For instance, Amharic consists of

additional letters that are not found in Ge’ez language, such as ሸ (She), ጨ (Che), ቸ (Ce), ጀ

(Je), ኘ(Gne), ዠ (zhe) and ኸ (He). This is done by placing a small bar at the top or bottom of

7 characters inherited from Ge'ez namely, ሰ(Se), ጠ(Te), ተ(Te), ደ(De), ነ(Ne), ዘ(Ze) ከ (Ke)

and በ (Be). Besides, Amharic uses the letter ቨ (V) to represent sounds that it acquired from

Cushitic or other languages.

In Amharic languages there is an additional vowel symbol that can be combined with the first

order consonants to produce an eighth form for the labializing “wa” or “oa”. Labializing is

also known as a gliding vowel a sound formed by the combination of two vowels in a single

syllable, in which the sound begins as one vowel and moves towards another. Example, ሏ, ሟ,

ሷ, ሯ, ቧ, ጧ, ፏ etc. Therefore, the recently standardized alphabet of the Amharic language

has about 283 syllables including 238 core characters and 45 specialized pronunciations as

depicted in Appendix V. Amharic has no uppercase or lowercase letters in the writing system.

The Amharic language occasionally uses the Ge’ez numbers and usually uses Arabic numerals.

Amharic language shares the Ge’ez punctuation marks and uses symbols taken from European

writing systems such as, the question mark (?), a dot or period (.), the exclamation mark (!),

mockery mark (¡), ellipsis (. . .), double quotation mark (“”) or (« »), single quotation mark

(‘’), forward slash (/), parenthesis () and hyphen (–).

2.4.2. Awngi (አውጚ) Language

The Awngi also called Awiya or Awigna is a central Cushitic language that is a branch of the

Afro-Asiatic language group. Awngi is one of the four (Xamtanga, Bilen, Kemant, and Awngi)

central Cushitic Agew language group [34]. The Agaw people are one of the Cushitic races

and the oldest ethnic groups in Ethiopia and Eritrea [35]. It is spoken in the provinces of Agew-

Midr by the Awi people, living in Central Gojjam in North Western Ethiopia [36]. Most

speakers of the Awngi language live in the Agew Awi Zone Amhara Region, but there are also

communities speaking the language in various areas of Metekel Zone of the Benishangul-

Gumuz region. Awngi is not the official working language in Awi Administrative Zone of

Amhara Region [35]. Injibara is the organizational center of the Agew Awi zone.

13 | P a g e

The Awngi have been endorsed their Nationality Zone as one in the Amhara National Regional

State of Ethiopia and have granted to establish Awngi as the medium of instruction for primary

education [37]. Awngi is written with a version of the Ethiopic script writing system. Awngi

alphabet which share many alphabetical characters with the Ge’ez script. Awngi and Xamtanga

are considered as sister languages [38].

Awngi does not use all of the Geez alphabets, but has special characters that distinguish it from

the Ge’ez base alphabets. These distinct characters are ሸ, ቐ, ቨ, ቸ, ጀ, ኸ, ዀ, ቘ, ጘ and

ⶓ. The Awngi characters ቐ, ኸ and ጘ with their variants are frequently typed characters in the

Awngi writing system. According to [39], stated that Awngi contain seven vowel phonemes

and 29 base consonant phonemes, of which 5 are labialized. However, the researchers collected

30 base consonants including letter ቨ ‘V’ as depicted in Appendix VI. Awngi language follows

a subject-object-verb (SOV) word order [36]. Awngi usually uses Amharic punctuation marks

and European number systems and punctuation marks.

2.4.3. Ge’ez (ግእዝ) Language

Ge’ez is an ancient Ethiopian language and the predecessor of the Semitic languages with

their own script. All the ancient books and works of literature in Ethiopia have been

preserved in the Ge’ez language. It is the main language used in the worship services of

the Ethiopian and Eritrean Orthodox Churches, though Amharic may be used for sermons.

Geʻez language has 26 consonantal letters and 7 vowels in total 182 (26x7) characters.

There are also 4 labialized variant consonants (labiovelars) and 5 vowels with a total of

20 (4x5) characters [28] [40]. Accordingly, the total number of Ge’ez syllables is 202, which

is ((26x7) + (4x5)).

Geez alphabet is conveniently written in a tabular format of seven columns (orders) where the

first column represents the base character (consonant letter) and other columns represent

derived vocal sound (vowel letters) of the base character as depicted in Appendix II. The

unmarked set is known as the first order also called the first form Geez (ግእዝ). Each of the

first order consonants can be combined with one of six vowels, to produce a syllograph.

The resulting sets of syllograph are known as the second (ካዕብ), third (ሣልስ), fourth (ራብዕ),

fifth (ኃምስ), sixth (ሳድስ) and seventh (ሳብዕ) orders [41].

14 | P a g e

The writing system of the Ge’ez language is case-sensitive for some letters such as (ሀ/ሐ/ኀ),

(አ/ዐ), (ሰ/ሠ), and (ጸ/ፀ). These are referred to as similar letters, which are phonetically the

same letter, but orthographically different. Also, these characters have different significance

in the Ge'ez script i.e. words give different meanings. For example, with the letter ‘ሠ’ we

can create two different words. The words ሠረቀ (šerek’e) and ሰረቀ (serek’e) meaning

ወጣ (weta) and ሰረቀ (sereke) in Amharic and also in English means (He went out) and

(He stole) respectively. The basic word order in Ge’ez language is Verb-Subject-Object

(VSO).

Ge’ez language has its own numeral system such as, ፩ (1), ፪ (2), ፫ (3) so forth. All Ge’ez

numbers have two lines on top and bottom. There is no equivalent character for the number

zero in the Ge'ez number system. Punctuation marks are also crucial to clarifying meaning in

written languages. Geez punctuation varies greatly from English punctuation marks. For

example, the end of sentence mark ‘።’ (full stop) is used to shows when an idea is finished and

the punctuation mark ‘፡’ is used as a word separator, however is often replaced by a blank

space in current literature. Appendix IV shows more of the Ge'ez numbers and punctuation

marks. In addition, the Ge’ez language has 10 tonal mark or signs of St. Yared zema [28] [32].

2.4.4. Guragigna (ጉራጌኛ) Language

The Guragigna (ጉራጌኛ) language, also called Gurage (ጉራጌ), is a dialect variety languages

belonging to the Ethio-Semitic branch of the Afro-asiatic language family. The term

Guragigna often refers to a language, while the term Gurage refer to an ethnic group. The

Gurage people are an ethnic group in Ethiopia. The majority of the Gurage population lives

in the Gurage Zone within the larger multi-ethnic SNNPR in central Ethiopia and is also

found in various regions and cities of Ethiopia [30] [42]. Gurage is a multilingual area. The

Gurage speak a variety of languages belonging to the Ethio-Semitic languages, which also

includes Amharic.

There are three dialectically varied Gurage subgroups: Northern, Eastern and Western.

Gurage Zone language groups emerge geographically with Soddo (ሶዶ) also called Kistane

(ክስታኔ), Dobbi (ዶቢ) also called Gogot (ጎጎት), Mesqan (መስቃን) spoken in the Northern

group, Silt’e (ስልጤ), Zay (ዛይ), and Wolane (ወለኔ) in the Eastern group and Sebat Bet (ሰባት

ቤት ጉራጌ) in the Western group [43].

15 | P a g e

The northern and western area languages have unique phonological features that they do not

share with the eastern groups [43]. The Sebat-Bet (ሰባት-ቤት) literally meaning “seven

houses”, is a reference to the seven districts that corresponds to specific Western Gurage

groups and varieties. Considering the languages and orthographic requirements of the

Gurage zone, the modern preference is to use the broader and more common name "Gurage

or Guragigna" instead of "Sebat-Bet". Sebat-Bet Gurage consists of two main groups with

several dialects [2]: Chaha group (Chaha “ቸሀ”, Ezha “እዣ”, Muher “ሙህር”, Gura “ጉራ”,

Gumer “ጉመር” and Inor group (Inor “ኢኖር”, Gyeto “ጘየቶ”, Endegagn “እንደጋኝ” and

Mesmes “መስመስ” which is now extinct) [43].

All Guragigna languages and dialects use the Ethiopic script for their writing system and

they follow a subject-object-verb (SOV) word order. The Gurage orthography or Fidel is

published in four evolutions [21] [22]. The first Gurage orthography introduced in the 1966

E.C publication [42]. Specifically, this orthography included four rounded labial syllable

extensions made to four letter families (መ, በ, ፈ and ፐ) and four palatalized velars

complements of the regular syllables (ቀ, ከ, ኸ and ገ) with the Ethiopic macron “~” applied

above the base characters as described in Appendix VII.

The 1977 and 1998 E.C Gurage orthography have same features for the four palatalized

velars ቀ, ከ, ኸ and ገ plus additional labializations [24] [45]. Palatalization is indicated with

a simple ‘v’ like mark placed above the base forms as per. For example, ቀ+v=ⷀ. Four groups

of rounded labials መ, በ, ፈ and ፐ, are velarized with the existing velarizing diacritic marks

as depicted in Appendix VII. The extended Gurage orthography was approved in 2013 E.C

by the Gurage Zone Regional Government [42] [45] [47] as presented in Appendix VII. The

modern Gurage orthography contains 28 new letters, of which 7 are palatalized syllables that

are unique to the Gurage (𞟠, 𞟡, 𞟢, 𞟣, 𞟤, 𞟥 and 𞟦) and 21 letters are labialized velar

syllables (𞟨, 𞟩, 𞟪, 𞟫, 𞟭, 𞟮, 𞟰, 𞟱, 𞟲, 𞟳, 𞟴, 𞟵, 𞟶, 𞟷, 𞟸, 𞟹, 𞟺, 𞟻,

𞟼, 𞟽 and 𞟾) [21] [47] [48].

16 | P a g e

2.4.5. Tigrigna (ትግርኛ) Language

Tigrigna, also spelled Tigrinya, is an Afro-Asiatic language belonging to the Semitic branch.

It is mainly spoken in northern Ethiopia Tigray region and Eritrea in the Horn of Africa.

Tigrigna is descended from an ancient Semitic language called Ge’ez [49]. Tigrigna is written

in the Ge'ez script, originally developed for Ge'ez, also called Ethiopic. Tigrinya is the primary

language for over 95% of the population in Tigray [30]. There are also communities of Tigrigna

speakers in Sudan, Israel, Saudi Arabia, USA, Germany, Italy, UK, Canada and other countries

[37]. Tigrigna is considered the second most widely spoken Semitic language in Ethiopia, after

Amharic.

Similar to Amharic and Ge’ez, the writing system of Tigrigna is known as Fidel [49]. Each

alphabet represents a consonant-vowel sequence. In the Tigrigna alphabet, letters are organized

in a grid system where consonants appear vertically and their vowel-added variants,

horizontally. As depicted in Appendix VIII, the way in which consonant characters are

combined with vowel signs often follows a general pattern, particularly in the second to sixth

orders.

Tigrigna has 37 base consonants with 7 vowels, which change the basic phoneme of each

consonant into seven different character orders [50] [51]. The basic first order consonants 32

and the 5 labialized velars, totally there are 37 consonants. However, the researchers collected

39 base consonants including ጸ, ፀ and ሠ. A labialized velar or labiovelar is a velar consonant

that is labialized, with a ‘W’. Phoneme V (ቨ) is included in the Tigrigna consonant chart which

is used for foreign language words. There are about 11 Tigrigna consonants not included in the

Ge'ez alpha-syllabary, such as ሸ, ቐ, ቨ, ቸ, ኘ, ኸ, ዠ, ጀ, ጨ, ቘ and ዀ [19].

The Tigrinya language uses all base consonants and labialized velars of Geez, except for letter

ኀ and ኈ. The sound ‘Tse’ is normally written as ጸ or ፀ in modern Ethiopian Tigrinya [52].

In this study we used both letters. The basic word order of Tigrigna language is SOV (Subject-

Object-Verb). Most of the Tigrigna language punctuation marks is similar to Amharic. The

traditional set of numerals used in Tigrinya texts is similar to Ge’ez number system. These

numerals have been replaced by the Arabic numerals, that are, the same ones used in English.

But we may get them in different writings of Tigrinya [50].

17 | P a g e

2.4.6. Xamtanga (ኽምጣጘ) Language

Xamtanga is one of the four Agew languages (Xamtanga, Bilen, Kemant, and Awngi),

classified as Eastern Agew peoples. The Eastern Agew people known as Xamta (or Hamir,

Xamir) is part of the Central Cushitic branch of the Afro-Asiatic family [34] [53]. The language

the Xamir people speak is called Xamtanga although their language is also known as

Agawinya, Khamtanga, Xamta, Chamta, Khamir, Hamt’agna, Himtagne.

Xamtanga is a Central Cushitic language mainly spoken in the North Amhara Region, Sekota,

Zikwala and Avergele district, Lasta and Wag Hemra Zones [37]. Languages in the surrounding

area are Amharic, Afar and Tigrigna. Xamtanga is used in schools and is known by most of the

people, although some also speak Amharic. The Eastern Agaw speakers are bilingual speaking

both Xamtanga and Semitic languages (Amharic and Tigrinya). The official language of the

Wag Hemra Zone is Amharic, with native language Xamtanga. Xamtanga heritable cultural

legacies have mainly existed in the memories of tradition bearers. Wag Hemra is a Zone in the

Amhara Region of Ethiopia. The Xamtanga is one of the least researched languages found in

Ethiopia [35]. Research [54] approved that Xamtanga is a little documented Central Cushitic

language.

Similar to the mentioned languages above, Xamtanga is written with a version of the Ethiopic

script and the basic word order is SOV. Xamtanga shares many alphabetical characters with

the Ge’ez, Amharic, Tigrigna and Awngi languages. The Awngi and Xamtanga languages are

strongly intertwined as they both descend from the same ancestor and both share many

characters in their alphabet, differing only by the addition or omission of a few letters. For

example, Xamtanga includes the phonemes Te (ጠ) and Che (ጨ) but not in Awngi alphabet.

According to [55], Xamtanga has a total of 39 base consonant characters, of which 7 are

labialized and each character having seven different forms, usually referred to as orders,

depending on the vowel with which the basic symbol is combined [55][56]. Xamtanga9 alpha-

syllabary writing system took all the symbols and consists some new ones representing sounds

not found in Ge’ez. These palatalized letters are ሸ, ጨ, ቐ, ቨ, ቸ, ጀ, ኸ, ዀ, ቘ, ጘ and

ⶓ. Currently, the orthographic representation of the language is organized as Appendix IX.

9 http://keyboards.ethiopic.org/specification/, https://omniglot.com/writing/xamtanga.htm

18 | P a g e

In addition to the published articles, the researcher reviews the documents written on the social

media page of the Amhara mass media corporation Xamtanga and Awngi site to understand

and find out the number of their base consonant letters. The Xamtanga writing system uses

both Ethiopic and European number systems and punctuation marks. Table 2.1 summarizes the

six Ge’ez-based Ethiopian languages with their ISO 639-3 code and example texts.

Table 2. 1 Example of text snippets with ISO 639-3 code for six Geez-based languages
Language 639-3

Code
Branch

Sample Script Writing

System

Amharic amh Semitic የዓለም ሁሉ መድኃኒት ዛሬ ተወለደ። Alpha-syllabic

Awngi awn Cushitic አሌምስጊ ዲኪትፂ ያኽኹ ናካ ካሜንስትኾ። Alpha-syllabic

Geez gez Semitic ቤዛ ኩሉ ዓለም ዮም ተወልደ። Alpha-syllabic

Guragigna sgw Semitic ኧኳ ያተርፍ ዀትም ⷘታ የኸረ ክርስቶስ ተጨነንኹም። Alpha-syllabic

Tigrigna tir Semitic ናይ ዓለም ኩሎም መድሃኒት ሎሚ ተወሊዱ። Alpha-syllabic

Xamtanga xan Cushitic ዓልምቱ እንቅ ጥላድቅ ንጭ እኹርሹ። Alpha-syllabic

2.5. Natural Language Processing

Natural language processing (NLP) is a subfield of artificial intelligence that combines

computational linguistics, statistics, machine learning and deep learning models to enable

computers to process human language and understand its context, intent and emotion [6] [7].

NLP arose to make things easier for users and to satisfy the desire to communicate with the

computer in natural language. With the emergence of several social media platforms and

availability of a large amount of text data in them, NLP plays a great role in understanding and

generating data today. Applications of NLP lies under several fields like text classification,

machine translation, email spam detection, information extraction, text summarization, text

extraction, machine translation, speech recognition, text classification, question answering and

more [6] [10] [11].

2.5.1. Text Classification

In machine learning, classification is the problem of categorizing a data instance into one or

more known classes. Text classification is an integral part of NLP. The data can be originally

of different formats, such as text, speech, image, or numeric. Text classification is a special

instance of the classification problem, where the input data is text and the goal is to categorize

the piece of text into one or more class from a set of pre-defined classes [10] [57]. The text can

be of arbitrary length: a character, a word, a sentence, a paragraph, or a full document.

19 | P a g e

In general, the text classification system contains four different levels of scope that can be

applied [8]. In the document level, the algorithm obtains the relevant categories of a full

document. In the paragraph level, the algorithm obtains the relevant categories of a single

paragraph (a portion of a document). In the sentence level, obtains the relevant categories of a

single sentence (a portion of a paragraph). In the sub-sentence level, the algorithm obtains the

relevant categories of sub-expressions within a sentence (a portion of a sentence) [8].

Supervised classification approach, including text classification, can be further distinguished

into three types based on the number of categories involved: binary, multiclass, and multi-label

classification. If the number of classes is two, it’s called binary classification. If the number of

classes is more than two, it’s referred to as multiclass classification. In both binary and

multiclass settings, each document belongs to exactly one class from C, where C is the set of

all possible classes. In multi-label classification, a document can have one or more labels

attached to it.

Text classification is performed on multilingual or monolingual text documents. LID on

monolingual texts is called a multiclass classification problem, in which a text is assigned to

one of the C classes. Whereas LID for multilingual texts is viewed as a multi-label classification

task, where a text can be mapped to a subset of labels from a larger closed label set [57]. The

next sub-section discusses a detailed overview of the LID approaches.

2.5.2. Language Identification

Language identification is a special case of text classification. LID on written texts, also known

as language detection and sometimes as language guessing, which has been constantly studied

over decades [8]. It is a process that attempts to classify text in a language into a pre-defined

set of known languages.

2.6. Language Identification Approaches

The most important step of the language identification pipeline is selecting the best embedding

techniques, classification techniques and evaluation methods. LID can be done by applying the

two main approaches, which are statistical and non-statistical approaches [58] [59]. In addition,

it is also possible to apply hybrid approaches, that is combining rule-based and statistical

approaches.

20 | P a g e

Statistical Approaches: It is known as computational approaches, are basically relying on

machine learning and deep learning approaches which require less human effort and a large

training dataset for each feature to be identified [60]. It’s a learning-based solutions using

dataset. Statistical approaches follow two successive phases: one is the training phase and the

other is classification phase. In the training phase, feature vectorization (word embedding’s

techniques) is performed from the given training dataset known as the training corpus. There

are several statistical classification techniques for LID, such as Naïve Bayes Classifier, SVM

and Artificial Neural Networks [60].

Non-statistical Approaches: It is also called non-computational or rule-based approaches are

basically linguistic approaches, the researcher must have extensive knowledge of the rules of

the language used. Some of the most prominent non-statistical methods are using diacritics and

special symbols, most frequent words used, grammatical-based, stopwords-based and lexicon-

based approach [61] [62]. In the rule-based approach, texts are separated into an organized

group using a set of handicraft linguistic rules to identify the language. In a non-statistical

approach, one way to group text is to create a list of words that relate to a specific column, and

then evaluate the text based on occurrences of those words [63]. These approaches require a

lot of domain knowledge to be comprehensive, take a long time to compile, and are difficult to

scale.

Hybrid Approach: Hybrid approach is the process of solving the language identification

problem by combining two approaches, rule-based and statistical approaches [64]. First, we

discussed embedding techniques as follows:

2.6.1. Embedding Techniques

Machine learning and deep learning algorithms are not capable of processing strings or plain

text in their raw form. To convert these text data into numerical data, we need some smart ways

which are known as vectorization, or in the NLP world, it is known as embedding techniques

[65]. Word embedding is a language modelling technique to represent the words, texts or

phrases as vectors of real numbers. Later those vectors are used to build various machine

learning and deep learning models. Using word embedding approach, words and documents

are represented in the form of numeric vectors allowing similar words to have similar vector

representations.

21 | P a g e

In a broad sense, they require numerical numbers as inputs to perform any sort of task, such as

classification, regression, clustering, etc. Language identification is done based on document

characteristics, typically at the character or word level. Commonly used text representation

techniques used for language modelling fall into two basic categories: frequency-based

embedding and prediction-based embedding [65].

Frequency-based or statistical-based word embedding approaches utilize to vectorize the text

depending on the frequency of occurrence of the words or characters in the text or document.

For example, one-hot encoding, Bag-of-Characters (BoC), Bag-Of-Words (BOW), N-gram and

Term Frequency-Inverse Document Frequency (TF-IDF) are frequency-based word embedding

approaches. Prediction-based word embedding approaches are pre-trained model that capture

the semantic and syntactic meaning of a word as they are trained on large datasets. Word to

Vectors (Word2Vec), Global Vectors (GloVe), fastText are an example of pre-trained word

embedding models [60].

2.6.1.1. Bag-of-Words Model

Bag-of-words (BoW) model is one of the popular word embedding techniques of text where

each value in the vector would represent the count of words in a document or sentence [66].

This method is mostly used in language modeling and text classification tasks. All the words

in the corpus are formed into a mapping array. According to the mapping array, a sentence can

be represented as a vector. The 𝑖-th element in the vector represents the frequency of the 𝑖-th

word in the mapping array of the sentence. The individual value of the vector denotes the word

frequency corresponding to its inherent position in the text.

The BoW model has two main operations. The first operation is tokenization; It's the process

of dividing each sentence into words. Before tokenization, all sentences are converted to

lowercase. After dividing the sentences into words and creating a list of all unique words, the

next operation is to create a vector for each sentence with the frequencies of the words. Let's

look at the following sample texts:

Sentence 1: Dara likes to go to cinema. Going to cinema is one of the hobbies of Azad.

Sentence 2: Dara also wants to go to play football and to go to swim.

22 | P a g e

Based on the above mentioned text sentences, a group of words is produced for the sentences

by tokenizing the sentences to produce a dictionary of the words, as follows:

Sentence 1: “Dara”, “likes”, “to”, “go”, “to”, “cinema”, “Going”, “to”, “cinema”, “is”, “one”,

“of”, “the”, “hobbies”, “of”, “Azad”

Sentence 2: “Dara”, “also”, “wants”, “to”, “go”, “to”, “play”, “football”, “and”, “to”, “go”,

“to” “swim”. Therefore, each bag of the words is represented as following:

BoW1 = {“Dara”:1, “likes”:1, “to”:3, “go”:1, “cinema”:2, “Going”:1, “is”:1, “one”:1, “of”:2,

“the”:1, “hobbies”:1, “Azad:1”};

BoW2 = {“Dara”:1, “also”:1, “wants”:1, “to”:4, “go”2, “play”:1, “football”:1, “and”:1,

“swim:1”};

The representation of the sequences or vectors does not take into account the order of the words

in the documents, only the counts of words matter, which is one of the major properties of the

BoW model. The union of two text documents or sentences is the combination of the words of

the both text documents as shown in equation 2.1.

𝐵𝑜𝑊3 = 𝐵𝑜𝑊1 ∪ 𝐵𝑜𝑊2 (2.1)

The result of the union of the two sentences will be: Dara likes to go cinema going is one of

the hobbies Azad also wants play football and swim. The unique words are represented in the

format of BoW as the following:

BoW3 = BoW3 = {“Dara”:2, “likes”:1, “to”:7, “go”:3, “cinema”:2, “going”:1, “is”:1, “one”:1,

“of”:2, “the”:1, “hobbies”:1, “Azad”:1, “also”:1, “wants”:1, “play”:1, “football”:1, “and”:1,

“swim”:1}. Vectors for each sentence with the frequency of words is called a sparse matrix.

Below is the sparse matrix of example sentences.

Sentence: 1 [1, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0]

Sentence: 2 [1, 0, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]

2.6.1.2. Bag-of-Characters Model

A bag-of-characters (BoC) vectorization technique, also called characters-to-vector (chars2vec

model), converts the raw input text into numerical format using its letter frequency [67]. It is

character embedding techniques. Count the occurrence frequency of all the possible letters in

a sample text string. List of such letters is just sum of alphabets of a sample text string, without

letters repetitions. This technique generates a vector for each character with the fixed vector

size. This vectorization technique converts the text content to numerical feature vectors.

23 | P a g e

Char2vec takes a document from a corpus and converts it into a numeric vector by mapping

each document character to a feature vector for the machine learning or deep learning model.

Bag-of-character text representation technique is similar to the BOW model, with the exception

that it is using characters and not words for defining the vocabulary [68]. The main advantage

of character-level representation is that it naturally deals with out-of-vocabulary. Therefore, the

character-based model can provide representations for unseen words and share information on

morpheme-level regularities. In addition one-hot-encoding is used to represent the categorical

variables as binary vectors [69].

2.6.1.3. N-gram Model

N-gram language model finds the probability distribution over a sequence of words that shows

the tendency of frequently following words [70] [71]. It shows how many words or characters

are considered for predicting the next word or character in a sentence, N may be 1 words for

unigrams, 2 words for 2-gram (bigrams), 3 words for 3-gram (trigrams) model and so on.

Language model can be constructed over sequence of characters or words [72] [73]. For

example, the word “አማርኛ” can be modeled using character level N-grams surrounded by

underscores, as follows:

Unigrams: _, አ, ማ, ር, ኛ, _

Bigrams: _አ, አማ, ማር, ርኛ, አ_
Trigrams: _አማ, አማር, ማርኛ, ርኛ_, አ__
Quad-grams: _አማር, አማርኛ, ማርኛ_, ርኛ__, አ___

In word based N-gram language modelling, probability of next word 𝑤𝑛 is calculated previous

n-1 words 𝑤1𝑤2 … … . . 𝑤𝑛−1 in the sentence as:

𝑝(𝑤𝑛|ℎ) = 𝑝(𝑤𝑛|𝑤1𝑤2𝑤3 … . . 𝑤𝑛−2𝑤𝑛−1) (2.2)

where, h represents contextual history of words in the sentence. The probability distribution of

N-grams is obtained by using maximum likelihood estimation as:

𝑝(𝑤𝑛|𝑤1, … . . 𝑤𝑛−2𝑤𝑛−1) =
𝑐(𝑤1, … . . . 𝑤𝑛−2, 𝑤𝑛−1𝑤𝑛)

𝑐(𝑤1, … . . , 𝑤𝑛−2, 𝑤𝑛−1)
 (2.3)

Thus, N-gram modeling finds the probability of a subset of n characters or words sequence in

a long sentence in the text. Here, n is the number of characters or words used and it may vary

from 1 to any number of words.

24 | P a g e

For language identification purposes, sequences of characters or words in the sentence of all

languages are modeled separately using N-grams [71] [72]. The N-gram technique captures

the profile of a natural language during the training. Thus, profiles of all the languages present

in the training dataset are stored in trained N-gram models separately. The profile of the

language in the test document is then obtained using the N-gram technique. The distance

between the profile of the test document language and profiles of languages in training

documents is measured using the similarity metric and finally, the language in the training

dataset whose profile is having minimum distance is selected as the language of the test

document.

2.6.1.4. Word2Vec

Word2vec (word to vector), as the name suggests, is a tool that converts texts into vector form.

The method involves iteration over a corpus of text to learn the association between the words

and the vector creation process is performed by determining which words have higher

occurrences of the target word [60]. It relies on a hypothesis that the neighboring words in a

text have semantic similarities with each other. Actually Word2Vec is pre-trained prediction-

based embedding model i.e. it covers algorithms and training on its own data.

Word2vec is a combination of two techniques, namely continuous bag of words (CBOW) and

Skip-gram model. These are basically shallow neural networks that have an input layer, a

projection layer and an output layer as shown in Figure 2.1. In CBOW, the neural network

model takes various words as input and predicts the target word that is closely related to the

context of the input words. On the other hand, the Skip-gram architecture takes one word as

input and predicts its closely related context words.

(a) CBOW (b) Skip-gram

Figure 2. 1 The structure of CBOW and Skip-gram model [60]

25 | P a g e

2.6.1.5. GloVe

GloVe is one of the newest methods for calculating the vector representation of words [74]. It

is referred to as global vectors because the global corpus statistics were captured directly by

the model. It finds great performance in world analogy and named entity recognition problems.

It enables word vectors to contain as much semantic and grammatical information as possible.

The construction method of word vector is firstly, the co-occurrence matrix of words is

constructed based on the corpus, and then the word vector is learned based on the co-occurrence

matrix and GloVe model. Finally, the represented text is fed into the classifier according to

selected features. Word2Vec only captures the local context of words. During training, it only

considers neighboring words to capture the context. GloVe considers the entire corpus and

creates a large matrix that can capture the co-occurrence of words within the corpus.

2.6.2. Classification Techniques

There are several statistical and non-statistical classification techniques for the LID problem,

the followings being the most common.

2.6.2.1. Grammatical-based Approach

The grammatical approach is based on the presence of some grammatical features of words

related to the language such as prepositions, conjunctions, determiners, names, adverbs,

auxiliaries, etc. representing approximately 50% of sentences and texts in most languages [75].

For example, in English we can find words like (the, they, are, he, she, them, of, and, a, to, in,

is, you, that etc.). If an input text is mostly tokenized by the word list of a certain language,

then this language is taken as the result. This approach is faster and more efficient than

stopwords approach, but it also embodies several weaknesses, such as the texts should be

segmented into words which is difficult for some languages, grammatical words are often

removed during a preprocessing performed on the text, the approach gives poor results in the

case of short texts because of the absence of these grammatical words.

2.6.2.2. Stopwords-based Approach

This method uses dictionaries that contain stopwords [76]. The stopword dictionaries are

created before the algorithm is applied. The algorithm selects the text, finds the most common

words and compares them to stopwords. The language with the most stopwords is selected as

the identified language.

26 | P a g e

The algorithm counts how many unique stopwords are seen in the analyzed text for inclusion

in the language-relationship dictionary and recognizes the language based on the ratio in the

language-relationship dictionary. Stopwords prove to be very effective for automatic LID.

Although they have different semantical meanings, stopwords can be very similar or even the

same for related languages [76].

2.6.2.3. Lexicon-based Approach

The lexical-based approach is based on the use of a lexicon or dictionary for every language to

identify [14] [77]. This method identifies the language of a target text by comparing the words

of the new text with a fixed list of words for every language (a language lexicon). The language

whose lexicon contains all or most words of the text is the effective language of the text [78]

[79]. Several problems can arise here, does not handle variations in the spellings of the words

or misspellings, absence of scientific lexicon and typing mistakes can disrupt results gotten by

this approach.

2.6.2.4. Artificial Neural Networks

Artificial neural networks, also known as neural networks, rely on machine learning techniques

that mimic the structure of the human brain [80]. The basic idea behind a neural network is that

it consists of many neurons that receive knowledge about a task through training, just like the

human brain is trained to learn new things throughout life [80] [81]. A biological neuron

receives its input signals from other neurons via dendrites, and these input signals are

represented as numerical values in the perceptron. At the synapses between dendrites and

axons, electrical signals are modulated to different degrees. Similarly, this is modeled in the

perceptron by multiplying each input value by a value called a weight, and they measure the

importance level of each input.

Figure 2. 2 Structural similarity of biological and artificial neurons [82]

27 | P a g e

In a biological neuron, the nucleus produces an output signal based on the signals provided by

dendrites. Similarly, a perceptron performs some calculations based on the input values and

produces an output. In a biological neuron, the output signal is carried by the axon. Likewise,

the axon in a perceptron is the output that will be the input for the next perceptrons [80]. The

similarity of their structure and functionality is shown in Figure 2.2, where the left side of a

figure represents a biological neuron with its nucleus, dendrites and axon, while the right side

of the figure represents an artificial neuron with its inputs, weights, bias, weighted sum,

activation functions and output.

2.6.2.5. Deep Neural Networks

Deep learning is when the NN becomes deeper and when more so called hidden layers are

added to the network [83]. Deep learning models are trained using large amounts of labeled

data. Due to their complex nature, DNNs usually require long periods of time to train the

network on the input data and powerful computers with specialized processing units [81].

DNNs are powerful algorithms used to handle complex computational tasks such as text or

image classification, machine translation and self-driving cars. There are two basic types of

neural network architectures based on how the information is propagated through the network,

namely feedforward neural networks and feedback neural networks [83].

Feedforward neural networks: The flow of information is unidirectional through input layer;

this information continues to be processed in this one direction until it reaches the output layer,

this means that the computational model represents an acyclic graph. A feed forward NN can

be used for all three types of machine learning; supervised, unsupervised and reinforcement

learning [83]. The goal of feedforward neural networks (FFNN) is to approximate the function

𝑓. For example, the function 𝑦 = 𝑓(𝑥) maps the input 𝑥 to the value 𝑦. FFNN defines the

mapping 𝑦 = 𝑓(𝑥; θ) and finds the value of the parameters θ, which leads to the best

approximation of the function.

Feedback neural networks: The flow of information occurs in both directions by introducing

network loops, propagating values backward to earlier layers from the hidden and output layers.

Multilayer Feed-forward Neural Networks (MLNNs) or Multi-layer Perceptrons (MLPs),

Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNNs) are the most

common algorithms of deep neural network [83].

28 | P a g e

2.6.2.6. Multi-layer Perceptrons

Multi-layer Perceptrons (MLPs) are composed of artificial neurons called perceptrons [84].

Therefore, before explaining the general structure of MLPs, the general structure of a

perceptron will be explained. Perceptron, also called artificial neuron, is a single-layer

supervised machine-learning algorithm that solves the problem of binary classification [84].

As shown in Figure 2.2, a perceptron receives 𝑛 features as input 𝑥1, 𝑥2, … … 𝑥𝑛, each of these

features is assigned a weight 𝑤1, 𝑤2, … … 𝑤𝑛 and adds the bias term 𝑏, then computes the

linear function, 𝑧 on which an activation function, 𝑓 is applied to get the output 𝑦.

The linear or summation function of the perceptron is denoted by 𝑧. Its output is the weighted

sum of the inputs plus bias unit and can be computed as:

𝑧 = (𝑥1 ∗ 𝑤1 + 𝑥2 ∗ 𝑤2 + ⋯ + 𝑥𝑛 ∗ 𝑤𝑛) + 𝑏 (2.4)

Where, 𝑥1, 𝑥2, … … 𝑥𝑛 are input that take numerical values for learning process. They can be

raw input data or outputs of the other perceptrons. The parameters 𝑤1, 𝑤2, … … 𝑤𝑛 are weights

that take numerical values appended to each input and control the level of importance of each

input. The higher the value, the more important the input and 𝑥1 ∗ 𝑤1 + 𝑥2 ∗ 𝑤2 + ⋯ + 𝑥𝑛 ∗

𝑤𝑛 is called the weighted sum of inputs. The parameter 𝑏 is called the bias unit that also takes

a numerical value. In some contexts, the bias 𝑏 is denoted by 𝑤0. The input 𝑥0 always takes the

value 1. Therefore, 𝑏 ∗ 1 = 𝑏. It is added to the weighted sum of inputs. The purpose of

including a bias is to avoid the zero value of the activation function of each perceptron. In other

words, if all 𝑥1, 𝑥2, … … 𝑥𝑛 inputs are 0, the 𝑧 is equal to the value of bias.

Obviously linear problems can be solved in a single perceptron, but it is not well suited to non-

linear cases. To solve these complex problems, MLPs can be considered. MLPs known as the

deep feedforward neural networks, belong to the class of feedforward neural networks (FFNNs)

with at least three layers [84]. MLPs models are the most basic deep neural network, which is

composed of a series of fully connected layers, meaning that all neurons in a layer are

connected to all neurons in the next layer.

Figure 2. 3 A simple multilayer neural network

29 | P a g e

The basic structure of multi-layer neural network consists of input layer, weights, biases,

hidden layer, activation functions and output layer [85]. The input layer is the initial layer of

the network that receives the input signal to be processed. The hidden layer performs all kinds

of computation on the features entered through the input layer and transfers the result to the

output layer. The output layer takes input from preceding hidden layers and comes to a final

prediction based on the model’s learnings.

Using an activation function an output signal is calculated and feed forward towards the next

layer of nodes in the network, where the neurons collects and computes the next signal given

different weights to the neurons, until it reaches the output layer, which represents the possible

classes, where the output is determined [85]. Neural networks are nonlinear models, designed

to describe and handle nonlinear relationships. In the non-linear functions of the neural network

an activation function 𝑓 is applied to the weighted sum 𝑧 to get the final output 𝑦 as shown in

equation 2.5.

𝑦 = 𝑓(𝑧) = 𝑓 (∑ 𝑤𝑖𝑗𝑥𝑖

𝑛

𝑖=1

+ 𝑏) (2.5)

where, 𝑤𝑖𝑗, 𝑥𝑖, b and 𝑦 are the weights, input values, biases and output values respectively and

𝑓(.) is non-linear function.

Figure 2. 4 Deep neural network with multiple number of hidden layers [86]

30 | P a g e

A DNN contains an input and output layer, separated by 𝑙 layers of hidden units. Given an

input sample clamped to the input layer, the other units of the network compute their values

according to the activity of the units that they are connected to in the layers below. We will

consider a particular sort of topology here, where the input layer is fully connected to the first

hidden layer, which is fully connected to the second layer and so on up to the output layer.

Given an input 𝒙, the value of the 𝑗-th unit (node) in the 𝑖-th layer is denoted ℎ𝑗
𝑖(𝒙), with 𝑖 = 0

referring to the input layer, 𝑖 = 𝑙 + 1 referring to the output layer. The default activation level

is determined by the internal bias 𝑏𝑗
𝑖 of that unit. The set of weights 𝑤𝑗𝑘

𝑖 between ℎ𝑘
𝑖−1(𝒙) in

layer 𝑖 − 1 and unit ℎ𝑗
𝑖(𝒙) in layer 𝑖 determines the activation function of unit ℎ𝑗

𝑖(𝒙) as follow:

ℎ𝑗
𝑖(𝒙) = 𝑠𝑖𝑔(𝑎𝑗

𝑖) where 𝑎𝑗
𝑖(𝒙) = 𝑏𝑗

𝑖 + ∑ 𝑤𝑗𝑘
𝑖 ℎ𝑘

𝑖−1(𝒙)𝑘 ∀𝑖 ∈ {1, … , 𝑙}, with ℎ
0(𝑥) = 𝑥 (2.6)

where 𝑠𝑖𝑔(.) is the sigmoid function. Given the last hidden layer, the output is computed

similarly by:

𝒐(𝒙) = 𝒉
𝑙+1(𝒙) = 𝑓(𝐚

𝑙+1(𝒙)) 𝑤ℎ𝑒𝑟𝑒 𝐚

𝑙+1(𝒙) = 𝒃
 𝑙+1 + 𝒘

 𝑙+1𝒉
𝑙(𝒙) (2.7)

where the activation function 𝑓(.) depends on the supervised task the network must achieve.

Typically, to find a distribution over K classes, it becomes a Softmax function for a

classification problem.

2.6.2.7. Convolutional Neural Networks

Convolutional Neural Networks (CNN) is one of the most popular deep neural network models

in use today. This neural network computational model uses a variation of multi-layer

perceptrons and contains one or more convolutional layers that can be either fully connected

or pooled. CNN were first proposed by [87]. CNNs are originally developed for computer

vision tasks, but later on made their way in various AI applications, including facial

recognition, text digitization and natural language processing [88]. The CNN architecture

consists of three types of layers, also called multi-building blocks [88]. Each layer in the CNN

architecture, including its function, is described in detail below.

Convolutional Layer: It consists of a collection of convolutional filters (so called kernels).

The input texts, expressed as N-dimensional metrics, is convolved with these filters to generate

the output feature map. A grid of discrete numbers or values describes the kernel. Each value

is called the kernel weight. Random numbers are assigned to act as the weights of the kernel at

the beginning of the CNN training process.

31 | P a g e

Convolution consists of shifting the convolution kernel over the whole set of values. These

weights are adjusted at each training era; thus, the kernel learns to extract significant features

[88].

Pooling Layer: A pooling layer receives the result from a convolutional layer and compresses

it. The main task of the pooling layer is the sub sampling of the feature maps. Concurrently, it

maintains the majority of the dominant information in every step of the pooling stage. Several

types of pooling methods are available for utilization in various pooling layers. These methods

include tree pooling, gated pooling, average pooling, min pooling, max pooling, global average

pooling, and global max pooling [68].

Fully Connected Layer: Commonly, this layer is located at the end of each CNN architecture.

Inside this layer, each neuron is connected to all neurons of the previous layer, the so called

fully or densely connected approach. It is utilized as the CNN classifier [89].

Character-level CNNs have been studied for text classification [68] [67]. As illustrated in

Figure 2.5, the model takes as input the characters in a fixed-sized, encoded as one-hot vectors,

passes them through a deep CNN model that consists of six convolutional layers with pooling

operations and three fully connected layers. This approach scales well with alphabet size,

allowing to preserve more information from the original text to enhance classification

performance.

Figure 2. 5 The architecture of a character-level CNN model [68]

2.6.2.8. Recurrent Neural Networks

Recurrent neural networks (RNN) are another class of deep neural networks designed to handle

sequential samples of data. The input of RNN consists of the current input and the previous

samples. RNNs take the output of a processing node and transmit the information back into the

network. This results in theoretical "learning" and improvement of the network. Each neuron

in an RNN owns an internal memory that keeps the information of the computation from the

previous samples, and these historical processes are reused in the future during processing [90].

32 | P a g e

Recurrent neural networks have certain problems when handling time serial data samples

where a vanishing gradient problem can occur. The gradients can blow up and give an

unreliable model. Compared to a regular FFNN, the RNN has a feedback connection within

the hidden layer, as shown in Figure 2.6. This is the reason for recurrent neural networks to in

theory, handle sequential input data better than feed forward neural networks.

Figure 2. 6 A standard RNN with a feedback connection inside the hidden layer

Given an input sequence 𝑥 = (𝑥1, … , 𝑥𝑇), a standard recurrent neural network (RNN)

computes the hidden vector sequence ℎ = (ℎ1, … , ℎ𝑇 and output vector sequence 𝑦 =

(𝑦1, … , 𝑦𝑇 by iterating the following equations from 𝑡 = 1 to 𝑇:

ℎ𝑡 = 𝑓(𝑊𝑥ℎ𝑥𝑡 + 𝑊ℎℎℎ𝑡−1+𝑏ℎ) (2.8)

𝑦𝑡 = 𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦 (2.9)

where the 𝑊 terms denote weight matrices (e.g. 𝑊𝑥ℎ is the input-hidden weight matrix), the 𝑏

terms denote bias vectors (e.g. 𝑏ℎ is hidden bias vector) and f is the hidden layer function.

The key aspects (hyperparameters) in building the deep neural network infrastructure are

discussed in detail as follows:

Activation Functions

The output of an MLP network is determined using a variety of activation functions, also

known as transfer functions [91] [92]. The activation function decides whether a neuron should

be activated or not by calculating the weighted sum and further adding bias to it. The idea of

an activation function is to mimic, like mentioned earlier, the functioning of the human brain

and act like a "switch", where an input contribution either gives a value of 1 or is kept to 0. The

purpose of the activation function is to introduce non-linearity into the output of a neuron. The

following types of activation functions are most commonly used in deep neural networks [85].

33 | P a g e

Sigmoid: The sigmoid function usually used in output layer of a binary classification, where

result is either 0 or 1, as value for sigmoid function lies between 0 and 1 only so, output can be

predicted easily to be 1 if value is greater than 0.5 and 0 otherwise. The function is defined as:

𝑓(z) =
1

1 + 𝑒−𝑧
 (2.10)

When using the Sigmoid function for hidden layers, it is a good practice to use a “Xavier

Normal” or “Xavier Uniform” weight initialization (also referred to Glorot initialization,

named for Xavier Glorot) prior to training [93]. When we are working with deep neural

networks, initializing the network with the right weights can be the hard to deal with because

deep neural networks suffer from problems called vanishing or exploding gradients.

Weight initialization is used to define the initial values for the parameters in neural network

models prior to training the models on a dataset. The Xavier initialization method is calculated

as a random number with a uniform probability distribution 𝑈 between the range −
1

√n
 and

1

√n
,

where 𝑛 is the number of inputs to the node [93]. Biases are initialized be 0 and the

weights 𝑊𝑖𝑗 at each layer are initialized as:

𝑊𝑖𝑗 = 𝑈[−
1

√𝑛
,

1

√𝑛
]

(2.11)

Rectified Linear Unit (ReLU): It belongs to one of the most frequently used activation

functions applied in deep networks. It gives an output 𝑧 if 𝑧 is positive and 0 otherwise. It is

defined as:

𝑓(z) = 𝑚(0, 𝑧) (2.12)

A couple of downsides with the ReLU is that negative neurons will be kept at zero and have a

hard time recovering, if the learning rate is too high the model can stop updating the weights.

It is only used for the hidden layers of neural network [85].

Softmax: Softmax is a last layer activation function that returns the probability of a data point

belonging to each individual class in a multiclass classification problem. This could give a hint

towards how certain the model is on predicting the correct class, or how confused the model is.

The range of the output for each class is between 0 and 1.

34 | P a g e

The sum of all the classes probabilities is 1. It can be mathematically expressed as:

𝑓(𝑧)𝑖 =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗

𝐾
𝑗=1

 (2.13)

Here, 𝑒𝑧𝑖

 represents the non-normalized output from the preceding layer, 𝐾 represents the

number of classes in the output layer, 𝑧 represents input vector and 𝑒𝑧𝑗

 represents standard

exponential function for output vector.

Loss Function

The other key aspect in setting up the deep neural network infrastructure is selecting the right

loss functions. Loss function is a function that computes the distance between the current

output of the algorithm and the expected output. Loss functions are utilized in the output layer

to calculate the predicted error created across the training samples in the neural network model.

This error reveals the difference between the actual output and the predicted one. Using the

error backpropagation [92], the neuron weights in particular layer are updated in such manner,

that the error rate decreases several types of loss functions are employed in various problem

types. The following concisely explains some of the loss function types used for classification

problems.

Cross-Entropy Loss Function: It is an optimization function which is used in case of training

a classification model which classifies the data by predicting the probability of whether the

data belongs to one class or the other class [92].

Categorical Cross-Entropy: is a loss function used for multi-class classification tasks. The

output label is assigned one-hot category encoding value in form of 0s and 1. The outputted

loss is the negative of the sum of the true values 𝑝 multiplied by the log of the predicted values

log 𝑦. If the number of classes 𝑀 > 2, the categorical cross-entropy loss function can be

computed as:

𝐿𝑜𝑠𝑠(𝑝, 𝑦) = − ∑ ŷ. 𝑙𝑜𝑔 (ṗ)

𝑀

𝑖=1

 (2.14)

where, M represent number of classes, ŷ is true output and ṗ is the classifier’s predicted

probability distributions.

35 | P a g e

Optimization Algorithms

Optimization refers to a procedure for finding the input parameters to a function that result in

the minimum or maximum output of the function. Optimizers are algorithms used to change

the attributes of the neural network such as weights and learning rate to reduce the losses.

MLPs are trained through a method called backpropagation [91]. Backpropagation is an

algorithm that back propagates the errors from output nodes to the input nodes. Therefore, it is

simply referred to as backward propagation of errors. The point of backpropagation is to fine-

tune the weights of a network based on the errors obtained in the previous epochs [91].

Gradient Descent or Gradient-based learning algorithm: To minimize the training error,

this algorithm repetitively updates the network parameters through every training epoch. It is

highly used in supervised learning to minimize the error function and find the optimal values

for the parameters. The backpropagation algorithm looks for the minimum value of the error

function in weight space using the method of descent-based learning algorithms such as

AdaGrad, Root Mean Squared Propagation (RMSprop) and Adaptive Moment Estimation

(Adam) [91] [92] [94]. Generally, each training iteration of neural network has three main

stages: feedforward of the input training pattern, backward propagation of the associated error

and modification of weights.

Adaptive Moment Estimation (Adam): Adam is an optimization function, used to minimize

the error rate of the model in the prediction, which computes the learning estimation for each

parameter [94]. Adam represents the latest trends in deep learning optimization that only

requires first-order gradients with little memory requirement and it is the most suitable

optimization method in deep neural network [94].

Adam optimization algorithm incorporates the momentum method and RMSprop, along with

bias correction. Adam keeps an exponentially decaying average of past squared gradients 𝑣(𝑡)

and past gradients 𝑚(𝑡). 𝑣(𝑡) and 𝑚(𝑡) are values of the first moment which is (the mean) and

the second moment which is the un-centered variance of the gradients respectively [94] [95].

Both moving averages are initialized to 0, which leads to the moments’ estimation biased

towards zero. Such situation occurs mostly during the initial phases when decay parameters

(𝛽1 , 𝛽2) have values close to 1.

36 | P a g e

Such biased can be removed using modified estimations ḿ𝑡 and ṽ𝑡:

ḿ𝑡 =
𝑚𝑡

1 − β1
𝑡 , ṽ𝑡 =

𝑣𝑡

1 − β1
𝑡 (2.15)

The parameters are updated according to the formula:

𝛳𝑡+1 = 𝛳𝑡−1 −
α

√ṽ𝑡 + є
. ḿ𝑡 (2.16)

Adaptive Gradient (AdaGrad): AdaGrad works on the learning rate component by dividing

the learning rate by the square root of S is initialized to 0 which is the cumulative sum of current

and past squared gradients (i.e. up to time t) [95] [96].

𝑤𝑡+1 = 𝑤𝑡 −
α

√𝑠𝑡+є
.

𝜕𝐿

𝜕𝑤𝑡
, where 𝑆𝑡 = 𝑆𝑡−1 + [

𝜕𝐿

𝜕𝑤𝑡
]2 and S is initialized to 0. (2.17)

Root Mean Square prop (RMSprop): It is another adaptive learning rate that is an

improvement of AdaGrad. Instead of taking cumulative sum of squared gradients like in

AdaGrad, it takes the exponential moving average of these gradients [95].

𝑤𝑡+1 = 𝑤𝑡 −
α

√𝑠𝑡+є
.

𝜕𝐿

𝜕𝑤𝑡
, where 𝑆𝑡 = 𝑆𝑡−1 + (1 − β)[

𝜕𝐿

𝜕𝑤𝑡
]2 and S is initialized to 0. (2.18)

Regularization Techniques

There are two main problems when training neural networks: overfitting and underfitting.

Overfitting: Overfitting refers to the phenomenon where a neural network models the training

data very well, but fails when it sees new data from the same problem domain. Less complex

neural networks are less susceptible to overfitting [97].

Underfitting: Underfitting is the opposite of overfitting. It occurs when the model is not

sensitive enough to the training data and as a result, the model fails to learn the most important

patterns in the training data i.e., it only performs well on training data but performs poorly on

testing data. Underfitting is often not a real problem because we can prevent it by simply

making the model deeper i.e. (add more layers or neurons to the model) or train for a few more

epochs [97].

Dropout: Dropout is one of the most effective and commonly used techniques to prevent

overfitting in neural networks [97]. The term “dropout” refers to dropping out the nodes in a

neural network as seen in Figure 2.7. During each training epoch, neurons are randomly

dropped.

37 | P a g e

Dropout is easily implemented by randomly selecting nodes to be dropped out with a given

probability in each weight update epoch. For example, on the left side of Figure 2.7, suppose

we have a feedforward neural network with no dropout. Using dropout with an assumed

probability of P = 0.5 that a random neuron will be turned off during training would result in a

neural network on the right hand side.

a) Standard neural network b) After applying dropout

Figure 2. 7 Neural network with dropout and without dropout [97]

Batch Size: The batch size is responsible for how many samples we want to use in one epoch,

which means how many samples are used in one forward/backward pass. This increases the

speed of the computation as it need fewer epochs to run, but it also needs more memory, and

the model may degrade with larger batch sizes.

2.6.3. Evaluation Techniques

Evaluation metrics adopted within deep learning tasks play a crucial role in achieving the

optimized classifier [98]. Confusion matrix is the summary of prediction results on a

classification problem that records the number of occurrences between two raters the actual

and the predicted classification.

Table 2. 2 Confusion Matrix

A
ct

u
a
l

V
a
lu

es
 Predicted Values

 Positive (1) Negative (0)

Positive (1) TP FN

Negative (0) FP TN

The performance of a deep neural network can be evaluated by several performance measures,

such as precision, recall, accuracy and F-score [99]. Such metrics can be computed as:

Accuracy: The accuracy is the number of correctly classified data samples, out of all the data

samples in each dataset.

38 | P a g e

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝐹𝑃
 , where (2.19)

True Positive (TP): is the number of correct predictions when the actual class is positive.

True Negative (TN): is the number of correct predictions when the actual class is negative.

False Positive (FP): is the number of incorrect predictions when the actual class is positive.

False Negative (FN): is the number of incorrect predictions when the actual class is negative.

Precision: Utilized to calculate the positive patterns that are correctly predicted by all predicted

patterns in a positive class and it tells us how good the model is at predicting a specific class.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (2.20)

Sensitivity or Recall: Utilized to calculate the fraction of positive patterns that are correctly

classified and tells us how many times the model was able to detect a specific class. It is also

called the True Positive Rate (TPR).

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (2.21)

F1-Score: Calculates the harmonic average between recall and precision rates.

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (2.22)

To apply such metrics in the multi-class classification, those metrics could be computed for

each class. Usually, we need to compute the confusion matrix as illustrated in Table 2.2 for

each class 𝑐𝑖 ∈ 𝐶 = {1, . . . , 𝐾}. For each class 𝑐𝑖, the 𝑖-th class is considered as positive, while

the rest of other classes as a negative class.

Then, to summarize the performance of the classifier on all classes, metrics can be micro or

macro averaged [99]. The use of micro or macro averaging is dependent on the particular use

case. In the following formulas, we will use 𝑇𝑃𝑖, 𝐹𝑃𝑖, and 𝐹𝑁𝑖 as the true positive, false

positive, and false negative rates associated with the class 𝑖. Specifically, there are 3 averaging

techniques applicable to multiclass classification namely macro, micro and weighted

averaging.

Micro-average: It is the same as accuracy. Micro-averaging is found by dividing the sum of

the diagonal cells of the matrix by the sum of all the cells. Micro-averaging is preferred in case

of class imbalance present in the data.

39 | P a g e

Micro-averaged precision, recall and F1-score metrics are computed as:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛micro =
∑ 𝑇𝑃𝑖

𝐶
𝑖=1

∑ 𝑇𝑃𝑖 + 𝐹𝑃𝑖
𝐶
𝑖=1

 (2.23)

𝑅𝑒𝑐𝑎𝑙𝑙micro =
∑ 𝑇𝑃𝑖

𝐶
𝑖=1

∑ 𝑇𝑃𝑖 + 𝐹𝑁𝑖
𝐶
𝑖=1

 (2.24)

𝐹1_𝑆𝑐𝑜𝑟𝑒𝑚𝑖𝑐𝑟𝑜 =
𝑇𝑃

𝑇𝑃 +
1
2 (𝐹𝑃 + 𝐹𝑁)

(2.25)

Macro-average: Macro-averaging is based on the computation of precision, recall and F1-

score for each class and then averaging the overall metrics:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛macro =
∑ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖

𝐶
𝑖=1

𝐶
 (2.26)

𝑅𝑒𝑐𝑎𝑙𝑙macro =
∑ 𝑅𝑒𝑐𝑎𝑙𝑙𝑖

𝐶
𝑖=1

𝐶
 (2.27)

𝐹1_𝑆𝑐𝑜𝑟𝑒𝑚𝑎𝑐𝑟𝑜 =
∑ 𝐹1_𝑠𝑐𝑜𝑟𝑒𝑖

𝐶
𝑖=1

𝐶
, where C represents the number of classes

(2.28)

Weighted-Average Precision: The weighted average precision is the sum of the number of

support multiplied by the precision of individual class divided by the total number of samples.

The total number of samples will be the sum of all the individual samples.

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑average precision =
∑ 𝑤𝑖

𝐶
𝑖=1 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖

∑ 𝑤𝑖
𝐶
𝑖=1

 (2.29)

where 𝑤𝑖 is represents sample (support) weight of each class.

Weighted Average Recall: The weighted average recall is computed by multiplying the

precision of each class and multiply them with their sample size and divide it by the total

number of samples. The total number of samples will be the sum of all the individual samples.

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑average recall =
∑ 𝑤𝑖 ×𝐶

𝑖=1 𝑅𝑒𝑐𝑎𝑙𝑙𝑖

∑ 𝑤𝑖
𝐶
𝑖=1

 (2.30)

Weighted Average F1-score: It is calculated by taking the mean of all per-class F1-

scores while considering each class’s support. Support is the number of actual occurrences of

the class in the test dataset. Imbalanced support in the training data may indicate the need for

stratified sampling or rebalancing.

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑average F1−score =
∑ 𝑤𝑖

𝐶
𝑖=1 × 𝐹1_𝑠𝑐𝑜𝑟𝑒𝑖

∑ 𝑤𝑖
𝐶
𝑖=1

 (2.31)

40 | P a g e

2.7. Related Works

Automatic text-based language identification has been researched since the 1960s [100].

Several researchers have attempted to solve LID problem using different modeling and

classification techniques for different languages. Previous work that is related to this study;

applied Cumulative Frequency Addition (CFA) and Naïve Bayes Classifier (NBC) to explore

a comparative study of automatic LID on four Ethio-Semitic languages, namely Amharic,

Tigrigna, Geez and Guragigna [21]. This work done to solve the factors that determine

classification accuracy in short size of the textual string using N-gram as feature set. This

research work utilizes characters-based N-gram of maximum length of 5 characters features to

develop the language detection models.

In their system, authors employed an experimental study to measure the performance CFA and

NBC classifiers. F1-score used as an optimal measure of performance for comparing classifiers

performances. The average F1-score across the different length test strings 97.71% and 97.67

for CFA and NBC respectively. The researcher suggests that CFA classifier performs a better

classifier both theoretically and practically therefore, this research can be extended to include

other Ethio-Semitic languages that use the Ethiopic characters as their system of writing [21].

Another prior study which is conducted by Kidist Ergetie, presented a general purpose LID for

four Ethio-Semitic languages (Amharic, Geez, Guragigna and Tigrigna) using hybrid approach

that combines rule based with machine learning both on short and long documents written using

Ethiopic [22]. For training and testing purpose 27 MB data from different sources (news, bible

and books) were used. In order to observe the capability of the proposed language identifier

they used a character N-gram model in two different forms: fixed character N-gram size

(optimal maximal length N-grams empirically from 2 up to length 5) and infinity or all

character N-gram size (depends on a word length, maximum at N = word length).

Besides, Naïve Bayes as classification method and Precision, Recall and F-score used as

performance measures. The highest F-score performance obtained for the Naive Bayes

classifier on infinity N-gram language model was 88.75% considering location feature and

86.67% without considering the location feature. The experimental result show that the infinity

N-gram based approach is outperforming than fixed size character N-gram approach for

language identification task at both monolingual as well as multilingual document setting [22].

41 | P a g e

In addition to this, Biruk Tadesse has provided a text-based language identification for seven

Ethiopian languages namely Afar, Amharic, Nuer, Oromo, Sidamo, Somali and Tigrigna [19].

To solve the factors that affecting accuracy such as the size and variety of training data and the

size of the string has been investigated. The corpus data collected from various sources such

as newspapers, TV news, Religious books, academic books and dictionaries. The researcher

utilized N-gram language modeling and identification algorithm Naïve Bayes, SVM classifier

and Dictionary Method.

Naïve Bayes and SVM classifiers trained by using character N-gram of size 3 as a feature set.

The dictionary method uses stop-words [19]. The 3-gram Naïve Bayes classifier, 3-gram SVM

classifier and the dictionary method showed an average classification accuracy of 98.37%,

99.53% and 90.53% respectively. Higher error rates were noticed on the smallest character

window for all classifiers. Finally, they recommended the use of a classification approach

combined with linguistic initiative features such as POS and morphological information to

provide concrete evidence of language types in terms of lexicon, orthography, morphology,

and syntax.

In another work, Legesse Wedajo focused on developing a textual-based language

identification model for five Ethiopian Cushitic languages namely Afaan Oromo, Afar,

Sidama and Somali by using character N-gram as a feature set and Naïve Bayes and

Frequency rank order classification algorithms [20]. The corpus for the study was collected

from sources such as TV news websites, Bible, news bulletins, government documents, and

documents from ministry of education to insure the corpus spans various domains. For test

string of size 15 characters an accuracy of 99.55% on character N-gram feature set and

99.78% on character N-gram and its location in a word feature set was achieved for Naïve

Bayes classifier.

The results showed that Naïve Bayes classifier achieved highest accuracy for short, medium

and long string test documents. The identification accuracy of frequency rank order is low

but showed an improvement for short text test documents. When using character N-gram and

its location frequency as feature set, the accuracy of the both models showed an improvement.

The result of the research can be used by anyone who has interest to develop spell checker

for these languages and the researcher recommends that the performance of the models can

be improved by using parallel corpus [20].

42 | P a g e

In a more recent work, language identification model is developed for five typologically and

phylogenetically related low-resourced East African languages that use the Ge’ez script as a

writing system; namely Amharic, Blin, Ge’ez, Tigre, and Tigrinya [4]. The datasets compiled

from news sources of diverse websites, Bibles of the Ethiopian and Eritrean Orthodox

Churches and the existing datasets. They integrated the dataset into an existing open-source

language-identification tool, langdetect by creating profiles for the five languages and then

evaluate the performance of the underlying Naive Bayes model that uses character N-grams

(the frequency counts of unigrams, bigrams, and trigrams of characters) as features.

Furthermore, they also fine-tune five pre-trained language models (PLMs) of varying sizes (by

the number of parameters), architectures, and training data. Overall, the evaluated models

perform very competitively on the task, with F1-scores ranging between 98.28% and 99.90%.

The experimental results show that the integrated langdetect can reach 99.90% in F1-score. In

comparison, the approach of langdetect with Geez-Switch was able to outperform all the large

language models, though not by a large boundary. Finally, the researchers suggest that as future

work, the dataset can be extended to include other languages written in the Ge’ez script that

was left out in the current version due to the lack of known data sources.

A number of studies are being conducted on European and Asian languages to test the

effectiveness of statistical approaches to language identification, the researchers presented a

language identification model to discriminate similar languages [101]. They applied a

technique that combines word vectors representation and Long Short-Term Memory (LSTM)

recurrent neural networks. For the evaluation of the implemented system, they used the

Wikipedia text corpus for Serbian and Croatian languages, Voice of America website for

Persian and Dari languages, discriminating between similar language (DSL) shared task

datasets for Bulgarian and Macedonian languages and TweetID dataset that contains tweets

written in Catalan and Spanish languages. The results show that enough effective and accurate

to discriminate similar languages, even when it is applied to short texts. For the experimental

evaluation on public and well-known datasets has shown that the proposed method improves

accuracy and precision of language identification tasks [101]. Finally, they suggest several

modifications that could be tested to improve the proposed method, such as other feature

extraction techniques, other neural network-based classifiers, or more datasets that could be

used. The summary of related works is shown in Table 2.3 underneath.

43 | P a g e

2.7.1. Summary of Related Works

Table 2. 3 Summary of related works

Author,

Year

Title Techniques Result Recommendations

Rediet

Bekele

(2018)

Comparative

Study of

Automatic

Language

Identification of

Ethio-Semitic

Languages,

namely Amharic,

Tigrigna, Geez

and Guragigna

CFA and Naïve

Bayes classifier

algorithm using

characters N-

gram of

maximum length

of 5 characters.

CFA scores

97.71% and NBC

scores 97.67% of

an average F-

score, CFA

classifier performs

better as

compared to NBC

and the study

shows that higher

performance is

achieved as test

phrase length

increases.

The researcher

recommends to

include other

Ethio-Semitic

languages that use

the Ethiopic script

as their writing

system and other

classification

approaches such

as ANN.

Kidist

Ergetie

(2017)

General Purpose

Language

Identification for

Ethiopia Semitic

Language using

Hybrid

Approach,

namely Amharic,

Geez, Guragigna

and Tigrigna

Fixed character

N-gram size (N=2

up to 5) and

infinity N-gram

size (N= 2 up to

maximal length of

word) as a feature

set, to construct

the models and

Naïve Bayes for

classifier.

The infinity N-

gram based

approach is

outperforming

than fixed size

character N-gram

approach.

The author

indorses that to

adopt the infinity

N-gram-based

approach for

other

classification

tasks and

performing a

comparative

study with other

different machine

learning

classifiers.

Biruk

Tadesse

(2018)

Automatic

Identification of

Major Ethiopian

Languages,

namely Afar,

Amharic, Nuer,

Oromo, Sidamo,

Naïve Bayes,

SVM classifier

using character

N-gram of size 3

and (15, 100 and

300-character

window) and

The Naïve Bayes,

SVM and

dictionary

methods

(stopwords)

achieved an

average accuracy

of 98.37%,

They offers that a

way of

classification

algorithms

combined with

linguistically

motivated

features such as

44 | P a g e

Somali and

Tigrigna

dictionary method

using stop-words.

99.53% and

90.53%

respectively.

POS tags and

morphological

information.

Legesse

Wedajo

(2014)

Modeling Text

Language

Identification for

Ethiopian

Cushitic

Languages,

namely Afaan

Oromo, Afar,

Sidama and

Somali

Character N-gram

as a feature set

(N=2 up to 5) and

(15, 100, and 300

characters’

window).

Naïve Bayes and

Frequency rank

order as a

classifier

algorithm.

Naïve Bayes

classifier achieved

highest accuracy

for short, medium

and long string

test documents.

The researcher

advises that to

improve the

performance of

the models by

using a parallel

corpus.

Fitsum

Gaim et

al. (2022)

Language

Identification in

Typologically

Related Low-

resourced East

African

Languages,

namely Amharic,

Blin, Ge’ez,

Tigre and

Tigrigna

Integrating the

dataset into the

langdetect tool

and then

evaluating it

using Character

N-grams (N=3) as

features and

Naive Bayes as a

classifier

algorithm.

The experimental

results show that

the integrated

langdetect can

reach 99.90% in

F1-score.

They suggest that

as future work, to

extended the

dataset to include

other languages

written in the

Ge’ez script that

was left out in the

current version

due to the lack of

known data

sources.

Ermelinda

Oro et al.

(2018)

Language

Identification of

Similar

Languages using

Recurrent Neural

Networks,

namely Serbian,

Croatian,

Persian, Dari,

Bulgarian,

Macedonian,

Catalan and

Spanish

Word vectors

representation and

Long Short-Term

Memory (LSTM)

recurrent neural

networks

Proposed method

obtains better

results when

compared with

prior works

considering same

languages.

They suggest

several

modifications that

could be tested to

improve the

proposed method,

such as: Other

feature extraction

techniques, other

neural network-

based classifiers,

or more datasets

that could be

used.

45 | P a g e

2.8. Research Gaps

In this subsection, the researchers present the research gaps identified in related works and

literature reviews. As reported in previous related works, considering Ethiopian languages,

most investigators have applied related classical machine learning classifiers and data

representation techniques to solve language identification problems [4] [19] [20] [21] [22].

Naive Bayes classifiers prove to be quite popular and successful with high orders of N for the

N-grams used and the use of SVMs also appears to be a popular choice for achieving good

performance. However, the classical machine learning approaches reliance on the hand-crafted

features requires tedious feature engineering and analysis to obtain good performance [65].

This is a well-recognized issue that necessitates a better approach. Deep learning approaches

are proposed to address the limitations due to the use of hand-craft features [65].

To the best of our knowledge, there is no previous research work on LID using a deep learning

approach with a character-level embedding technique for closely related Ethiopian languages

that use the Ethiopic script as their writing system. However, nowadays, deep learning

algorithms are the state-of-the-art for many natural language processing applications like LID

and deep learning algorithms can achieved highest accuracy [83].

Although some attempts have been made to address LID problems, a series of recent studies

have indicated that there is still a need to improve the performance of language detection for

short texts and the previous research works focused on Ethio-Semitic language families [4]

[21] [22], however, there are more than 15 languages that use the Ge’ez script in their writing

system, including the Ethio-Semitic, Cushitic, and Omotic language families [5].

As previously described in the related works, most of the researchers applied word-based N-

gram model [4] [19] [20] [21] [22], although, this approaches handle OOV words badly. The

word-based language models suffer from the problem of sparsity and the word distribution has

a long tail and many parameters are required to capture all the words in a corpus. For example,

an embedding size of 300 with a vocabulary of 10k words, 3 million parameters are needed. It

becomes complex to train machine learning models when the dataset has a large number of

features. Although character N-grams should work better than word N-grams for LID,

especially for languages with rich morphology, regular morphological features like suffixes

and prefixes repeat much more often than whole words and can be representative of a language

[23]. These are more likely to be learned during model training and be indicators when

predicting the language for a new unseen text.

46 | P a g e

CHAPTER THREE

METHODOLOGY

3.1. Overview

This chapter extensively explores an overview of the selected research design, proposed system

architecture, data sources, data collection techniques, data cleaning, tokenization, text

representation technique, standardization technique, the proposed deep neural network model

architecture, training algorithm, hyperparameters and performance evaluation techniques.

3.2. The Proposed Research Design

Each field of study has its own unique features that requires specific methods of investigation.

Understanding these features helps researchers to use the most appropriate methodologies for

research study. In most studies, the primary issue is choosing a research methodology based

on the research problem and stated research questions. Accordingly, this proposed research

follows an experimental research design which is one of the most common approaches in social

science, computer science, information systems, software engineering and psychology [102].

Experimental research design is a framework of procedures created to conduct experimental

research with a scientific approach using two sets of variables: independent and dependent

variables. An experimental research is scientifically driven, quantitative research to find out

the relationship between these variables [102][103].

The general structure for a quantitative research design is based on the scientific method and

the results are presented numerically and statistically [103]. In experimental research design,

the researcher actively attempts to change the datasets, scenarios, algorithms, or parameters.

The experimental research design provides conclusions about cause and effect between the set

of variables that make up a study. Therefore, in our study, at the end of the experiments, the

researchers drew a conclusion about the performance of the proposed language identification

model on short and long texts. After a research topic is selected and the problem is clearly

formulated, an experimental design includes preparing the dataset, choosing applicable tools

for the experiments, designing an experimental setup, conducting various experiments,

evaluating the performances, analyzing the result of the experiment, report the findings and

finally draw the conclusions [103].

47 | P a g e

During the experiment, the researcher can manipulate the independent variable to check its

influence on dependent variables. In short, experimental research could be viewed as a test or

series of tests that makes deliberate changes to the input variable of a process or system in order

to observe and understand the effects of those changes on the output variables.

Independent variables are known as predictors, causes or input variables that are used to predict

the value or outcome of dependent variables [103]. The dependent variables are called

responses, effects, output variables or classes where the output of that variable depends on

other variables [103]. Scientists are generally agreed that the most effective means of testing a

prediction is deliberately to manipulate the independent variable and then to observe the

consequential changes in the dependent variable [102] [103].

In machine learning, independent variables are called features and dependent variables are

called class names. Therefore, in the case of this study, the textual data were marked as

independent variables, while language names like Amharic, Awngi, Geez, Guragigna, Tigrigna

and Xamtanga were categorized as dependent variables. The relationship between the various

independent and dependent variables within a given system can be expressed mathematically

as follows:

𝒚 = 𝒇(𝒙) (3.1)

where 𝑦 denotes the dependent variable and 𝑥 indicates the independent variables that affect

the output when their values change.

3.3. The Proposed System Architecture

The general architecture of the proposed language identification model consists of corpus

collection from various sources, data cleaning, tokenization, text representation for dependent

and independent variables, data scaling, dataset splitting, building a deep neural network

model, training the constructed model, and testing the model. The general architecture of the

proposed language identification model is shown in Figure 3.1.

48 | P a g e

Figure 3. 1 General architecture of the proposed language identification model

 Preprocessing

 Data Cleaning

 Removal of non-Ethiopic scripts

 Removal of HTML tags, extra white

spaces and new lines

 Text Representation

 Bag-of-characters

 Label encoding

 Data Scaling

 Standard scaler

 One-hot-encoding

Predicted Language

Dataset Splitting

Languages

raw corpus

Training Set
Test Set

DNN Model Train the Model

 Tokenization

 Character-Level

 Word-Level

Hyperparameters Tuning

Model testing

Model building and training

Validation Set

Trained Model

49 | P a g e

As shown in Figure 3.1, the languages raw corpus is a set of noisy text files composed of the

six Geez-based Ethiopian languages, namely Amharic, Awngi, Geez, Guragigna, Tigrigna, and

Xamtanga. Each language corpus contains monolingual text, which means that each document

file has only one language.

The preprocessing phase is an important step in preparing the text corpus in a machine learning

or deep learning understandable format for model training and testing. In general, the

preprocessing phase involves removing unhelpful parts of the corpora, converting the texts into

a stream of words or characters, and converting texts into numbers to allow machines to

understand and decode patterns within a language. In addition, this phase includes the

standardization of the real-valued input and output variables to ensure that all features

contribute equally to the model and to prevent features with larger values from dominating the

model. Finally, the pre-processed text corpus is divided into training, validation and test sets.

The model building and training phase includes designing and building the proposed deep

neural network (DNN) model architecture, such as the number of input layers, hidden layers,

output layers, the number of nodes in each layer, and other hyperparameters. Once built, the

model is trained on the specified training dataset with several hyperparameters tuning.

In the model testing phase, the performance of each trained model to correctly identify the

languages is evaluated on the test dataset. Finally, using the best trained model, the unknown

text language is identified and displayed during the prediction phase.

3.3.1. Data Collection

The WWW is a source of textual data written in different languages on webpages and social

media platforms, hence the corpus for this study was collected from various sources. The

Amharic10 and Tigrigna11 corpus were obtained from Amhara Media Corporation (AMC),

Ethiopian broadcasting corporation , Ethiopian press agency, Fana broadcasting corporation,

Tigrai TV and Walta TV using their own websites, Facebook pages and Telegram channel.

10 Amharic data sources: http://amharaweb.com/, https://t.me/EBCNEWSNOW, https://bit.ly/2wdQpiZ,

https://t.me/WALTATVEth, https://t.me/fanatelevision
11 Tigrigna data sources: https://t.me/tigrignafana, https://t.me/EPATigrigna, https://tigraitv.com/,

https://www.facebook.com/AmharaMediaCorporationTigrigna

50 | P a g e

The corpus for Awngi12 and Xamtanga13 was collected from AMC websites, Facebook page

and Telegram channel. The corpus for the Ge'ez14 and Guragigna15 language was collected from

the digital Bibles and various Ethiopian Orthodox Tewahedo softcopy books and PDF files,

hence the corpus spans multiple domains. The corpus was collected using an automated data

collection tool called Beautiful Soup, but we also did a manual assessment to ensure the quality

of the data. Beautiful Soup is a Python library web scraping tool used to collect data from

various websites. In addition, we applied data collection technique such as document analysis

and online interviews with the domain expert. The corpus we collected is monolingual text,

meaning that each document file contains only one language.

3.3.2. Text Preprocessing

After the corpus has been collected, the next step is text preprocessing. Textual data derived

from various sources is unstructured and noisy. A text preprocessing step transforms this raw

corpus into a clean and coherent format before feeding it into a neural network for learning and

further analysis. We have performed various text pre-processing procedures such as data

cleaning, tokenization, text representation and feature standardization. To preprocess the data,

we used NLTK and regular expressions python libraries.

3.3.2.1. Data Cleaning

The first step is to identify some reliable sources of content for each language. Many of the

languages written with the Ethiopic script are small and not available online, which is the main

reason we focus on the selected six languages. In this step, we performed text cleaning

procedures such as removing non-Ethiopic alphanumeric scripts, punctuation marks, HTML

tags, URLs, special characters, emoticons and extra newlines were removed, except for hyphen

(-) that are commonly used to indicate multi-word expressions. For example, to write the word

constitution “ህገ መንግሥት” in Amharic, a hyphen is commonly used between the two words

like “ህገ-መንግሥት”.

12 Awngi data sources: https://bit.ly/2XEVHlq, https://bit.ly/3CudESE, https://bit.ly/3Av5GZ0
13 Xamtanga data sources: https://www.amharaweb.com/category/ኽምጠ-ዊከ/, https://t.me/Himtagne,

https://t.me/AMCHimtagne, https://www.facebook.com/AmharaMediaCorporationHimtagne
14 Ge’ez data sources: https://www.ethiopicbible.com/, https://myorthodoxbooks.org/geez/,

https://www.tau.ac.il/~hacohen/Biblia.html, http://mermru.com/bibles/, https://github.com/geezorg/data
15 Guragigna data sources: http://gospelgo.com/f/gurage_chaha_nt.htm, https://www.bible.com/en-

GB/bible/3203/GEN.INTRO1.መቅጉ, https://allaboutethio.com/books/library63a3.pdf,

https://live.bible.is/bible/SGWBSE/MAT/1

51 | P a g e

Besides, the researchers removed extra spaces and replaced them with single space because we

need to preserve single spaces between words as this is a useful feature set for training the

neural network.

Algorithm 3. 1: Algorithm for data cleaning

Input: original corpora file

Output: cleaned file

1: Open and read original corpora file;

2: Define regular expression for each noisy;

3: repeat:

4: for each lines in original corpora file do:

5: cleaned file ← remove (non-Ethiopic alphanumeric characters, extra white space,

extra newlines, URLs, HTML tags);

6: increment lines;

7: end for;

8: until successfully cleaned the corpus;

9: return cleaned file;

Each language document is represented in both machine-readable and human-interpretable

form in text files with UTF-8 encoding. In general, as shown in Table 3.1, the corpus consists

of different sizes for each language after the data cleaning.

Table 3. 1 The corpus size of each language

Languages Corpus size in megabytes

Amharic 27.58 MB

Awngi 3.94 MB

Geez 10.68 MB

Guragigna 5.77 MB

Tigrigna 24.58 MB

Xamtanga 6.31 MB

3.3.2.2. Tokenization

Tokenization is a way of breaking a piece of text into smaller units called tokens. With

tokenization, the documents are broken down into words, sub-words (N-grams) or characters.

Finally, these token occurrences in a document can be used directly as a vector representing

that document. When tokenizing text into words, spaces within a string are used as delimiters

of words, and when tokenizing text into characters, spaces are treated as characters.

52 | P a g e

Algorithm 3. 2: Algorithm for word tokenization

Input: cleaned_corpus_file

Output: tokenized_words

1: Open and read the cleaned_corpora_file;

2: for each words in cleaned_ corpus_file do:

3: tokenized_words ← length (cleaned_ corpus_file) and split by (space);

4: word_token += total length of (tokenized_words);

5: word_type += unique words of (tokenized_words);

6: increment words;

7: end for;

8: return word_token, word_type;

In this study, we implemented character tokenization to allow the tokenization process to retain

information about out of vocabulary words that word tokenization cannot. Instead of breaking

text into words, it completely separates text into characters. For example, the character

tokenization vocabulary for Amharic would have about 283 characters as shown in Table 3.2.

Algorithm 3. 3: Algorithm for character tokenization

Input: cleaned_corpus_file

Output: tokenized_characters

1: Open and read the cleaned_corpora_file;

2: for each chars in cleaned_ corpus_file do:

3: tokenized_characters ← length (cleaned_ corpus_file);

4: total_characters += total length of (tokenized_characters);

5: unique_characters += unique words of (tokenized_characters);

6: increment chars;

7: end for;

8: return total_characters, unique_characters;

Table 3.2 presents the total number of individual words (word tokens), number of unique words

(word types), total number of characters and average length of the words in the corpus. In

addition, Table 3.3 shows total number of predefined alpha-syllabic, special characters,

numerals and unique symbols of the six Geez-based languages that are we used for training the

neural network.

53 | P a g e

Table 3. 2 Word and character distributions of each language in the corpus

Languages Word tokens Word types Number of characters Average word length

Amharic 2053939 186769 10562730 5.14 characters

Awngi 294687 40479 1508861 5.12 characters

Geez 844574 105508 4122801 4.88 characters

Guragigna 489104 70070 2248174 4.6 characters

Tigrigna 2001818 124432 9527454 4.76 characters

Xamtanga 486621 68537 2426550 4.99 characters

Table 3. 3 The alphanumeric and special characters distribution of the six languages

Languages Numbers of predefined

alpha-syllabics

Total number of special

characters and numerals

Total number of

unique symbols

Amharic 283

22 symbols (base Ge’ez

numbers, single space and

hyphen)

405

Awngi 200

Geez 202

Guragigna 357

Tigrigna 276

Xamtanga 259

The alpha-syllabic of each language is depicted in Appendix II, V, VI, VII, VIII and IX. There

are several different ways of lexical similarity metrics that can be used for quantifying the

similarity between text units (words or characters) such as Jaccard, Cosine and Euclidian

similarity for this study, we used Jaccard similarity measures. The Jaccard measure works quite

well in practice, especially for sparse data [104]. The Jaccard similarity is defined as an

intersection of two documents divided by the union of that two documents. The value of Jaccard

similarity of two documents ranges from 0 to 1, where 0 indicates no similarity and 1 signifies

complete overlap. The mathematical representation of the Jaccard similarity is shown below:

𝐽(𝑑𝑜𝑐1, 𝑑𝑜𝑐2) =
|𝑑𝑜𝑐1 ∩ 𝑑𝑜𝑐2|

|𝑑𝑜𝑐1 ∪ 𝑑𝑜𝑐2|

(3.2)

For example, consider the following two languages to calculate the similarity between them at

the word-level.

Amharic = “የዓለም ሁሉ መድሃኒት ዛሬ ተወለደ”

Tigrigna = “ናይ ዓለም ኩሎም መድሃኒት ሎሚ ተወሊዱ”

54 | P a g e

The intersection word between the languages: {‘መድሃኒት’}, so one word is common. The union

words in the languages: {'የዓለም', 'ሁሉ', 'መድሃኒት', 'ተወሊዱ', 'ኩሎም', 'ናይ', 'ዛሬ', 'ዓለም',

'ተወለደ', 'ሎሚ'}. Totally, there are 10 union words. Hence, the Jaccard similarity is 1/10 = 0.1

As shown in Figure 3.2, the dataset analysis between the six closely related Ethioian languages,

namely Amharic (AMH), Awngi (AWN), Geez (GEZ), Guragigna (SGW), Tigrigna (TIR) and

Xamtanga (XAN). The report revealed that Awngi and Xamtanga are very similar at the

character level because they are grouped in a similar language family. There are some

similarities between Amharic and Tigrigna at the word level. In general, the analysis showed

more similarity at the character-level than at the word-level. This is because the all languages

use Geez script as a writing system. Texts are more similar the more their words or characters

overlap.

a) Character-level overlap b) Word-level overlap

Figure 3. 2 Lexical similarity between the Geez-based languages at character and word-level

3.3.3. Text Representation

As stated in the literature review in subsection 2.6.1, there are various vectorization techniques.

In this study, we applied the BoC technique to convert raw text into a numeric representation

by mapping each document character to a feature vector. BoC use the letter frequency approach

to represent texts as vectors of characters. The fact that character level models have proven to

be the correct method for a lot of NLP tasks because of their effectiveness [105] [106]. We

chose this method for the following three reasons: The first reason, with the character

embedding, each individual word’s to be formed as a vector, even if they are OOV words that

is capable of generating novel words [23].

55 | P a g e

After training, they can predict a vector for any word, not just words that they have seen before.

The second reason is that it handles infrequent words better than word-based and N-gram based,

since one later suffers from a lack of sufficient training facility for these rare words. The third

reason is that the complexity of the model is reduced due to the small amount of dictionaries.

It becomes complex to train machine learning models when the dataset has a greater number of

features. Less the features, the better the performance of the model. The following algorithm

describes the proposed chars2vec model.

Algorithm 3. 4: Algorithm for bag-of-characters model

Input: Cleaned corpus file

Output: Vectorized file

1: Define each language alphabets: alphabet

2: Define maximum length of characters: MAX_LEN

3: with open (Cleaned corpus file) as file:

4: content = read (Cleaned corpus file)

5: random_index = random-randrange (0, length (content))

6: define get_sample_text (content, start_index, MAX_LEN):

7: sample_text = get_sample_text (content, random_index, MAX_LEN)

8: return sample_text;

9: define count_characters (sample_text, alphabet):

10: predefined_alphabet_counts = []

11: for alphabet in sample_text do:

12: count = sample_text-count(alphabet)

13: predefined_alphabet_counts-append(count)

14: return predefined_alphabet_counts;

15: define get_input_row (content, start_index, MAX_LEN, alphabet):

16: sample_texts = get_input_row (content, random_index, MAX_LEN, alphabet)

17: bag_of_characters = count_characters (sample_texts, alphabet)

18: return bag_of_characters;

Bag-of-characters contain two elements to construct the vectors: unique alpha-syllables of the

languages and a measure of the occurrence of predefined alphabets in a given corpus. The list

of unique symbols is the union of the six Geez-based languages without repeating letters. Only

the Ethiopic alphanumeric characters and some special characters are reserved to train the

neural network. Other special characters such as full stops and semicolons are not considered

as they are the same in all the languages and hence, they do not provide any additional

information for the classification task. We have constructed a total of 405 unique symbols that

will be used as input data to train the neural network model.

56 | P a g e

As the following snippets show, the vectorization process counts the number of times each

unique symbol appears for a given sample text and counts the total number of input size (unique

symbols).

Figure 3. 3 The reference of all unique alphanumeric and symbols

Figure 3. 4 The occurrences of symbols and the total number of input size for a given sample

text

57 | P a g e

The machine learning or deep learning models cannot work on categorical variables in the form

of strings, therefore we need to change it into numerical form. Therefore, we have converted

each language name to an integer representation as shown in Table 3.4.

 Table 3. 4 Label encoding of each language
Class Name Numeric Value

Amharic 0

Awngi 1

Geez 2

Guragigna 3

Tigrigna 4

Xamtanga 5

3.3.4. Data Scaling

Although the dataset is converted to numeric form, it is unscaled. This is a significant factor

given the use of small weights to train the neural network model. Differences in scales between

input variables can increase the difficulty of training the model. A neural network model with

large vector values can result in extremely slow training [107]. Therefore, data scaling is a

recommended preprocessing step when working with neural networks. There are several data

or feature scaling techniques such as min-max scaling, standard scaling, max-absolute scaling

and robust scaling [107].

For this study, we used the standard or z-score data scaling technique because the dataset should

follow a normal distribution and is recommended for optimization algorithms such as gradient

descent [108]. With standard scaling, the shape of the dataset distribution is fixed, so in this

case the vector values are not restricted to a certain range, while with min-max scaling, the

shape of the dataset distribution can be changed. Standardization is the transformation of the

feature value by subtracting it from the mean and dividing it by the standard deviation. The

equation is presented as follows:

𝑋𝑛𝑒𝑤 =
𝑋 − 𝑚𝑒𝑎𝑛(𝑋)

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝑋)
 (3.3)

where 𝑚𝑒𝑎𝑛(𝑋) is the mean of the vector values and 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝑋) is the standard

deviation of the vector values.

58 | P a g e

The researchers also implement a one-hot-encoding word embedding technique to convert the

integer representation of each label into the machine-understandable format it is explained in

detail in Chapter two. This technique transforms each categorical integer codes to one new

feature of integers (0 to N_categories − 1) as presented in Table 3.5.

 Table 3. 5 One-hot-encoding of each language
Integer Values One-hot-encoding Values

0 [1, 0, 0, 0, 0, 0]

1 [0, 1, 0, 0, 0, 0]

2 [0, 0, 1, 0, 0, 0]

3 [0, 0, 0, 1, 0, 0]

4 [0, 0, 0, 0, 1, 0]

5 [0, 0, 0, 0, 0, 1]

The following snippets show the sample text before data scaling (Figure 3.5) and after data

scaling (Figure 3.6) where X indicates the chars2vec representation of the text and Y represents

the one-hot-encoding values of classes.

Figure 3. 5 Sample data before data scaling

59 | P a g e

Figure 3. 6 Sample data after applying data scaling technique

3.3.5. Dataset Splitting

Imbalanced dataset typically refers to a problem with classification problems where the classes

are not represented equally. Before partitioning the dataset, we performing dataset balancing.

As previously shown in Table 3.1, we have unbalanced dataset sizes for the six Geez-switch

languages, so we randomly selected 100,000 samples text from each language to solve this

problem. Therefore, each of the six languages contributes an equal number of samples, which

are then combined and a grand total of 600k × 406 samples have been prepared for training,

validation, and testing.

60 | P a g e

Table 3. 6 Distribution of sample text dataset

Languages Sample text per language Total sample text

Amharic 100,000

600,000

Awngi 100,000

Geez 100,000

Guragigna 100,000

Tigrigna 100,000

Xamtanga 100,000

To ensure that the test and train splits have the same ratio of class ratio for training classification

models, we have applied the stratification technique. Stratified sampling for splitting a dataset

alleviates the problem of random sampling in datasets with an imbalanced class distribution.

In addition, we have randomly shuffled the sample dataset which serves the purpose of

preventing any bias during training, making sure that models remain general, preventing the

model from learning the order of the training, and ensuring the model is not overfitting to

certain pattern duo sort order.

Once we have prepared the sample dataset, the dataset is first divided into two halves, training

and the test set. The validation set is then separate from the training set, which is used to

validate the model performance during training and provide an unbiased evaluation of a model

fit to the training dataset while tuning the model hyperparameters. The training set is a dataset

that we employ to train the parameters of the neural network model. In each epoch, the same

training data is repeatedly fed into the neural network architecture and the model continues to

learn the features of the data. The test set is unseen dataset that play an important role for in

the unbiased evaluation of the final model in terms of accuracy, precision, recall and F1-score.

As shown in Table 3.7, we used 70% of the sample data for training, 10% for validation, and

20% for testing.

 Table 3. 7 The distribution of dataset splitting

Training 432,000 (432k)

Validation 48,000 (48k)

Testing 120,000 (120k)

Total 600,000 (600k)

61 | P a g e

3.3.6. The Proposed Deep Neural Network Model

In this study, we have used state-of-the-art technology, which is a deep learning approach, to

develop a language identification model. We chose this approach for the following basic

reasons: Deep learning approaches extract the features by itself without much human

intervention, so this hand-off approach allows algorithms to quickly adapt to the data. Deep

learning models have achieved unprecedented success, approaching human-level performances

when trained on large amount of labeled data [109]. Therefore, one of the deep learning models,

a deep multilayer perceptron, also known as a deep neural network with multiple

hyperparameter tuning applied for the proposed language identification model.

The proposed deep neural network model architecture consists of an input layer that receives

input data, an output layer that makes a prediction about the input text, and three hidden layers

between these two with different number of nodes, so we can call it a three-layer deep neural

network model architecture, as shown in Figure 3.7.

Figure 3. 7 Summary of the proposed deep neural network model architecture

From the previous subsection, we see that the chars2vec embedding gets 406 features (input

dimensions), including class names. We have prepared 480,000 × 406 training dataset

including 10% of validation set. A large number of nodes in each layer can increases the

capacity of the network to learn complex patterns in the data, resulting in better performance

on the training set [110]. The researchers set the number of layers and nodes depends on the

size of the dataset and the computational resources available.

62 | P a g e

Therefore, for the proposed neural network model, the input layer has 406 input dimensions

that connected to 512 the first hidden layer nodes. All three layers are fully connected or dense

layer. Next, we used 256 for the second hidden layer nodes. Then another 128 for the third

hidden layer nodes and 6 neurons in the output layer for each of the six languages. As shown

summary report of the proposed deep neural network model architecture in Figure 3.7, there

are a total of 372,870 trainable parameters and zero non-trainable parameters out of 372,870.

Mathematically, we can calculate the total number of parameters as follows: The number of

weights between the input and the first hidden layer is 207,872 parameters, which means

multiplying the input size and the number of nodes for the first hidden layer (406 × 512).

Number of weights between hidden layer one and two plus the number of biases for hidden

layer two: 512× 256 + 256 = 131,328 number of parameters. Number of weights between the

second hidden layer and the third layer plus the number of biases for the third hidden layer:

256 × 128 + 128 = 32,896 number of parameters. Finally, the number of weights between the

hidden layer three and the output layer plus the number of biases for the output layer 128 has

6 + 6 = 774 number of parameters. Therefore, a total of 372,870 (207,872 + 131,328 + 32,896

+ 774) parameters are available to train the proposed neural network model.

3.3.6.1. Hyperparameter Setting

Hyperparameter tuning is the process of determining the best set of hyperparameters [110].

Hyperparameters are those parameters that are explicitly defined by the user to control the

learning process. The basic hyperparameters used in this paper are dropout ratio, optimization

algorithms, regularization mechanism, activation functions, loss function, number of epochs

and batch size. We tried several experiments by setting up these hyperparameters to different

values. Finally, the combination of hyperparameters that yields highest accuracy is selected for

the final LID model.

To control the overfitting problem, we used a regularization mechanism called dropout with

different ratios. Dropout is one of the most effective and commonly used techniques to prevent

overfitting in neural networks [97]. While building and training neural networks, it is crucial

to initialize the weights appropriately to ensure a model with high accuracy. If the weights are

not correctly initialized, it may give rise to the Vanishing Gradient problem or the Exploding

Gradient problem [93]. Therefore, to address this issue, we used Xavier Glorot prior to training

the model, because it is a good practice to use this method when using the sigmoid activation

function in hidden layers [93].

63 | P a g e

The researchers also used sigmoid activation functions in the hidden layers and Softmax

activation function in the output layer to produce the estimated result of target variables. When

training a neural network, the main goal is to minimize the loss function, which describes the

distance between the correct label of the language text and the predicted label given by the

neural network model. The loss function we used was related to the Softmax activation

function, which is recommended for multi-class classification problems with so-called

categorical cross-entropy.

Another key aspect in designing a neural network infrastructure is selecting the right

optimization algorithm, hence instead of traditional optimization techniques (random and grid

search). The researchers used three automated gradient-based hyperparameter optimization

through reversible learning [94][110]. These are Adam, RMSprop and AdaGrad with their

default values. The optimization algorithm is one of the main hyperparameter to train the model

faster and get a good result [94]. The default parameter values of Adam optimizer is: β1 = 0.9,

β2 = 0.999, learning rate = 0.001 and 10−8 for the epsilon [94] [95]. The optimizer controls the

learning rate. When comparing Adam to other methods, its advantage is faster convergence

and training speed of the model is quiet fast and gives better performance. Algorithm 3. 5 shows

a detailed description of the Adam optimization algorithm.

Algorithm 3. 5: Algorithm for Adam optimizer

Require: α: Step size (Leaning rate)

Require: 𝛽1 , 𝛽2 ∈ [0, 1): Exponential decay rates for the moment estimates

Require: 𝑓(θ): Stochastic objective function with parameters θ

Require: θ0 : Initial parameter vector

1: Initialize 1st moment vector: 𝑚0 ← 0

2: Initialize 2nd moment vector: 𝑣0 ← 0

3: Initialize time step: 𝑡 ← 0

4: while θ𝑡 not covered do:

5: 𝑡 ← 𝑡 + 1

6: Get gradients with respect to stochastic objective at time step 𝑡: 𝑔𝑡 ← 𝛥𝜃 𝑓𝑡(𝜃𝑡−1)

7: Update biased first moment estimate: 𝑚𝑡 ← 𝛽1 ∗ 𝑚𝑡−1 + (1 − 𝛽1) ∗ 𝑔𝑡

8: Update biased second raw moment estimate: 𝑣𝑡 ← 𝛽2 ∗ 𝑣𝑡−1 + (1 − 𝛽2) ∗ 𝑔𝑡
2

9: Compute bias-corrected first moment estimate: ḿ𝑡 ← 𝑚𝑡 (1 − 𝛽1
𝑡)⁄

10: Compute bias-corrected second raw moment estimate: ṽ𝑡 ← 𝑣𝑡 (1 − 𝛽2
𝑡)⁄

11: Update parameters: 𝜃𝑡 ← 𝜃𝑡−1 − 𝛼 ∗ ḿ𝑡 (√ṽ𝑡 + є)⁄

12: end while;

13: return 𝜃𝑡 (Resulting parameters)

64 | P a g e

where 𝑔𝑡
2 indicates the elementwise square 𝑔𝑡 ∗ 𝑔𝑡. All operations on vectors are element-wise.

With 𝛽1
𝑡 and 𝛽2

𝑡 we denote 𝛽1 and 𝛽2 to the power 𝑡.

Adaptive gradient or AdaGrad, works on the learning rate component by dividing the learning

rate by the square root, which is the cumulative sum of current and past squared gradients [95],

[96]. The second optimization algorithm we used was AdaGrad with default parameter values:

learning rate = 0.01 and 10−7 for the epsilon. The following algorithm describes the AdaGrad

optimizer.

Algorithm 3. 6: Algorithm for AdaGrad optimizer

Require: Global learning rate 𝜂

Require: Initial parameter 𝜃

1: Initialize gradient accumulation variable 𝛾 = 0

2: while stopping criterion not met do:

3: Sample a minibatch of 𝑚 examples from the training set {x(1),…, x(m)} with

 corresponding targets 𝒚
(𝑖).

4: Set 𝑔 = 0

5: for 𝑖 = 1 to 𝑚 do:

6: Compute gradient: 𝑔 ← 𝑔 + ∇𝜃 𝐿 (𝑓(𝒙
(𝑖); 𝜃)) , 𝒚

(𝑖); 𝜃).

7: end for

8: Accumulate squared gradient: 𝛾 ← 𝛾 + 𝒈
2 (square is applied element-wise)

9: Compute update: ∆𝜃 ← −
𝜂

√𝛾
 𝑔 (Division and square root applied element-wise)

10: Apply update: 𝜃 ← 𝜃 + ∆𝜃

11: end while;

RMSprop is another adaptive learning rate that is an improvement of AdaGrad [95] [111].

Instead of taking cumulative sum of squared gradients like in AdaGrad, we take the exponential

moving average of these gradients. RMSprop solves the vanishing gradient problem by using

a moving average of squared gradients to normalize the gradient. This normalization balances

the step size (momentum) by decreasing the step for large gradients to avoid exploding and

increasing the step for small gradients to avoid vanishing. The third optimization algorithm we

used was RMSprop with default parameter values: β = 0.9, learning rate = 0.001 and 10−6 for

the epsilon. The following algorithm defines the RMSprop optimizer.

65 | P a g e

Algorithm 3. 7: Algorithm for RMSprop optimizer

Require: Global learning rate 𝜂 , decay rate 𝑝

Require: Initial parameter 𝜃

1: Initialize gradient accumulation variable 𝛾 = 0

2: while stopping criterion not met do:

3: Sample a mini-batch of 𝑚 examples from the training set {x(1),…, x(m)} with

 corresponding targets 𝒚
(𝑖).

4: Set 𝑔 = 0

5: for 𝑖 = 1 to 𝑚 do:

6: Compute gradient: 𝑔 ← 𝑔 + ∇𝜃 𝐿 (𝑓(𝒙
(𝑖); 𝜃)) , 𝒚

(𝑖); 𝜃).

7: end for

8: Accumulate squared gradient: 𝛾 ← 𝑝𝛾 + (1 − 𝑝)𝒈
2

9: Compute parameter update: ∆𝜃 ← −
𝜂

√𝛾
 𝑔 (square root is applied element-wise)

10: Apply update: 𝜃 ← 𝜃 + ∆𝜃

11: end while;

3.3.7. Model Training

Once we constructed the deep neural network model architecture, the training process is done

using a labeled training set with different hyperparameters setting. Multilayer Perceptrons are

trained through a method called backpropagation [110]. Backpropagation is an algorithm that

back propagates the errors from output nodes to the input nodes [112].

Gradient descent is an optimization algorithm used for minimizing the cost function in various

machine learning algorithms. Stochastic gradient descent is an optimization algorithm for

finding the model parameters that correspond to the best fit between predicted and actual

outputs [94].

Backpropagation is a special case of automatic differentiation applied to neural networks

because reversing learning saves memory and can optimize thousands of hyperparameters

[110] [112]. The point of backpropagation is to fine-tune the weights of a network based on

the errors obtained in the previous epochs. The backpropagation algorithm looks for the

minimum value of the error function in weight space using the method of gradient descent [91]

[110].

66 | P a g e

Generally, each training iteration of neural network has three main stages: feed forward of the

input training data, backward propagation of the associated error and modification of weights.

Figure 3. 8 The proposed DNN model training process with backpropagation algorithm
The backpropagation training algorithm procedures are summarized as follows:

1) Initialize with values for the network parameters (𝑤𝑖𝑗 weights and 𝑏𝑗 biases). Where, 𝑖

indicates the value for neurons in the preceding layer, and 𝑗 is the values for neurons in the

next layer. Weights and biases values are usually chosen randomly. Present the input and

desired output.

2) Take samples of input data and propagate them through the network.

3) Compute the output of each neuron from the input layer to the hidden layer to the output

layer.

4) Compare these predictions obtained with the values of expected labels and calculate the

error between the expected and the estimated output.

Error = Expected Output – Desired Output

5) If the error is huge then, perform backpropagation with the gradient descent and update all

parameters in order to minimize this error. After that, check the error again.

6) Keep repeating the previous steps until the error is minimized and the desired output is

achieved.

Estimated 𝑦𝑗

 𝑏𝑗

Expected 𝑦𝑗

Yes

Error

Parameter

values
∑ │ ∫

𝑥𝑗

Is

minimum

error?

𝑦𝑗

Labeled

input

data

No

Back-propagate and fine-tune

the parameters

Training succeed

Compare
𝑤𝑖𝑗

67 | P a g e

The following pseudo-code describes the backpropagation algorithm for training the model.

Algorithm 3. 8: Backpropagation algorithm for training the proposed DNN model

1: function Back-Propagation-Learning(examples, network)

2: inputs examples: a set of examples, each with input vector x and output vector y

3: network: a multilayer network with L layers, weights 𝑤𝑖𝑗, biases 𝑏𝑗, activation function g

4: local variables: Δ a vector of errors indexed by network node

5: repeat

6: for each weight 𝑤𝑖𝑗 in network do

7: 𝑤𝑖𝑗 ← a small random number, typically between -1 and 1

8: end for;

9: for each example (x, y) in examples do

 // Propagate the inputs forward through the network to compute the outputs

10: for each node 𝑖 in the input layer do

11: 𝑎𝑖 ← 𝑥𝑖

12: end for

13: for l = 2 to L do

14: for each node j in layer l do

15: 𝑖𝑛𝑗 ← Σ𝑖 𝑤𝑖𝑗 𝑎𝑖 +𝑏𝑗

16: 𝑎𝑗 ← g(𝑖𝑛𝑗)

17: end for

18: end for

 // Propagate deltas(errors) backward from output layer to input layer

19: for each node j in the output layer do

20: Δ[j] ← g′(𝑖𝑛𝑗) × (𝑦𝑖 − 𝑎𝑗)

21: end for

22: for l = L − 1 to 1 do

23: for each node 𝑖 in layer l do

24: Δ[𝑖] ← g′(𝑖𝑛𝑖) Σ𝑗 𝑤𝑖𝑗 Δ[j]

25: end for

26: end for

 // Update every weight in network using deltas

27: for each weight 𝑤𝑖𝑗 in network do

28: 𝑤𝑖𝑗 ← 𝑤𝑖𝑗 + 𝑏𝑗 × 𝑎𝑖 × Δ[j]

29: end for

30: end for

31: until minimum error is reached to the specified value

32: return network

68 | P a g e

3.3.8. Model Evaluation

During the training process, we evaluated the model using the two most well-known metrics,

accuracy and loss. Accuracy is a method to measure the performance of classification models,

usually expressed as a percentage [98] [99]. A loss function, also known as a cost function,

takes into account the probabilities or uncertainty of a prediction based on how much the

prediction varies from the true value. Unlike accuracy, loss is not a percentage, it is a

summation of the errors made for each sample in training or validation sets.

Loss is often used in the training process to find the best parameter values for the model because

during the training process the goal is to minimize this value [98] [99]. One of the most widely

used combinations of metrics is training and validation loss over time. The training loss is a

metric used to evaluate how a deep learning model fits the training data. On the contrary,

validation loss is a metric used to assess the performance of a deep learning model on the

validation set.

After the candidate models have been trained with the available corpus, the classification

performance of the trained model is evaluated on the test set using various evaluation metrics

such as accuracy, precision, recall, F1-score, micro average of precision, micro average of

recall, micro average of F1-score, macro-average of precision, macro-average of recall, macro-

average of F1-score, weighted-average of precision, weighted-average of recall and weighted-

average of F1-score which are explained in detail in Chapter Two, subsection 2.6.3. In the

model training process, the model may be biased against the training set as well as the

validation set. Consequently, we have evaluated the trained model on 120K unseen test data.

69 | P a g e

CHAPTER FOUR

EXPERIMENTAL RESULTS AND DISCUSSION

4.1. Overview

This chapter outlines the experimental analysis of the study. The experimental setup used to

train and test the proposed model are all discussed. Several experiments have been conducted

to evaluate the performance of our proposed method and the discussion of each experimental

result is briefly clarified, as well as the main findings of the study.

4.2. Experimental Setup

To train and test the proposed language identification model, we first setup the experiment

environments such as hardware and software tools, datasets, and hyperparameters.

4.2.1. Hardware and Software Tools

We have used the two main tools hardware and software to successfully carry out this study.

Software tools such as Microsoft Windows11 Pro with 64-bit operating system and Python 3.8

with Jupyter Notebook 6.3.0 and Anaconda Navigator version 3. Python is a programming

language that suits well for machine learning tasks, and has many well developed libraries for

that specific purpose. Hardware devices like HP desktop computer with Intel(R) Core (TM) i7-

8700 @ CPU 3.20 GHz, 8 GB physical memory and 1 TB hard disk for corpus preparation,

pre-processing, to conduct the experiments and for writing the thesis report.

Additionally, when building machine learning models, especially deep neural networks, it is

essential to use a Python library that handles specific computations. Python programming is

chosen for experimentation because it is easy to use, has an abundant community support,

offers a variety of visualization options, and has many built-in packages for specific tasks.

There are several free, open-source Python libraries available today. The most common

libraries we used in this study include Keras and TensorFlow to build deep neural network

models that can run on the CPU [113]. NumPy to perform mathematical operations on

multidimensional arrays and matrices. Scikit-learn to compare, validate, select parameters and

models in predictive data analysis. Pandas for data manipulation and analysis, Matplotlib for

experimental result visualization in the form of graphs and bar charts and Ipywidgets to develop

a simple user interface for the proposed model and make a prediction [113].

70 | P a g e

4.2.2. Dataset

The dataset is the main one to train the proposed deep neural network model. As described in

Table 3.7, the researchers have set a total of 600k sample texts with 406 features for training,

validation, and testing. Of this, 70% of the dataset is used for training the model, 10% for

validation when tuning model hyperparameters to find and optimize the best model, and 20%

for testing the trained model (i.e. 432k texts for training, 48k texts for validation and 120k for

testing the model).

4.3. Experiments and Discussion of Results to Select Best Hyperparameter Set

The proposed model consists of several hyperparameters that affect the model’s behavior and

performance in different way. There are several ways to select the best hyperparameters set, a

common approach is to try different hyperparameters and see what happens. A better approach

is to objectively look for different values for model hyperparameters and choose a subset that

results in a model that performs best for a given dataset. We have also applied this approach to

the proposed study. In this subsection, the researchers conducted three main different

experiments with different hyperparameter settings to select the optimal hyperparameter set.

Depending on each test performed, other parameters changed. In order to select the best

hyperparameter sets all the experiments were conducted with the same text length of 100

characters. A comparison of all the different test results is also presented in this subsection.

Finally, the hyperparameter sets with the highest score were selected for further experiments.

4.3.1. Experiment One Using AdaGrad Optimizer

The first experiment done using deep neural network model with chars2vec embedding,

AdaGrad optimization algorithm and other parameters as shown in Table 4.1.

Table 4. 1 Hyperparameters for experiment one
Hyperparameters Values

Weight initializer glorot_uniform

Activation function for hidden layers Sigmoid

Epoch 5, 10 and 15

Batch size 16, 32 and 64

Dropout ratio 0.3, 0.4 and 0.5

Activation function for output layer Softmax

Optimization algorithm AdaGrad with default values

Loss function Categorical cross-entropy

71 | P a g e

The proposed DNN model is trained with the specified training dataset and finally, the

identification performance of the trained model is evaluated with the test set by applying the

hyperparameters described in Table 4.1. As shown below in Table 4.2, the test accuracy results

are 99.61%, 99.62%, and 99.55% at trial 1, trial 2, and trial 3, respectively, using different

batch sizes, epochs and dropout values, and the test accuracy result decreased in the third trial.

Loss is measured as cross-entropy normalized by its maximum value, while training accuracy

is measured by the number of correctly identified training samples at the end of each epoch.

The test loss had a loss score of 0.0286, 0.0230, and 0.0289 in trial 1, trial 2, and trial 3

respectively, and the loss result increased in the third trial. In these experiments with three

hyperparameter value changes and tests, the higher test accuracy of 99.62% and less test loss

result of 0.0230 is achieved with a hyperparameter set of AdaGrad optimizer, a batch size of

32, a dropout rate of 0.4 and an epoch of 10.

Figure 4. 1 Learning curves of accuracy and loss over 10 epochs with the AdaGrad optimizer
 (a) (b)

72 | P a g e

The learning curve of training accuracy and validation accuracy (a), training loss and validation

loss (b) of the best hyperparameter sets with AdaGrad optimizer are shown in Figure 4.1. The

plot shows that both training and validation accuracy increase almost linearly and stabilize after

epoch 4. In addition, the training loss and validation loss both decrease slowly and stabile at

the last training iteration. Table 4.2 describes the experimental results of the model that we

have done for experiment one.

Table 4. 2 A summary of experimental results using AdaGrad optimizer

Exp. Batch Size Epoch Dropout Ratio Optimizer Test Accuracy Test Loss

Run1 16 5 0.3 AdaGrad 99.61% 0.0286

Run2 32 10 0.4 AdaGrad 99.62% 0.0230

Run3 64 15 0.5 AdaGrad 99.55% 0.0289

4.3.2. Experiment Two Using Adam Optimizer

This experiment is conducted by considering the proposed DNN model with chars2vec

embedding, Adam optimizer and other parameters. The various parameters and values for this

experiment are shown in Table 4.3. These are the ones that were chosen to be tested.

Table 4. 3 Hyperparameters for experiment two
Hyperparameters Values

Weight initializer glorot_uniform

Activation function for hidden layers Sigmoid

Epoch 5, 10 and 15

Batch size 16, 32 and 64

Dropout ratio 0.3, 0.4 and 0.5

Activation function for output layer Softmax

Optimization algorithm Adam with default values

Loss function Categorical cross-entropy

In this scenario, the model was trained and evaluated with three different epochs: 5, 10, and

15. As a result, the model with epoch 15 performs well. Second, we tried batch sizes 16, 32

and 64 and found promising results with batch size of 64 and finally experimenting with

dropout ratios of 0.3, 0.4 and 0.5; and we got a promising result with a dropout rate of 0.5.

The model proposed in this experiment is trained on the specified training dataset by applying

the hyperparameters described in Table 4.3, and finally the language identification performance

of this trained model is evaluated on test data. The test accuracy results are 99.89%, 99.91%,

and 99.91% at trial 1, trial 2, and trial 3, respectively using different batch sizes, epochs and

73 | P a g e

dropout values and the test accuracy result is stable at second experiment and third experiment.

Besides, the test loss achieved a loss score of 0.0053, 0.0051, and 0.0048 in trial 1, trial 2, and

trial 3 respectively, and the loss result decreased slowly at all tests. This yields a more

trustworthy result. After three hyperparameters value changes and tests, the highest test

accuracy of 99.91% which means it does predict a large part of new data samples correctly and

less test loss result of 0.0048 is scored with a hyperparameters set of Adam optimizer, a batch

size of 64, a dropout ratio of 0.5 and an epoch of 15 as shown below in Table 4.4. We have

shown that the training accuracy of the model improves as the number of epochs increases.

Figure 4. 2 Learning curves of accuracy and loss over 15 epochs with the Adam optimizer
(a) (b)

74 | P a g e

The plot of training accuracy and validation accuracy (a), training loss and validation loss (b)

of the best hyperparameter sets with Adam optimizer are shown in Figure 4.2. The learning

curve shows that the training and validation accuracy increases almost linearly and stabilizes

throughout the curve. The loss after the 10th epoch is not reduced much because the model has

already learned enough parameters to classify. The training history of the model and it looks

like the training and validation both accuracy and loss lie close to each other, meaning the

model is not overfitted. This yields a more trustworthy result.

In addition, the training loss and validation loss both decreases slowly and constantly

throughout the curve. As we can see in the diagram, the loss on the training set decreases

rapidly for the first two epochs. For the test set, the loss does not decrease at the same rate as

the training set, but remains almost flat for multiple epochs. This means our model is

generalizing well to unseen data. The learning curves shows that the model is good fitted.

Because the plot of validation loss decreases to a point of stability and has a small gap with the

training loss. Table 4.4 describes the experimental results of the model that we have done for

experiment two.

Table 4. 4 A summary of experimental results using Adam optimizer
Exp. Batch Size Epoch Dropout Ratio Optimizer Test Accuracy Test Loss

Run1 16 5 0.3 Adam 99.89% 0.0053

Run2 32 10 0.4 Adam 99.91% 0.0051

Run3 64 15 0.5 Adam 99.91% 0.0048

4.3.3. Experiment Three Using RMSprop Optimizer

The third experiment is conducted the same way using the proposed deep MLP model

architecture and chars2vec embedding, but uses the RMSprop optimization algorithm and other

different parameters as shown in Table 4.5.

Table 4. 5 Hyperparameters for experiment three

Hyperparameters Values

Weight initializer glorot_uniform

Activation function for hidden layers Sigmoid

Epoch 5, 10 and 15

Batch size 16, 32 and 64

Dropout ratio 0.3, 0.4 and 0.5

Activation function for output layer Softmax

Optimization algorithm RMSprop with default values

Loss function Categorical cross-entropy

75 | P a g e

In this experiment, the model is trained on the training dataset by applying the hyperparameters

described in Table 4.5, and finally the language identification performance of this trained

model is evaluated on new unseen data. The test accuracy results are 99.72%, 99.73%, and

99.76% in test 1, test 2, and test 3, respectively, and the accuracy increases as the number of

epochs increases as we progress from experiment 1 to experiment 3 go through. In addition,

the test loss was a loss score of 0.0331, 0.0270, and 0.0235 in trial 1, trial 2, and trial 3

respectively, and the loss result gradually decreased in all tests. After three hyperparameter

value changes and experiments, the highest test accuracy of 99.76% and the result with less

test loss of 0.0235 using RMSprop optimizer, a batch size of 64, a dropout rate of 0.5, and an

epoch of 15 as shown in the summary of results of Table 4.6.

Figure 4. 3 Learning curves of accuracy and loss over 15 epochs with the RMSprop optimizer

 (a) (b)

76 | P a g e

The learning curve of training accuracy and validation accuracy (a), training loss and validation

loss (b) of the best hyperparameter sets with RMSprop optimizer are shown in Figure 4.3. The

learning curve shows that the training and validation accuracy increases almost linearly and

stabilizes throughout the curve. Both training and validation loss oscillations occur across the

curve and are not stable. Table 4.6 describes the experimental results of the model that we have

done for experiment three.

Table 4. 6 A summary of experimental results using RMSprop optimizer

Exp. Batch Size Epoch Dropout Ratio Optimizer Test Accuracy Test Loss

Run1 16 5 0.3 RMSprop 99.72% 0.0331

Run2 32 10 0.4 RMSprop 99.73% 0.0270

Run3 64 15 0.5 RMSprop 99.76% 0.0235

4.3.4. Summary of the Experiments

The above experiments aim to select the best hyperparameters set which are used to evaluate

the performance of the proposed language detection model with varying sample text lengths.

All experiments were performed with 432K training datasets, 48K validation datasets and 120K

test datasets. The experiments were done with different hyperparameter settings. The first

experiment was implemented using the AdaGrad optimizer, the second using Adam optimizer,

and the third using RMSprop optimizer with similar hyperparameter values.

We used a maximum of 15 epochs for all experiments to train the models as this can show

stable trends in accuracy. Although higher performance can be obtained by increasing the

number of epochs, this consumes more computation time. To select the well-fitted model, we

evaluated each trained model against an unseen dataset and the experimental results show that

the Adam optimizer achieved a better accuracy of 99.91% and a lower test error of 0.0048

compared to the other optimizers with a batch size of 64, a dropout ratio of 0.5, and an epoch

of 15.

A good fit is characterized by a minimal gap between the training and validation loss values

that decrease to a stable level, so it is true in our Experiment Two. The model in Experiment

Two has achieved great accuracy with a low loss value, so the result indicates that the goal of

reducing loss has been achieved. We can conclude that the model fits well since the plot of

training loss and validation loss decreases to a point of stability and the generalization gap is

minimal, and lower loss indicates higher model performance.

77 | P a g e

Therefore, the hyperparameter sets shown in Table 4.7 are more suitable and selected for the

proposed final language identification model.

Table 4. 7 The chosen hyperparameter settings

Hyperparameters Values

Weight initializer glorot_uniform

Activation function for hidden layers Sigmoid

Number of epochs 15

Batch size 64

Dropout ratio 0.5

Activation function for output layer Softmax

Optimizer Adam with default values

Loss function Categorical cross-entropy

4.4. Model Evaluation Using Different Text Lengths

As discussed before in the experimental results, the Adam optimizer achieved better

classification accuracy than the AdaGrad and RMSprop optimizers with the same

hyperparameter values for the proposed model. Accordingly, the following four experiments

are conducted to evaluate the performance of the proposed model for the given short and long

text by applying the best hyperparameter setting described in Table 4.7.

The length of the text of the corpus varies according to the field and source we have collected.

The corpus we collected is a mixture of short, medium and long texts or sentences. Therefore,

it is necessity to analyze the performance of the model on short and long texts by conducting

different experiments by varying the text length.

We can measure sentence length in units of words or characters, for this study the researchers

used character length. In this study, the corpus distribution report revealed that the approximate

average word length of all languages is about 5 characters, as shown in Table 3.2. Accordingly,

to assess the performance of the proposed model for the given short and long texts, we started

testing the model with a sample text length of 5 characters per row and then randomly tested it

with 10, 50 and 100 characters of the sample text. The experimental result and discussion of

each experiment are detailed below in subsections 4.4.1, 4.4.2, 4.4.3, 4.4.4 and 4.4.5.

78 | P a g e

4.4.1. Experiment One Using Text Length of 5 Characters

In accordance with the corpus distribution of the average word length of the six Geez-based

languages, we first evaluated the proposed deep neural network model by training it on a

sample text length of 5 characters, and the model achieved an accuracy of 77.68% and a loss

of 0.5862 for the test set. The experimental result showed that the model obtained many

incorrect language classifications for short texts because all languages use the same writing

system and have many words in common.

Confusion matrix is a very popular measure used in solving multi-class classification problems,

which represents the number of actual and predicted values to perfectly analyze the potential

of a classifier. The evaluation scores for Amharic, Awngi, Geez, Guragigna, Tigrigna and

Xamtanga languages are reported in the form of incorrect and correct classification as shown

in Figure 4.4.

Figure 4. 4 Confusion matrix of the model evaluated on sample text length 5 characters

As shown in Figure 4.4 the confusion matrix has six possible classes. The columns represent

predicted values and the rows represent actual values. We have evaluated the model using a

total of 120k samples data. All the diagonal elements denote correctly classified outcomes and

the off-diagonal numbers give the number of times a language was incorrectly predicted as

another. The classification result in the first class reported that the evaluated model correctly

classified 17,222 samples as Amharic and misclassified a total of 16,418 samples as other

languages, while those should have been Amharic language.

79 | P a g e

Most wrong predictions are in the first row, which has the highest misclassification among all

the classes. In the second class, the evaluated model correctly classified 14,396 samples as

Awngi and misclassified a total of 1,669 samples as other languages, while those should have

been Awngi language. In the third class, the evaluated model correctly classified 15,423

samples as Geez and misclassified a total of 1,798 samples as other languages, while those

should have been Geez language. In the fourth class, the evaluated model correctly classified

16,813 samples as Guragigna and misclassified a total of 2,129 samples as other languages,

while those should have been Guragigna language. In the fifth class, the evaluated model

correctly classified 15,232 samples as Tigrigna and misclassified a total of 3,304 samples as

other languages, while those should have been Tigrigna language. In the sixth class, the

evaluated model correctly classified 14,136 samples as Xamtanga and a total of 1,460 samples

of text were wrongly predicted as other languages, while those should have been Xamtanga

language. Figure 4.5 illustrated that the classification report of the six Geez-based Ethiopian

languages when the model is evaluated with sample text of 5 characters long.

Figure 4. 5 Classification report of the model evaluated with 5 chars of sample text length

For example, from the confusion matrix, we can calculate the precision, recall, and F1-score of

the Amharic language by using Equations 2.20, 2.21 and 2.22, respectively. Precision of

Amharic is equal to 17,222 / (17,22 + 16,418) = 0.51. Recall (Amharic) = 17,222 / (17,222 +

384 + 491 + 509 + 1086 + 308) = 0.86. F1-score (Amharic) = 2 × ((0.51 × 0.86) / (0.51 + 0.86))

= 0.64 and soon.

As usual in a confusion matrix, the diagonal elements are the correctly predicted samples. A

total of 93,222 (where total = 17,222 + 14,396 + 15,423 + 16,813 + 15,232 + 14,136) samples

were correctly predicted out of the total of 120,000 samples. Thus, the overall accuracy of the

model performance is 0.78 or 77.68% in percent (where accuracy = 93,222 / 120,000) using

Equation 2.19. The overall micro-average of precision result is also 0.78 = 93,222 / (93,222 +

26,778) using Equation 2.23.

80 | P a g e

The overall micro-average of recall score is also 0.78 = 93,222 / (93,222 + 26,778) using

Equation 2.24. The overall micro-averaged F1-score of the model performance is 0.78 = 93,222

/ (93,222 + (0.5 × (26,778+26,778))) using Equation 2.25. Therefore, we can conclude that the

accuracy, micro-average of precision, micro-average of recall and micro-average of F1-score

have the same result since we used a balanced sample dataset.

The macro-average precision of the model is 0.82, (where 0.51 + 0.90 + 0.90 + 0.89 + 0.82 +

0.91)/6 using Equation 2.26. The macro-average recall of the model gives 0.78, (where 0.86 +

0.72 + 0.77 + 0.84 + 0.76 + 0.71)/6 using Equation 2.27 and the macro-average F1-score of the

model is 0.79, (where 0.64 + 0.80 + 0.83 + 0.86 + 0.79 + 0.79)/6 using Equation 2.28.

Furthermore, the weighted average of the trained model precision, recall, and F1-score are 0.82,

0.78, and 0.79, respectively, as shown in Figure 4.5, the results are calculated as follows:

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

(0.51 × 20k) + (0.90 × 20k) + (0.90 × 20k) +
(0.89 × 20k) + (0.82 × 20k) + (0.91 × 20k)

120𝑘
= 0.82

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝑟𝑒𝑐𝑎𝑙𝑙 =

(0.86 × 20k) + (0.72 × 20k) + (0.77 × 20k) +
(0.84 × 20k) + (0.76 × 20k) + (0.71 × 20k)

120𝑘
= 0.78

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝐹1𝑠𝑐𝑜𝑟𝑒 =

(0.64 × 20k) + (0.80 × 20k) + (0.83 × 20k) +
(0.86 × 20k) + (0.79 × 20k) + (0.79 × 20k)

120𝑘
= 0.79

4.4.2. Experiment Two Using Text Length of 10 Characters

In the second scenario, we have train and evaluated the proposed DNN model with a sample

text length of 10 characters per row and the model achieved a test accuracy of 91.10% and a

test loss of 0.2626. The loss result of this experiment halved the loss of the first experiment,

but indicates that the model still contains many incorrect predictions. Besides, the improvement

in accuracy as the character length increases is noticeable. Hence, we can conclude that the

accuracy of the model increased when using larger training data. Figure 4.6 shows the

performance of our deep neural network model in each language variant when the model is

trained and evaluated with a text length of 10 characters, while Figure 4.7 shows the

corresponding classification report.

81 | P a g e

Figure 4. 6 Confusion matrix of the model evaluated on sample text length 10 characters

In the confusion matrix of the model, we can see the correct and incorrect classification values

of the six languages, which are trained and evaluated on a sample text length of 10 characters.

In this experiment, similarly, we used a total of 120k sample data to evaluate the model. A

total of 109,324 samples out of 120k sample texts were correctly classified, therefore we

noticed some improvement compared to the first experiment.

In the first class, 638 Amharic sample texts were incorrectly classified as Awngi, 619

Amharic sample texts were incorrectly classified as Geez, 491 Amharic sample texts were

incorrectly classified as Guragigna, 1,048 Amharic sample texts were incorrectly classified

as Tigrigna and 833 Amharic sample texts were incorrectly classified as Xamtanga. In total,

the model correctly classified 17,906 samples as Amharic and incorrectly classified 3,629

samples as other languages. The classification result in the second class reported that the

evaluated model correctly classified 18,729 samples as Amharic and 1,005 samples of text

were wrongly predicted as other languages, while those should have been Amharic language.

The classification result in the third class reported that the evaluated model correctly

classified 18,315 samples as Amharic and 1,561 samples of text were wrongly predicted as

other languages, while those should have been Amharic language.

82 | P a g e

The classification result in the fourth class reported that the evaluated model correctly

classified 18,871 samples as Amharic and 1,330 samples of text were wrongly predicted as

other languages, while those should have been Amharic language. The classification result in

the fifth class reported that the evaluated model correctly classified 17,453 samples as

Amharic and 1,926 samples of text were wrongly predicted as other languages, while those

should have been Amharic language. The classification result in the sixth class reported that

the evaluated model correctly classified 18,050 samples as Amharic and 1,225 samples of

text were wrongly predicted as other languages, while those should have been Amharic

language.

Figure 4. 7 Classification report of the model evaluated with 10 chars of sample text length

The classification report in Figure 4.7 shows how the classification performance differs

between the different languages. From the classification report Amharic, Awngi, Geez,

Guragigna, Tigrigna and Xamtanga achieves a precision of 0.83, 0.95, 0.92, 0.93, 0.90 and 0.94

respectively. The proposed model performs recall results of 0.90, 0.94, 0.92, 0.94, 0.87 and

0.90 for Amharic, Awngi, Geez, Guragigna, Tigrigna and Xamtanga, respectively. In addition,

the F1 score were 0.86, 0.94, 0.92, 0.94, 0.89, and 0.92 for Amharic, Awngi, Geez, Guragigna,

Tigrigna, and Xamtanga respectively. In general, the classifier model achieved a micro-

average, macro-average, and weighted-average F1-score of 0.91 on the test dataset.

4.4.3. Experiment Three Using Text Length of 50 Characters

For this experiment, we increased the sample text length to 50 characters. The model trained

and evaluated using this sample data and achieved a test accuracy of 99.53% and a test loss of

0.0204. Comparing the performance of this experiment with the previous two experiments, we

notice that the test accuracy of the model increased slightly while the test loss decreased

significantly. For a sample text length of 50 characters per row, the model trained with

chars2vec embedding showed better accuracy than 10 characters on the same 120K test dataset.

83 | P a g e

Figure 4. 8 Confusion matrix of the model evaluated on sample text length 50 characters
The confusion matrix shown in Figure 4.8 gives an overview of how well the classifier works

for each language. The white diagonal indicates the number of correct predictions for each

language. The off-diagonal numbers indicate the number of times a language was incorrectly

predicted as another. A total of 119,435 samples out of 120k sample texts were correctly

identified. The classification result in the first class reported that the model correctly

classified 19,829 samples as Amharic and 234 samples of text were wrongly predicted as

other languages, while those should have been Amharic language. For example, Awngi is

incorrectly predicted as Amharic 124 times.

The prediction result in the second class show that the model correctly classified 19,847

samples as Awngi and 34 samples of text were wrongly predicted as other languages, while

those should have been Awngi language. The prediction result in the third class show that the

model correctly classified 19,922 samples as Geez and 75 samples of text were wrongly

predicted as other languages, while those should have been Geez language. The prediction

result in the fourth class show that the model correctly classified 19,980 samples as Guragigna

and 13 texts were wrongly predicted as other languages, while those should have been

Guragigna language.

84 | P a g e

The prediction result in the fifth class show that the model correctly classified 19,912 samples

as Tigrigna and 115 samples of text were wrongly predicted as other languages, while those

should have been Tigrigna language.

The prediction result in the six class show that the model correctly classified 19,945 samples

as Xamtanga and 94 samples of text were wrongly predicted as other languages, while those

should have been Xamtanga language.

Figure 4. 9 Classification report of the model evaluated with 50 chars of sample text length
Looking at the classification report of the six Ethiopic-based languages, these were trained and

evaluated using a sample text length of 50 characters per line. The classifier performed correct

predictions for most languages. The model with a sample text length of 50 characters per line

achieved 100% micro-average, macro-average, and weighted-average F1-score on the test

dataset.

4.4.4. Experiment Four Using Text Length of 100 Characters

For the last experiment, we used 100 characters long per row and the model achieved a test

accuracy of 99.92% and a test loss of 0.0045. Similarly, we used a total of 120k samples of text

to evaluate the model to conduct this experiment. Some of the off-diagonal numbers are zero,

indicating that the model achieved very good predictions. Figure 4.10 shows the performance

of our model in each language variant when the model is trained and evaluated with a text

length of 100 characters per row, while Figure 4.11 shows the corresponding classification

report.

85 | P a g e

Figure 4. 10 Confusion matrix of the model evaluated on sample text length 100 characters
As shown in Figure 4.10 the confusion matrix has six possible classes. Out of 120k sample

texts, a total of 119,899 samples were correctly classified and only 101 sample of texts were

classified incorrectly. The prediction result in the first class reported that the model correctly

classified 19,953 samples as Amharic and 34 samples of text were wrongly predicted as other

languages, while those should have been the Amharic language. The prediction result in the

second class show that the model correctly classified 19,980 samples as Awngi and 10 samples

of text were wrongly predicted as other languages, while those should have been Awngi

language. The prediction result in the third class show that the model correctly classified 19,992

samples as Geez and 12 samples of text were wrongly predicted as other languages, while those

should have been Geez language.

The prediction result in the fourth class show that the model correctly classified 19,998 samples

as Guragigna and 4 texts were wrongly predicted as other languages, while those should have

been Guragigna language. The prediction result in the fifth class show that the model correctly

classified 19,979 samples as Tigrigna and 27 samples of text were wrongly predicted as other

languages, while those should have been Tigrigna language. The prediction result in the six

class show that the model correctly classified 19,997 samples as Xamtanga and 14 samples of

text were wrongly predicted as other languages, while those should have been Xamtanga

language.

86 | P a g e

Figure 4. 11 Classification report of the model evaluated with 100 chars of sample text length

As shown in Figure 4.11, the model performed very good predictions for most languages. The

model with a sample text length of 100 characters per line achieved 100% micro-average,

macro-average, and weighted-average F1-score on the test dataset.

4.4.5. Summary of the Experiments

In this subsection, we have been done four basic experiments to evaluate the performance of

the proposed model at different sample text lengths. All experiments were performed with the

best hyperparameter settings. We have been trained and evaluated the model with a sample text

length of 5, 10, 50 and 100 characters per line. In general, the results of the experiment show

that high accuracy is achieved for long texts and low accuracy for short texts. In the first

experiment, we observed that many misclassifications occurred, because of all the languages

were closely related at the word level. In addition, from confusion matrix, we found that

Amharic language has a higher relationship with other languages and in all experiments, the

most incorrect predictions are occurred in Amharic language. The summary of all experimental

results is described in Table 4.8 and Figure 4.12.

Table 4. 8 Test accuracy and loss results of the proposed model with variety of sample text

lengths

Length of sample text in characters Test Accuracy Test Loss

5 77.68% 0.5862

10 91.10% 0.2626

50 99.53% 0.0204

100 99.92% 0.0045

87 | P a g e

Figure 4. 12 Accuracy and loss of the proposed model with different character length of texts

In the summary of all experimental results, as shown in Figure 4.12, the proposed model

obtained a test accuracy of 77.68%, 91.10%, 99.53% and 99.92% for sample text lengths of 5,

10, 50 and 100 characters respectively. With sample text lengths of 5, 10, 50, and 100

characters per row, the proposed model achieved a test loss of 0.5862, 0.2626, 0.0204 and

0.0045, respectively.

In all experiments, the Amharic sample texts were mostly incorrectly classified as other

languages. Generally, the experimental result shows that the model identification accuracy

increases when the length of sample text increases and language identification for very short

texts still needs improvement.

4.5. Prototype and Predictions

In the final phase, the researcher builds a simple user interface to make language predictions

for the given pieces of text. We evaluated the performance of the final developed model on

out-of-vocabulary texts. The prediction result of the developed language identification model

across different texts is shown in Figures 4.13 to 4.18.

A) Prediction result for the given short and long Amharic text

The prediction result shows that the model correctly identified the language for the given

Amharic short and long texts as shown in Figure 4.13.

77.68%

91.10%

99.53% 99.92%

0.5862

0.2626

0.0204 0.0045
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

5 10 50 100

Length of sample text in characters

Test Accuracy Test Loss

88 | P a g e

Figure 4. 13 Prediction result for the given short and long Amharic text

B) Prediction result for the given short and long Awngi text

The prediction result shows that the model correctly identified the language for the given

Awngi short and long texts as shown in the screenshot below.

Figure 4. 14 Prediction result for the given short and long Awngi text

89 | P a g e

C) Prediction result for the given short and long Geez text

In this case, the prediction result shows that the model incorrectly classified the short texts into

the Amharic language when it should have been the Geez language. However, the model

correctly identified the given long texts.

Figure 4. 15 Prediction result for the given short and long Geez text

D) Prediction result for the given short and long Guragigna text

The prediction result shows that the model correctly classified the given short and long texts

as shown in the snapshot below.

Figure 4. 16 Prediction result for the given short and long Guragigna text

90 | P a g e

E) Prediction result for the given short and long Tigrigna text

As shown in Figure 4.17, the prediction result of the model correctly identified the given word

and long texts.

Figure 4. 17 Prediction result for the given short and long Tigrigna text

F) Prediction result for the given short and long Xamtanga text

For the first trial, the developed LID model correctly identified the given word and long texts

as shown in Figure 4.18.

Figure 4. 18 Prediction result for the given short and long Xamtanga text

91 | P a g e

4.5.1. Language Predictions on Out-of-Vocabulary Texts

As we mentioned in the literature review, the character-level embedding technique is mainly

important for solving out-of-vocabulary words problem. Therefore, to verify this, we have

evaluated the performance of our model against out-of-vocabulary words for the Amharic and

Guragigna languages. The Amharic16 OOV texts were collected from a Facebook page and

Guragigna17 language OOV sample texts were collected from the web page.

I. Model evaluation for the given Amharic out-of-vocabulary texts

As shown in the snapshots below, the developed LID model is correctly identified for the given

Amharic short and long out-of-vocabulary texts.

Figure 4. 19 Prediction results for the given Amharic out-of-vocabulary texts

16 Amharic Texts: https://www.facebook.com/aradaslang
17 Guragigna Texts: https://www.unicode.org/L2/L2021/21037-gurage-adds.pdf

92 | P a g e

II. Model evaluation for the given Guragigna out-of-vocabulary texts

As shown in the snapshots below, the developed LID model is correctly identified for the given

Guragigna short and long out-of-vocabulary words or texts. Additionally, we can notice that

language identification performance increases as the length of texts increases.

Figure 4. 20 Prediction results for the given Guragigna out-of-vocabulary texts
We used the texts written in the newly added Guragigna characters to evaluate the performance

of the model in solving out-of-vocabulary problems.

93 | P a g e

4.6. Answering Research Questions

At the beginning of this work, the researchers were asked two main research questions that

should be answered after the experiment. Therefore, this subsection contains the discussions to

ensure that the question is answered as follows:

The first research question was, “To what extent does the proposed language identification

model correctly identify Geez-based Ethiopian languages?”. This is the basic question of the

study, and the aim was to assess the overall performance of our proposed study in terms of

correctly identifying languages for the given short and long texts. Therefore, the researchers

first conducted more than nine experiments using AdaGrad, Adam, and RMSprop optimizers

to select the optimal hyperparameter sets for the proposed language identification model, and

the experimental result showed that the Adam optimizer achieved better accuracy with a batch

size of 64, an epoch of 15, and a dropout ratio of 64 as we mentioned earlier in Table 4.7. Using

the selected hyperparameter sets, the performance of the proposed LID model is evaluated on

different sample texts. The researchers conducted four experiments with sample texts of

different lengths for six typologically related Ethiopian languages, namely Amharic, Awngi,

Geez, Guragigna, Tigrigna and Xamtanga. Finally, the developed model achieved an accuracy

of 77.68%, 91.10% and 99.53% when trained and evaluated with sample text lengths of 5, 10

and 50 characters, respectively. Also, the proposed model showed a better accuracy of 99.92%

when trained and evaluated on sample texts with a length of 100 characters per line. Generally,

for text longer than 50 characters, the proposed model identified the language correctly with

more than 99% accuracy.

The second question was, “How robust is the language identifier when tested against a

prototype for different domain texts?”. To answer this question, we designed a simple user

interface and evaluated the performance of our final trained model on an unseen text by varying

text lengths. Furthermore, we also tested our model on OOV texts and as a result, the proposed

model correctly identified the text of the language.

94 | P a g e

CHAPTER FIVE

CONCLUSION AND RECOMMENDATIONS

5.1. Overview

This chapter presents the conclusions of the research described in the thesis. The aim and

objectives of the research outlined in Chapter one are reviewed and their achievement is

addressed. The contributions of this study and the recommendations for future work indicated

by the research are suggested.

5.2. Conclusion

Human language can be developed naturally or constructed on purpose, but in all cases the

defining feature is that it is used to communicate between people through speaking, signing, or

writing. In this research paper, the researchers focused on written languages. Language

identification is an application of NLP that automatically identifies the language in which the

contents of the text are written, which is generally considered a special case of text

categorization. LID is a preprocessing task to develop multilingual-based NLP applications.

The aim of this research was to develop an automatic LID model for typologically related

Ethiopian languages namely Amharic, Awngi, Geez, Guragigna, Tigrigna and Xamtanga by

applying a deep neural network. To achieve the research aim, an experimental research

methodology was designed. In this study, various approaches and applications of language

identification studied by various researchers are reviewed. Most of the researchers are done

using N-gram model and machine learning classifiers. However, not many studies have been

conducted regarding the deep learning. Deep learning is a state-of-the-art approach and has

recently been identified as a major advance in text classification. Due to the fact that the

researchers used a deep neural network algorithm with bag-of-character embedding techniques

for the proposed study.

We have collected the dataset from various sources and performed appropriate preprocessing

tasks. We applied chars2vec for text representation, one-hot-encoding for class labels and

standard scalar standardization technique. Finally, we randomly selected 100k samples text for

each language and a total of 600k samples text were allocated for training and testing the

proposed DNN model. In all experiments, the researchers allocated 432k for training the model,

48k for validation and 120k for evaluating the trained model.

95 | P a g e

The researchers constructed a three-layer DNN model architecture that consists 406 input size,

512 nodes for the first hidden layer, 256 nodes for the second hidden layer, 128 nodes for the

third hidden layer and 6 neurons in the output layer and total of 372,870 trainable parameters.

The hyperparameters used in this paper were dropout ratio, optimization algorithms, sample

text length, number of epochs, activation functions, batch size, sigmoid function, Softmax,

categorical-cross entropy loss function. Finally, the combination of hyperparameters that yields

the highest accuracy in the test set were selected for the final LID model. To select the best

hyperparameter setting, we tried more than nine experiments and the experimental results

showed that the Adam optimizer attains better accuracy and a lower test error compared to the

other optimizers with a batch size of 64, a dropout ratio of 0.5, and an epoch of 15. The

researchers then conducted four experiments to train the proposed model and evaluate the

performance of the final trained model with different sample text lengths using the selected

best hyperparameter setting.

From the experimental results, we discovered that the proposed DNN model with the bag-of-

character embedding approach achieved 77.68% accuracy and a loss result of 0.5862 for

samples text length of 5 characters. While, for a text length of 100 characters per line, the

proposed DNN model with a chars2vec embedding approach achieved an accuracy of 99.92

and a loss of 0.0045 for the test set. In other words, the trained model performed a micro-

average F1-score of 100% for sample text lengths of 100 characters while, for test sample text

lengths of 5 characters, the model achieved a micro-average F1-score of 0.78% for all

supported Geez-based Ethiopian languages.

One of the key findings of this research study is that the model accuracy increased as the length

of the sample texts increased, and vice versa. Another finding of this study is that our model

found promising results with a small number of trainable parameters and that the model also

worked well for the OOV texts. This study differs from previous related works in various

parameters like the algorithms applied, the dataset, the vectorization technique, and the

language selected. It is more difficult to discriminate languages within language families than

those across families. Languages written with the Geez script are very closely related. In such

a scenario, distinguishing the word language was the main challenge in the LID task because

of the words from one language are adopted from another language. This inheritance of words

makes some words available in many languages, which makes language detection a difficult

task.

96 | P a g e

5.3. Contributions

The main contributions of the presented work are as follows:

 This work presents a new corpus for six closely related low-resourced Ethiopian languages,

namely Amharic, Awngi, Geez, Guragigna, Tigrinya, and Xamtanga, so that corpus can be

applied to other similar cases. We have also compiled the alphabet of each language.

 The study contributed to the accessibility of two Ethiopian Cushitic languages that were

not included in previous related studies. To the best of our knowledge, this is the first

language identification model for the Awngi and Xamtanga languages.

 In this study, researchers presented a state-of-the-art deep neural network approach and

character vector representation (chars2vec) embedding technique for the proposed

language identification. To the best of our knowledge, this is the first investigation on

language identification using a deep neural network approach with the chars2vec model for

Geez-based Ethiopian languages.

 In addition, the study contributes to solving the problem of out-of-vocabulary words

through the use of the chars2vec text representation technique.

5.4. Recommendations

The experimental result shows that the Adam optimizer is a better hyperparameter choice than

others, therefore, we recommend future researchers to use it as the default optimizer for most

applications. Based on the obtained results, the researcher concludes that the proposed

character-level embedding method is effective in textual based language identification task

with minimal parameters. With this in mind, the researcher recommends adopting this new

approach for other text classification tasks as well. The developed model accurately identifies

the language of texts longer than 10 characters. This developed model accurately predicts

languages at the phrase, sentence and paragraphs level. Therefore, we recommend that future

researchers adopt this all-in-one model as a preprocessing task to implement phrase, sentence

and paragraph level multilingual natural language processing applications like information

retrieval, machine translation, fact-checking applications, sentiment analysis and plagiarism

detection.

97 | P a g e

5.5. Future works

To improve the current state of the study, the researchers recommend the following points for

further research directions.

 In this research work, we applied a bag-of-characters (chars2vec) embedding technique to

represent the features of the sample dataset. For future work, it would be better to use more

sophisticated embedding techniques like Bag-of-Words, GloVe and Word2vec.

 In this study, the researchers present a language identification model for only six

typologically and phylogenetically related low-resourced Ethiopian languages that use the

Geez script as a writing system. Therefore, we recommend that future researchers consider

other related languages to span the coverage of Ethiopian languages.

 In this investigation, we used a deep-feedforward neural network architecture for the

proposed language identification model. For future work, it is recommended to conduct a

comparative study with different deep learning and machine learning classifiers to enhance

the performance and determine the best language identifier.

 In all experiments, the Amharic texts were mostly incorrectly classified as other languages.

Future researchers can investigate on such factors.

 In multilingual language identification, it is mandatory first to check whether the text

document is written with monolingual or multilingual language before language

identification applies. For multilingual identifier, knowing language switching is a big

challenge. This specifies how frequently or where a shift from one language to another can

occur in a document. Therefore, another possible future work could be to investigate

language identification when the documents contain code-switching languages.

 In this research work, we have obtained very good results in identifying the language of

sample texts longer than 10 characters. However, it is still an open research area to improve

the accuracy of language identifiers for very short texts under 10 characters long and

closely related Ethiopic-based languages.

98 | P a g e

REFERENCES

[1] Solomon T. Abate, M. Yifiru Tachbelie, and T. Schultz, “Deep Neural Networks Based

Automatic Speech Recognition for Four Ethiopian Languages”, ICASSP 2020 - 2020

IEEE International Conference on Acoustics, Speech and Signal Processing, Barcelona,

Spain, May 2020, pp. 8274–8278. doi: 10.1109/ICASSP40776.2020.9053883.

[2] “Ethiopian Languages - Semitic, Cushitic, Omotic and Nilo-Saharan.”

http://www.ethiopiantreasures.co.uk/pages/language.htm (accessed May 16, 2023).

[3] B. Piper and A. J. van Ginkel, “Reading the script: How the scripts and writing systems

of Ethiopian languages relate to letter and word identification” Witting System Research,

vol. 9, no. 1, pp. 36–59, September 2016.

[4] F. Gaim, W. Yang, and J. C. Park, “GeezSwitch: Language Identification in Typologically

Related Low-resourced East African Languages,” in Proceedings of the Thirteenth

Language Resources and Evaluation Conference, Marseille, France: European Language

Resources Association, Jun. 2022, pp. 6578–6584.

[5] Eberhard, David M., Gary F. Simons, and Charles D. Fennig, “Ethnologue: languages of

the world. Dallas, Texas, SIL International,” vol. 26, (eds.). 2023: online version

http://www.ethnologue.com.

[6] C. Gobinda G., “Natural language processing,” Fundamental of Artificial. Intelligence.

Univ. Strathclyde UK, pp. 603–649, 2020, doi: https://doi.org/10.1007/978-81-322-3972-

7_19.

[7] J. Hirschberg and C. D. Manning, “Advances in natural language processing,” Science,

vol. 349, no. 6245, pp. 261–266, Jul. 2015, doi: 10.1126/science.aaa8685.

[8] T. Gottron and N. Lipka, “A comparison of language identification approaches on short,

query-style texts,” in Advances in Information Retrieval: 32nd European Conference on

IR Research, ECIR 2010, Milton Keynes, UK, March 28-31, 2010. Proceedings 32,

Springer, 2010, pp. 611–614.

[9] A. Babhulgaonkar and S. Sonavane, “Language identification for multilingual machine

translation,” in 2020 International Conference on Communication and Signal Processing

(ICCSP), Chennai, India: IEEE, 2020. doi: 10.1109/ICCSP48568.2020.9182184.

[10] D. Khurana, A. Koli, K. Khatter, and S. Singh, “Natural language processing: State of

the art, current trends and challenges,” Multimedia Tools Application, pp. 1–32, 2022,

doi: https://doi.org/10.1007/s11042-022-13428-4.

[11] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa, “Natural

language processing (almost) from scratch,” Journal of machine learning research, vol.

12, no. ARTICLE, pp. 2493–2537, 2011.

[12] M. Lui, J. H. Lau, and T. Baldwin, “Automatic detection and language identification of

multilingual documents,” Transactions of the Association for Computational Linguistics,

vol. 2, pp. 27–40, Dec. 2014, doi: https://doi.org/10.1162/tacl_a_00163.

99 | P a g e

[13] A. Garg, V. Gupta, and M. Jindal, “A Survey of Language Identification Techniques and

Applications.” Journal of Artificial Intelligence Research 65 (2019): 675-782

[14] D. Londhe, A. Kumari, and M. Emmanuel, “Language identification for multilingual

sentiment examination,” International Journal of Recent Technology and Engineering,

vol. 8, no. 2/11, pp. 3571–3576, 2019.

[15] T. Jauhiainen, M. Lui, M. Zampieri, T. Baldwin, and K. Lindén, “Automatic language

identification in texts: A survey,” Journal of Artificial Intelligence Research, vol. 65, pp.

675–782, Aug. 2019.

[16] Y. Liu and M. Zhang, “Neural Network Methods for Natural Language Processing,”

Computational Linguistic, vol.44, no.1, pp.193–195, MIT Press, Cambridge, MA. March

2018, doi: 10.1162/COLI_r_00312.

[17] Lin, Xiaotian, Nankai Lin, Kanoksak Wattanachote, Shengyi Jiang, and Lianxi Wang,

“Multilingual Text Classification for Dravidian Languages,” ArXiv Prepr.

ArXiv211201705, December 3 2021.

[18] M. Lui and T. Baldwin, “Langid.py: An off-the-shelf language identification tool,”

Proceedings of the ACL system demonstrations. July. 2012, pp. 25–30.

[19] Biruk Tadesse, “Automatic Identification of Major Ethiopian Languages,” MSc. Thesis,

Bahir Dar University, Ethiopia, February 2018

[20] L. Wedajo, “Modeling Text Language Identification for Ethiopian Cushitic Languages”,

MSc. Higher Learning Center of Excellence College, Addis Ababa, Ethiopia, July 2014

[21] R. Bekele, “A Comparative Study of Automatic Language Identification of Ethio-Semitic

Languages,” MSc.Thesis, Addis Ababa University, Ethiopia, June 2018.

[22] K. Erigetie, “General Purpose Language Identification for Ethiopia Semitic Language

using Hybrid Approach,” MSc. Thesis, Jimma University, Ethiopia, 2017.

[23] S. Lahiri and R. Mihalcea, “Using N-gram and Word Network Features for Native

Language Identification,” in Proceedings of the Eighth Workshop on Innovative Use of

NLP for Building Educational Applications, Atlanta, Georgia: Association for

Computational Linguistics, Jun. 2013, pp. 251–259.

[24] R. Meyer, “The Ethiopic Script: Linguistic Features and Socio-cultural Connotations,”

Oslo Stud. Lang., vol. 8, no. 1, Art. no. 1, 2016, doi: 10.5617/osla.4422.

[25] F. Coulmas, Writing Systems: An Introduction to Their Linguistic Analysis, Cambridge

University Press, 2003.

[26] A. De Voogt and J. F. Quack, The idea of writing: Writing across borders, vol. 2. Brill,

2011.

[27] I. Taylor and D. R. Olson, Scripts and literacy: Reading and learning to read alphabets,

syllabaries, and characters, vol. 7. Springer Science & Business Media, 1995.

[28] መምህር ኢያሱ ድረስ, “መዝገበ አእምሮ ግዕዝ ዐምዳ ወድዳ ለኢትዮጵያ”, ጎንደር,
ከኑ ማተሚያ ቤት, 2012.

100 | P a g e

[29] “The Ethiopian Orthodox Tewahedo Church” https://www.ethiopianorthodox.org/

(accessed Feb. 21, 2023).

[30] Central Statistical Agency, “The 2007 population and housing census of Ethiopia, Results

at Country Level, Analytical Report”, CSA Addis Ababa, May 2007.

[31] M. Midega, “Official Language Choice in Ethiopia: Means of Inclusion or Exclusion?,”

Open Access Libr. J., vol. 1, no. 7, pp. 1–13, 2014.

[32] ኪዳነ ወልድ ክፍሌ, “ሰዋስው ወግስ ወመዝገበ ቃላት ሐዲስ”, አዲስ አበባ, አርቲስቲክ
ማተሚያ ቤት, 1948.

[33] Tesema Habte Mikael Gisew, YeAmarigna Mezgebe Kalat የአማርኛ መዝገበ ቃላት,

Addis Ababa, 1958.

[34] Joswig, Andreas, “The phonology of Awngi”, Summer Institute of Linguistics Electronic

Working Papers, Ethiopia, vol.87, January 2010.

[35] D. Amsalu, “An ethnographic introduction to the Kumpal Agaw,” Journal of Ethiopian

Studies, vol. 49, pp. 35–56, Dec. 2016.

[36] Tsegaye Miskir, “Developing a Stemming Algorithm for Awngi Text: A Longest match

approach,” MSc. Thesis, Addis Ababa University, Ethiopia, 2013.

[37] D. M. Eberhard, Gary F. Simons, and Charles D. Fennig, Ethnologue: Languages of the

World., Twenty-Fifth edition. Dallas, Texas: SIL International., 2022.

[38] Leyew, Zelealem, “First report on a survey of the Shinasha and Agew dialects and

languages,” Summer Institute of Linguistics International., p. 11, 2002.

[39] A. Haileysus, “Offline Handwritten Awngi Character Recognition Using Deep Learning

Technique,” MSc. Thesis, Bahir Dar University, Ethiopia, 2021.

[40] “ልሳነ ግእዝ ዘ ኢትዮጵያ / Lisane geez.” http://www.lisanegeez.com/ (accessed Feb.

21, 2023).

[41] መምህር ዕንባቆም ገብረ ጻድቅ, የግእዝ ቋንቋ የሰዋስው መጽሐፍ, ደብረ ብርሃን,
ፋር ኢስት ትሬዲንግ ኃላ.የተ.የግ. ማኅበር, 2010.

[42] F. Menuta and D. Yacob, “A Review of Shifts in Gurage Orthography,” Ge’ez Frontier

Foundation, Unicode Technology Notes Hawassa University. Ethiopia, September 2022.

[43] A. Shumneka, “Levels of Language Shift and Language Endangerment in The Gurage

Varieties of Muher and Ezha,” ZENA-LISSAN (Journal of Academy of Ethiopian

Languages and Cultures), vol. 26, no. 2, Art. no. 2, 2017.

[44] “Ethiopian Languages - Semitic, Cushitic, Omotic and Nilo-Saharan.”

http://www.ethiopiantreasures.co.uk/pages/language.htm (accessed Jan. 02, 2023).

[45] Daniel Yacob, Fekede Menuta, and Feidu Akmel Gobena, “The Ge’ez Frontier

Foundation Keyboard for Ge’ez Language.” Jan. 11, 2021. Accessed: Mar. 03, 2023.

[Online]. Available: https://help.keyman.com/keyboard/gff_gurage/0.7/gff_gurage

101 | P a g e

[46] Tsigie, Asteraye, Berhanu Beyene, Daniel Aberra, and Daniel Yacob, “A Roadmap to the

Extension of the Ethiopic Writing System Standard Under Unicode and ISO-10646,” 15th

Int. Unicode Conf., vol. 4, San Jose, California. Sebtember 1999.

[47] በሀሩ ሊላጋ, “ቋንቋ ከጠፋ አጽሙ እንኳን አይገኝለትም,” Gurage Zone Government

Communication Affairs Department, December 12, 2019. (accessed Mar. 08, 2023)

https://www.facebook.com/gurage1Zone/posts/2493544404231607.

[48] Daniel Yacob, Fekede Menuta, and Feidu Akmel Gobena, “The Ge’ez Frontier

Foundation Keyboard for Ge’ez Language.” Jan. 11, 2021. Accessed: Mar. 03, 2023.

[Online]. Available: https://help.keyman.com/keyboard/gff_gurage/0.9.1/gff_gurage

[49] Tekabe Legesse Feleke, “The similarity and mutual intelligibility between Amharic and

Tigrigna varieties,” in Proceedings of the Fourth Workshop on NLP for Similar

Languages, Varieties and Dialects (VarDial), Verona, Italy, Apr. 2017, pp. 47–54.

[50] Tsegay Woldemariam, “A Morph-syntactic tag set for the Annotation of Texts in

Tigrinya,” Addis Ababa Univ. Addis Ababa Ethiop Master’s Degree Thesis, Jun. 2013.

[51] Abrham. Negash, “The Origin and Development of Tigrinya Language Publications

(1886-1991),” Santa Clara University, vol. 1, 2016.

[52] Maria. Bulakh, “Tigrinya 1,” in The Semitic Languages, 2nd edition. Routledge, 2019.

[53] D. L. Appleyard, “The internal classification of the Agaw languages: a comparative and

historical phonology,” in Current Progress in Afro-Asiatic Linguistics: Papers of the

Third International Hamito-Semitic Congress, Amsterdam, 1984, pp. 33–67.

[54] Berhanu A. Agajie, “Operation labeling algorithm within Xamtanga sentences,” ournal

of Applied Studies in Language. Injibara College. Teaching. Education. Ethiopia, vol. 4,

no. 1, pp. 115–127, Jun. 2020.

[55] David L. Appleyard, “A grammatical sketch of Khamtanga—II,” Bulletin of the School of

Oriental and African Studies, vol. 50, no. 3, pp. 470–507, Oct. 1987.

[56] C. Wedekind and K. Wedekind, Sociolinguistic survey of the Awngi language of Ethiopia.

SIL International (Société Internat. de Linguistique), 2002.

[57] Li, Qian, Hao Peng, Jianxin Li, Congying Xia, Renyu Yang, Lichao Sun, Philip S. Yu,

and Lifang He., “A survey on text classification: From traditional to deep learning,” ACM

Transactions on Intelligent Systems and Technology (TIST), vol. 13, no. 2, pp. 1–41, Apr.

2022, doi: https://doi.org/10.1145/3495162.

[58] A. Garg, V. Gupta, and M. Jindal, “A survey of language identification techniques and

applications,” Journal of Emerging Technologies in Web Intelligence, vol. 6, no. 4, pp.

388–400, Nov. 2014.

[59] M. Padró and L. Padró, “Comparing methods for language identification,” Procesamiento

del lenguaje natural. Spain, vol. 33, 2004.

[60] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean, “Efficient estimation of word

representations in vector space,” ArXiv Prepr. ArXiv13013781, January 2013.

102 | P a g e

[61] K. Shaalan, “Rule-based approach in Arabic natural language processing,” The

International Journal on Information and Communication Technologies (IJICT),

University Edinburgh. UK, vol. 3, no. 3, pp. 11–19, Jun. 2010.

[62] M. Rahimi, M. Youhanaee, and H. Barati, “A Short Analysis of Rule-based Linguistic

Knowledge.,” Theory & Practice in Language Studies, vol. 4, no. 2, February 2014.

[63] L. Grothe, E. W. De Luca, and A. Nürnberger, “A Comparative Study on Language

Identification Methods.,”In Proceedings of the Sixth International Conference on

Language Resources and Evaluation (LREC’08), Marrakech, Morocco., May 2008.

[64] Abney, Steven, “Statistical methods and linguistics,” The balancing act: Combining

symbolic and statistical approaches to language, MIT press, Cambridge, pp. 1–26, 1996.

[65] J. D. Prusa and T. M. Khoshgoftaar, “Designing a Better Data Representation for Deep

Neural Networks and Text Classification,” In 2016 IEEE 17th International Conference

on Information Reuse and Integration (IRI), July 2016, pp. 411–416.

[66] Qader, Wisam A., Musa M. Ameen, and Bilal I. Ahmed, “An Overview of Bag of Words;

Importance, Implementation, Applications, and Challenges,” in 2019 International

Engineering Conference (IEC), January 2019, pp. 200–204.

[67] Kim, Y., Jernite, Y., Sontag, D. and Rush, A., “Character-Aware Neural Language

Models,” in Proceedings of the AAAI conference on artificial intelligence, vol. 30, no. 1,

Art. no. 1, Mar. 2016, doi: 10.1609/aaai.v30i1.10362.

[68] X. Zhang, J. Zhao, and Y. LeCun, “Character-level Convolutional Networks for Text

Classification,” in Advances in Neural Information Processing Systems, Curran

Associates, Inc., 2015.

[69] Seger, Cedric, An investigation of categorical variable encoding techniques in machine

learning: binary versus one-hot and feature hashing. 2018.

[70] A. Aizawa, “An information-theoretic perspective of TF–IDF measures,” Information

Processing & Management, vol. 39, no. 1, pp. 45–65, Jan. 2003, doi: 10.1016/S0306-

4573(02)00021-3.

[71] T. Vatanen, J. J. Väyrynen, and S. Virpioja, “Language Identification of Short Text

Segments with N-gram Models.,” Aalto, Finland: in Proceedings of the Seventh

International Conference on Language Resources and Evaluation (LREC), May 2010.

[72] W. B. Cavnar and J. M. Trenkle, “N-gram-based text categorization,” in the Proceedings

of SDAIR-94, 3rd annual symposium on document analysis and information retrieval, Las

Vegas, NV, Apr. 1994.

[73] B. Ahmed, S.-H. Cha, and C. Tappert, “Language identification from text using n-gram

based cumulative frequency addition,” Proceedings of Student/Faculty Research Day,

CSIS, Pace University, vol. 12, no. 12.8, May 2004.

[74] J. Pennington, R. Socher, and C. Manning, “GloVe: Global Vectors for Word

Representation,” in Proceedings of the 2014 Conference on Empirical Methods in Natural

Language Processing (EMNLP), Doha, Qatar: Association for Computational

Linguistics, Oct. 2014, pp. 1532–1543. doi: 10.3115/v1/D14-1162.

103 | P a g e

[75] G. Grefenstette, “Comparing two language identification schemes,” in Proceedings of

JADT, 3rd International conference on Statistical Analysis of Textual Data. Rome.,

December 1995.

[76] C.O. Truica, J. Velcin, and A. Boicea, “Automatic language identification for romance

languages using stop words and diacritics,” in 2015 17th International Symposium on

Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), Bucharest,

Romania: IEEE, Jun. 2015, pp. 243–246.

[77] Souter, Clive, “Natural language identification using corpus-based models,” HERMES-

Journal of Language and Communication in Business, no. 13, pp. 183–203, 1994.

[78] A. Selamat and N. Akosu, “A Word-length algorithm for language identification of under-

resourced languages,” Journal of King Saud University-Computer and Information

Sciences, vol. 28, no. 4, pp. 457–469, Oct. 2016, doi: 10.1016/j.jksuci.2014.12.004.

[79] S. Gadri, A. Moussaoui, and L. Belabdelouahab-Fernini, “Language identification: A new

fast algorithm to identify the language of a text in a multilingual corpus,” in 2014 ICMCS,

Apr. 2014, pp. 321–326. doi: 10.1109/ICMCS.2014.6911338.

 [80] Y. Goldberg, “Neural network methods for natural language processing” Synthesis

lectures on human language technologies, vol. 10, no. 1, pp. 1–309, Apr. 2017.

[81] T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent Trends in Deep Learning Based

Natural Language Processing”, IEEE Computational intelligence magazine, vol. 13, no.

3, pp. 55–75, Aug. 2018, doi: 10.1109/MCI.2018.2840738.

[82] S. Agatonovic-Kustrin and R. Beresford, “Basic concepts of artificial neural network

(ANN) modeling and its application in pharmaceutical research,” Journal of

pharmaceutical and biomedical analysis, vol. 22, no. 5, pp. 717–727, 2000.

[83] J. Cai, J. Li, W. Li, and J. Wang, “Deep learning Model Used in Text Classification,” in

2018 15th International Computer Conference on Wavelet Active Media Technology and

Information Processing (ICCWAMTIP), December 2018, pp. 123–126. doi:

10.1109/iccwamtip.2018.8632592.

[84] Hounmenou, Castro Gbememali, Kossi Essona Gneyou, and Romain Lucas GLELE

KAKAÏ, “A Formalism of the General Mathematical Expression of Multilayer

Perceptron Neural Networks,” 2021, doi: 10.20944/preprints202105. 0412.v1.

[85] S. Vieira, W. H. L. Pinaya, and A. Mechelli, “Using deep learning to investigate the

neuroimaging correlates of psychiatric and neurological disorders: Methods and

applications,” Neuroscience & Biobehavioral Reviews, vol. 74, pp. 58–75, Mar. 2017,

doi: 10.1016/j.neubiorev.2017.01.002.

[86] M. Aqib, R. Mehmood, A. Alzahrani, I. Katib, A. Albeshri, and S. M. Altowaijri,

“Smarter Traffic Prediction Using Big Data, In-Memory Computing, Deep Learning and

GPUs,” Sensors, vol. 19, no. 9, Art. no. 9, Jan. 2019, doi: 10.3390/s19092206.

104 | P a g e

[87] Yoon Kim, “Convolutional Neural Network for Sentence Classification” in Proceedings

of the 2014 Conference on Empirical Methods in Natural Language Processing

(EMNLP), Doha, Qatar: Association for Computational Linguistics, Oct. 2014, pp. 1746–

1751. doi: 10.3115/v1/D14-1181.

[88] Jacovi, Alon, Oren Sar Shalom, and Yoav Goldberg, “Understanding Convolutional

Neural Networks for Text Classification.”arXiv preprint, April 27, 2020. doi:

10.48550/arXiv.1809.08037.

[89] A. Conneau, H. Schwenk, L. Barrault, and Y. Lecun, “Very Deep Convolutional Networks

for Text Classification.” arXiv, Jan. 27, 2017. doi: 10.48550/arXiv.1606.01781.

[90] A. Sherstinsky, “Fundamentals of Recurrent Neural Network (RNN) and Long Short-

Term Memory (LSTM) network,” Physica D: Nonlinear Phenomena., vol. 404, p.

132306, Mar. 2020, doi: 10.1016/j.physd.2019.132306.

[91] R David E., Geoffrey E. Hinton, and Ronald J. Williams, “Learning representations by

back-propagating errors,” Nature, vol. 323, no. 6088, Art. no. 6088, Oct. 1986, doi:

10.1038/323533a0.

[92] T. P. Lillicrap, A. Santoro, L. Marris, C. J. Akerman, and G. Hinton, “Backpropagation

and the brain,” Nature Reviews Neuroscience, vol. 21, no. 6, Art. no. 6, Jun. 2020, doi:

10.1038/s41583-020-0277-3.

[93] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward

neural networks,” in Proceedings of the Thirteenth International Conference on Artificial

Intelligence and Statistics, JMLR Workshop and Conference Proceedings, Mar. 2010, pp.

249–256.

[94] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” ArXiv Prepr.

ArXiv14126980, December, 2014.

[95] J. Zhang, “Gradient descent based optimization algorithms for deep learning models

training” ArXiv Prepr. ArXiv190303614, Mar 11, 2019.

[96] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning and

stochastic optimization”, Journal of machine learning research, vol. 12, no. 7, July 1,

2011.

[97] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout:

a simple way to prevent neural networks from overfitting,” The journal of machine

learning research, vol. 15, no. 1, pp. 1929–1958, Jan. 2014.

[98] Hossin, Mohammad, and Md Nasir Sulaiman. Review on Evaluation Metrics for Data

Classification Evaluations,” International journal of data mining & knowledge

management process, vol. 5, no. 2, pp. 01–11, Mar. 2015, doi: 10.5121/ijdkp.2015.5201.

[99] M. Grandini, E. Bagli, and G. Visani, “Metrics for Multi-Class Classification: an

Overview”, arXiv preprint arXiv, August 13, 2020. doi: 10.48550/arXiv.2008.05756.

[100] T. Jauhiainen, K. Lindén, and H. Jauhiainen, “Language model adaptation for language

and dialect identification of text,” Natural Language Engineering, vol. 25, no. 5, pp. 561–

583, Sep. 2019, doi: 10.1017/S135132491900038X.

105 | P a g e

[101] E. Oro, M. Ruffolo, and M. Sheikhalishahi, “Language Identification of Similar

Languages using Recurrent Neural Networks,” In International Conference on Agents

and Artificial Intelligence, 2018. doi: 10.5220/0006678606350640.

[102] A. R. Dennis and J. S. Valacich, “Conducting Experimental Research in Information

Systems,” Communications of the association for information systems, vol. 7, Jul. 2001,

doi: 10.17705/1CAIS.00705.

[103] Yogesh Kumar Singh, "Fundamentals of Research Methodology and Statistics", New

Age International (P) Limited, Publishers, New Delhi, 2006.

[104] Fletcher, Sam, and Md Zahidul Islam, “Comparing sets of patterns with the Jaccard

index,” Australasian Journal of Information Systems, vol. 22, Mar. 2018.

[105] W. Ling et al., “Finding function in form: Compositional character models for open

vocabulary word representation,” ArXiv Prepr. ArXiv150802096, Aug. 2015.

[106] X. Zhang, J. Zhao, and Y. LeCun, “Character-level convolutional networks for text

classification,” Advances in neural information processing systems, vol. 28, 2015.

[107] Y. Xu and R. Goodacre, “On splitting training and validation set: a comparative study

of cross-validation, bootstrap and systematic sampling for estimating the generalization

performance of supervised learning,” Journal of analysis and testing, vol. 2, no. 3, pp.

249–262, 2018.

[108] V. G. Raju, K. P. Lakshmi, V. M. Jain, A. Kalidindi, and V. Padma, “Study the

influence of normalization/transformation process on the accuracy of supervised

classification”, in 2020 Third ICSSIT, IEEE, Aug. 2020, pp. 729–735.

[109] V. Dogra, S. Verma, P. Chatterjee, J. Shafi, J. Choi, and M. F. Ijaz, “A complete process

of text classification system using state-of-the-art NLP models,” Comput. Intell.

Neurosci., vol. 2022, 2022.

[110] D. Maclaurin, D. Duvenaud, and R. Adams, “Gradient-based Hyperparameter

Optimization through Reversible Learning,” in Proceedings of the 32nd International

Conference on Machine Learning, PMLR, Jun. 2015, pp. 2113–2122.

[111] Ruder, Sebastian, “An overview of gradient descent optimization algorithms,” ArXiv,

September 2016.

[112] Lillicrap, Timothy P., Adam Santoro, Luke Marris, Colin J. Akerman, and Geoffrey

Hinton, “Backpropagation and the brain,” Nature Reviews Neuroscience, vol. 21, no. 6,

pp. 335–346, Jun. 2020.

 [113] Jason Brownlee, Deep Learning with Python: Develop Deep Learning Models on

Theano and TensorFlow Using Keras, Machine Learning Mastery, vol. 19. May 13 2016.

106 | P a g e

APPENDIXES

Appendix I: Closely Related Ethiopic and South Arabian Abjad Scripts

Ancient South Arabian script Ethiopic script

Letter Name Letter Name

he ሀ ha

lamedh ለ le

heth ሐ ha

mem መ me

sat ሰ se

resh ረ re

shin ሠ se

qoph ቀ qe

beth በ be

taw ተ te

kheth ኀ ha

nun ነ ne

alef አ a

kaph ከ ke

waw ወ we

ayn ዐ a

zayn ዘ ze

yodh የ ye

daleth ደ de

gimel ገ ge

teth ጠ te

sadhe ጸ tse

dhadhe ፀ tse

fe ፈ fe

samekh -

ghayn -

dhaleth -

thaw -

theth -

107 | P a g e

Appendix II: The Current (HaLeHaMe “ሀለሐመ”) Arrangement of the Ge'ez Alphabet

C

Vowel Orders

1st (ግእዝ) 2nd(ካዕብ) 3rd (ሣልስ) 4th(ራብዕ) 5th (ኀምስ) 6th (ሳድስ) 7th (ሳብዕ)

C+ä (አ) C+u (ኡ) C+i (ኢ) C+a (ኣ) C+e (ኤ) C+ǝ/ ï (እ) C+o (ኦ)

H ሀ ሁ ሂ ሃ ሄ ህ ሆ
L ለ ሉ ሊ ላ ሌ ል ሎ
H ሐ ሑ ሒ ሓ ሔ ሕ ሖ
M መ ሙ ሚ ማ ሜ ም ሞ
S ሠ ሡ ሢ ሣ ሤ ሥ ሦ
R ረ ሩ ሪ ራ ሬ ር ሮ
S ሰ ሱ ሲ ሳ ሴ ስ ሶ
Q ቀ ቁ ቂ ቃ ቄ ቅ ቆ
B በ ቡ ቢ ባ ቤ ብ ቦ
T ተ ቱ ቲ ታ ቴ ት ቶ
H ኀ ኁ ኂ ኃ ኄ ኅ ኆ
N ነ ኑ ኒ ና ኔ ን ኖ
A አ ኡ ኢ ኣ ኤ እ ኦ
K ከ ኩ ኪ ካ ኬ ክ ኮ
W ወ ዉ ዊ ዋ ዌ ው ዎ
A ዐ ዑ ዒ ዓ ዔ ዕ ዖ
Z ዘ ዙ ዚ ዛ ዜ ዝ ዞ
Y የ ዩ ዪ ያ ዬ ይ ዮ
D ደ ዱ ዲ ዳ ዴ ድ ዶ
G ገ ጉ ጊ ጋ ጌ ግ ጎ
T’ ጠ ጡ ጢ ጣ ጤ ጥ ጦ
P’ ጰ ጱ ጲ ጳ ጴ ጵ ጶ
TS ጸ ጹ ጺ ጻ ጼ ጽ ጾ
TS ፀ ፁ ፂ ፃ ፄ ፅ ፆ
F ፈ ፉ ፊ ፋ ፌ ፍ ፎ
P ፐ ፑ ፒ ፓ ፔ ፕ ፖ

 Labialized variant (Labiovelars)
QW ቈ ቊ ቋ ቌ ቍ
HW ኈ ኊ ኋ ኌ ኍ
KW ኰ ኲ ኳ ኴ ኵ
GW ጐ ጒ ጓ ጔ ጕ

Letter “C” represents consonants.

108 | P a g e

Appendix III: The Earlier (ABeGeDe “አበገደ”) Arrangement of the Ge'ez Alphabet

Similar to the current arrangement of Geez alphabet (Fidel) the former has 26 base characters

and 4 labiovelars. The order of the base Ge’ez characters is as follows: አ በ ገ ደ ሀ ወ ዘ ሐ ኀ

ጠ የ ከ ለ መ ነ ሠ ዐ ፈ ጸ ፀ ቀ ረ ሰ ተ ጰ ፐ and labiovelar consonants: ቈ ኈ ኰ ጐ. The

construction of the alpha-syllabary of አበገደ order is similar to the current Geez Fidel as shown

in Appendix II.

Appendix IV: The Ge’ez Numbers and Punctuation Marks

A) Ge’ez (Ethiopic) Numbers

፩ ፪ ፫ ፬ ፭ ፮ ፯ ፰ ፱ ፲
1 2 3 4 5 6 7 8 9 10
፳ ፴ ፵ ፶ ፷ ፸ ፹ ፺ ፻ ፼
20 30 40 50 60 70 80 90 100 10000

B) Ge’ez (Ethiopic) Punctuation Marks

Punctuations Marks St. Yared Zema Marks

፡ Ethiopic word space ᎐ ይዘት “yizet

። Ethiopic full stop ᎓ ኅጺር ርክርክ “hitsir rikrk”

፤ Ethiopic semi-colon ᎒ ርክርክ “rikrk”

፣ Ethiopic a comma ᎑ ደረት “deret”

፥ Ethiopic colon ᎔ ድፋት “difat”

፦ Ethiopic preface colon ᎖ ጭረት “chiret”

፧ Ethiopic question mark ᎕ ቅናት “qinat”

፨ Ethiopic paragraph separator ᎗ ሒደት “hidet”

፠ Ethiopic a section mark ᎘ ደረት ሒደት “deret hidet”

 ᎙ ቁርጥ “qurt”

109 | P a g e

Appendix V: The Amharic Alpha-syllabic (Fidel)

C

Vowel Orders

1st (ግእዝ) 2nd(ካዕብ) 3rd (ሣልስ) 4th(ራብዕ) 5th (ኀምስ) 6th (ሳድስ) 7th (ሳብዕ)

C+ä (አ) C+u (ኡ) C+i (ኢ) C+a (ኣ) C+e (ኤ) C+ǝ/ ï (እ) C+o (ኦ)

H ሀ ሁ ሂ ሃ ሄ ህ ሆ
L ለ ሉ ሊ ላ ሌ ል ሎ
H ሐ ሑ ሒ ሓ ሔ ሕ ሖ
M መ ሙ ሚ ማ ሜ ም ሞ
S ሠ ሡ ሢ ሣ ሤ ሥ ሦ
R ረ ሩ ሪ ራ ሬ ር ሮ
S ሰ ሱ ሲ ሳ ሴ ስ ሶ

SH ሸ ሹ ሺ ሻ ሼ ሽ ሾ
Q ቀ ቁ ቂ ቃ ቄ ቅ ቆ
B በ ቡ ቢ ባ ቤ ብ ቦ
T ተ ቱ ቲ ታ ቴ ት ቶ

CH ቸ ቹ ቺ ቻ ቼ ች ቾ
H ኀ ኁ ኂ ኃ ኄ ኅ ኆ
N ነ ኑ ኒ ና ኔ ን ኖ
ɲ ኘ ኙ ኚ ኛ ኜ ኝ ኞ
A አ ኡ ኢ ኣ ኤ እ ኦ
K ከ ኩ ኪ ካ ኬ ክ ኮ
H’ ኸ ኹ ኺ ኻ ኼ ኽ ኾ
W ወ ዉ ዊ ዋ ዌ ው ዎ
A ዐ ዑ ዒ ዓ ዔ ዕ ዖ
Z ዘ ዙ ዚ ዛ ዜ ዝ ዞ

ZH ዠ ዡ ዢ ዣ ዤ ዥ ዦ
Y የ ዩ ዪ ያ ዬ ይ ዮ
D ደ ዱ ዲ ዳ ዴ ድ ዶ
J ጀ ጁ ጂ ጃ ጄ ጅ ጆ
G ገ ጉ ጊ ጋ ጌ ግ ጎ
T’ ጠ ጡ ጢ ጣ ጤ ጥ ጦ

CH' ጨ ጩ ጪ ጫ ጬ ጭ ጮ
P’ ጰ ጱ ጲ ጳ ጴ ጵ ጶ
TS ጸ ጹ ጺ ጻ ጼ ጽ ጾ
TS ፀ ፁ ፂ ፃ ፄ ፅ ፆ
F ፈ ፉ ፊ ፋ ፌ ፍ ፎ
P ፐ ፑ ፒ ፓ ፔ ፕ ፖ
V ቨ ቩ ቪ ቫ ቬ ቭ ቮ

 Labialized variant (Labiovelars)
QW ቈ ቊ ቋ ቌ ቍ
HW ኈ ኊ ኋ ኌ ኍ
KW ኰ ኲ ኳ ኴ ኵ
GW ጐ ጒ ጓ ጔ ጕ

 Other Labiovelars

 ሏ ሗ ሟ ሧ ሯ ሷ ሿ
 ቧ ቯ ቷ ቿ ኗ ኟ ኧ
 ኳ ዟ ዧ ዷ ጇ ጧ ጯ
 ጷ ጿ ፏ ፗ

110 | P a g e

Appendix VI: The Awngi Alpha-syllabic (Fidel)

C

Vowel Orders

1st (ግእዝ) 2nd(ካዕብ) 3rd (ሣልስ) 4th(ራብዕ) 5th (ኀምስ) 6th (ሳድስ) 7th (ሳብዕ)

C+ä (አ) C+u (ኡ) C+i (ኢ) C+a (ኣ) C+e (ኤ) C+ǝ/ ï (እ) C+o (ኦ)

H ሀ ሁ ሂ ሃ ሄ ህ ሆ
L ለ ሉ ሊ ላ ሌ ል ሎ
M መ ሙ ሚ ማ ሜ ም ሞ
R ረ ሩ ሪ ራ ሬ ር ሮ
S ሰ ሱ ሲ ሳ ሴ ስ ሶ

SH ሸ ሹ ሺ ሻ ሼ ሽ ሾ
Q’ ቐ ቑ ቒ ቓ ቔ ቕ ቖ
B በ ቡ ቢ ባ ቤ ብ ቦ
T ተ ቱ ቲ ታ ቴ ት ቶ

CH ቸ ቹ ቺ ቻ ቼ ች ቾ
N ነ ኑ ኒ ና ኔ ን ኖ
A አ ኡ ኢ ኣ ኤ እ ኦ
K ከ ኩ ኪ ካ ኬ ክ ኮ
H’ ኸ ኹ ኺ ኻ ኼ ኽ ኾ
W ወ ዉ ዊ ዋ ዌ ው ዎ
Z ዘ ዙ ዚ ዛ ዜ ዝ ዞ
Y የ ዩ ዪ ያ ዬ ይ ዮ
D ደ ዱ ዲ ዳ ዴ ድ ዶ
J ጀ ጁ ጂ ጃ ጄ ጅ ጆ
G ገ ጉ ጊ ጋ ጌ ግ ጎ
ŋ ጘ ጙ ጚ ጜ ጝ ጞ ጘ

TS ፀ ፁ ፂ ፃ ፄ ፅ ፆ
F ፈ ፉ ፊ ፋ ፌ ፍ ፎ
P ፐ ፑ ፒ ፓ ፔ ፕ ፖ
V ቨ ቩ ቪ ቫ ቬ ቭ ቮ
 Labialized variant (Labiovelars)

KW ኰ ኲ ኳ ኴ ኵ
GW ጐ ጒ ጓ ጔ ጕ
ŋW ⶓ ⶔ ጟ ⶕ ⶖ

H’W ዀ ዂ ዃ ዄ ዅ

Q’W ቘ ቚ ቛ ቜ ቝ

111 | P a g e

Appendix VII: The Guragigna Orthography (Fidel)

The 1966 Gurage syllabary alphabetical order, palatalized velars and labialized velars.

The 1977 and 1998 Gurage orthography alphabetical order, palatalized velars and labialized

velars. As shown in the tables below, both Garage alphabets are almost similar except for the

added labialized velar.

112 | P a g e

The modern (2013) Gurage orthography alphabetical order, palatalized velars and labialized

velars.

113 | P a g e

114 | P a g e

Appendix VIII: The Tigrinya Alpha-syllabic (Fidel)

C

Vowel Orders

1st (ግእዝ) 2nd(ካዕብ) 3rd (ሣልስ) 4th(ራብዕ) 5th (ኀምስ) 6th (ሳድስ) 7th (ሳብዕ)

C+ä (አ) C+u (ኡ) C+i (ኢ) C+a (ኣ) C+e (ኤ) C+ǝ/ ï (እ) C+o (ኦ)

H ሀ ሁ ሂ ሃ ሄ ህ ሆ
L ለ ሉ ሊ ላ ሌ ል ሎ
H ሐ ሑ ሒ ሓ ሔ ሕ ሖ
M መ ሙ ሚ ማ ሜ ም ሞ
S ሠ ሡ ሢ ሣ ሤ ሥ ሦ
R ረ ሩ ሪ ራ ሬ ር ሮ
S’ ሰ ሱ ሲ ሳ ሴ ስ ሶ
SH ሸ ሹ ሺ ሻ ሼ ሽ ሾ
Q ቀ ቁ ቂ ቃ ቄ ቅ ቆ
Q’ ቐ ቑ ቒ ቓ ቔ ቕ ቖ
B በ ቡ ቢ ባ ቤ ብ ቦ
T ተ ቱ ቲ ታ ቴ ት ቶ

CH ቸ ቹ ቺ ቻ ቼ ች ቾ
N ነ ኑ ኒ ና ኔ ን ኖ
ɲ ኘ ኙ ኚ ኛ ኜ ኝ ኞ
A አ ኡ ኢ ኣ ኤ እ ኦ
K ከ ኩ ኪ ካ ኬ ክ ኮ
H’ ኸ ኹ ኺ ኻ ኼ ኽ ኾ
W ወ ዉ ዊ ዋ ዌ ው ዎ
A ዐ ዑ ዒ ዓ ዔ ዕ ዖ
Z ዘ ዙ ዚ ዛ ዜ ዝ ዞ

ZH ዠ ዡ ዢ ዣ ዤ ዥ ዦ
Y የ ዩ ዪ ያ ዬ ይ ዮ
D ደ ዱ ዲ ዳ ዴ ድ ዶ
J ጀ ጁ ጂ ጃ ጄ ጅ ጆ
G ገ ጉ ጊ ጋ ጌ ግ ጎ
T’ ጠ ጡ ጢ ጣ ጤ ጥ ጦ

CH' ጨ ጩ ጪ ጫ ጬ ጭ ጮ
P’ ጰ ጱ ጲ ጳ ጴ ጵ ጶ
TS ጸ ጹ ጺ ጻ ጼ ጽ ጾ
TS’ ፀ ፁ ፂ ፃ ፄ ፅ ፆ
F ፈ ፉ ፊ ፋ ፌ ፍ ፎ
P ፐ ፑ ፒ ፓ ፔ ፕ ፖ
V ቨ ቩ ቪ ቫ ቬ ቭ ቮ
 Labialized variant (Labiovelars)

QW ቈ ቊ ቋ ቌ ቍ
KW ኰ ኲ ኳ ኴ ኵ
GW ጐ ጒ ጓ ጔ ጕ
H’W ዀ ዂ ዃ ዄ ዅ

Q’W ቘ ቚ ቛ ቜ ቝ

 Other Labiovelars

 ሏ ሷ ሟ ሯ ሿ ቧ ቷ
 ዷ ዟ ጷ ጧ ቯ ፏ

115 | P a g e

Appendix IX: The Xamtanga Alpha-syllabic (Fidel)

C

Vowel Orders

1st (ግእዝ) 2nd(ካዕብ) 3rd (ሣልስ) 4th(ራብዕ) 5th (ኀምስ) 6th (ሳድስ) 7th (ሳብዕ)

C+ä (አ) C+u (ኡ) C+i (ኢ) C+a (ኣ) C+e (ኤ) C+ǝ/ ï (እ) C+o (ኦ)

H ሀ ሁ ሂ ሃ ሄ ህ ሆ
L ለ ሉ ሊ ላ ሌ ል ሎ
H ሐ ሑ ሒ ሓ ሔ ሕ ሖ
M መ ሙ ሚ ማ ሜ ም ሞ
R ረ ሩ ሪ ራ ሬ ር ሮ
S ሰ ሱ ሲ ሳ ሴ ስ ሶ
SH ሸ ሹ ሺ ሻ ሼ ሽ ሾ
Q ቀ ቁ ቂ ቃ ቄ ቅ ቆ
Q’ ቐ ቑ ቒ ቓ ቔ ቕ ቖ
B በ ቡ ቢ ባ ቤ ብ ቦ
T ተ ቱ ቲ ታ ቴ ት ቶ
CH ቸ ቹ ቺ ቻ ቼ ች ቾ
H ኀ ኁ ኂ ኃ ኄ ኅ ኆ
N ነ ኑ ኒ ና ኔ ን ኖ
A አ ኡ ኢ ኣ ኤ እ ኦ
K ከ ኩ ኪ ካ ኬ ክ ኮ
H ኸ ኹ ኺ ኻ ኼ ኽ ኾ
W ወ ዉ ዊ ዋ ዌ ው ዎ
Z ዘ ዙ ዚ ዛ ዜ ዝ ዞ
Y የ ዩ ዪ ያ ዬ ይ ዮ
D ደ ዱ ዲ ዳ ዴ ድ ዶ
J ጀ ጁ ጂ ጃ ጄ ጅ ጆ
G ገ ጉ ጊ ጋ ጌ ግ ጎ
ŋ ጘ ጙ ጚ ጜ ጝ ጞ ጘ
T’ ጠ ጡ ጢ ጣ ጤ ጥ ጦ
CH' ጨ ጩ ጪ ጫ ጬ ጭ ጮ
P’ ጰ ጱ ጲ ጳ ጴ ጵ ጶ
TS ጸ ጹ ጺ ጻ ጼ ጽ ጾ
TS ፀ ፁ ፂ ፃ ፄ ፅ ፆ
F ፈ ፉ ፊ ፋ ፌ ፍ ፎ
P ፐ ፑ ፒ ፓ ፔ ፕ ፖ
V ቨ ቩ ቪ ቫ ቬ ቭ ቮ

 Labialized variant (Labiovelars)

KW ኰ ኲ ኳ ኴ ኵ
GW ጐ ጒ ጓ ጔ ጕ
ŋW ⶓ ⶔ ጟ ⶕ ⶖ

HW ኈ ኊ ኋ ኌ ኍ
H’W ዀ ዂ ዃ ዄ ዅ

QW ቈ ቊ ቋ ቌ ቍ
Q’W ቘ ቚ ቛ ቜ ቝ

116 | P a g e

Appendix X: Sample Python Source Code

Importing essential Python packages for preprocessing, training, and testing

Python program to encode the label for each language, to configure the length of sample texts,

and the number of language samples per language.

117 | P a g e

Sample python program to analysis the average word length of Tigrigna language

Python code for data scaling of independent and dependent variables

Python program to show the training and test set

118 | P a g e

Python program to build the DNN model

Python program to train the model on train set

Python program to evaluate the model on test set

Python program to view the confusion matrix

Python program to show the classification result

