

DEBRE BERHAN UNIVERSITY

COLLEGE OF COMPUTING

DEPARTMENT OF INFORMATION TECHNOLOGY

PERFORMANCE ENHANCEMENT OF RYU CONTROLLER BASED-

SOFTWARE DEFINED NETWORKs USING MPLS

A Thesis Submitted to College of Computing in Partial Fulfillment of the

Requirements for Master of Sciences in Computer Networks and Security

HABTAMU GEBEYEHU ESHETU

January, 2024 G.C

Debre Berhan, Ethiopia

I | P a g e

DEBRE BERHAN UNIVERSITY

COLLEGE OF COMPUTING

DEPARTMENT OF INFORMATION TECHNOLOGY

Performance Enhancement of RYU Controller Based- Software Defined

Networks Using MPLS

A Thesis Submitted to College of Computing in Partial Fulfillment of the

Requirements for Master of Sciences in Computer Networks and Security

HABTAMU GEBEYEHU ESHETU

Advisor: Samuel Asferaw (Ph.D)

January, 2024 G.C

Debre Berhan, Ethiopia

II | P a g e

DEBRE BERHAN UNIVERSITY

COLLEGE OF COMPUTING

DEPARTMENT OF INFORMATION TECHNOLOGY

BY: HABTAMU GEBEYEHU ESHETU

ADVISOR: Dr. SAMUEL ASFERAW

The final reading approval of the thesis prepared by Habtamu Gebeyehu Eshetu, titled:

Performance Enhancement of RYU Controller Based- Software Defined Networks Using MPLS

and Submitted to the Department of Information Technology in Partial Fulfillment of the

Requirements for Master of Sciences in Computer Networks and Security with the regulations of

the university and meets the accepted standards with respect to originality and quality.

Approved By:

Advisor: Dr. Samuel Asferaw Signature--------------Date………….

External Examiner: Dr. Asrat Mulatu Signature--------------Date………...

Internal Examiner: Assistant Prof. Alebachew Chiche Signature------------ Date…………

Chairperson: -------------------------------------- Signature-------------Date……….

22/01/2024

III | P a g e

DECLARATION

I, the undersigned, declare that this thesis entitled “Performance Enhancement of RYU

Controller Based- Software Defined Networks Using MPLS” is my original work and has not

been presented for a degree in this or any other universities, and all sources of references used

for the thesis work have been appropriately acknowledged.

Name: Habtamu Gebeyehu Eshetu

Signature: _____________ Date: ________________

The thesis has been submitted for examination with my approval as university advisor.

Advisor Name: Samuel Asferaw (Ph.D)

Signature: _____________ Date: ________________

IV | P a g e

ACKNOWLEDGEMENTs

First and foremost, I would like to thank my God for giving me the strength to carry out and

complete this work.

I would like to express my special thanks and appreciation to my advisor Dr. Samuel Asferaw,

for his patient guidance, support, encouragement, helpful advice, and giving me the opportunity

for doing what turned out to be exciting Master’s thesis. He’s technical and editorial advice was

essential to the completion of this dissertation and has taught me infinite lessons.

I would also like to thank my parents, sisters and my friends especially Mr. Seifu Alemayehu and

his wife, Mr. Ashneafi Tadesse and his wife, Mr. Robel Cheber and his wife, Mr. Nebiyat, Mr.

Behailu Korma, Mr. Fasil Tsegaye, Dr. Esubalew Getenet, W/rt Jale Obelika, Mr. Shetaw

Tafesse and his wife, Mr. Ibrahim Neji and his wife, Mr. Getasew Alemayehu, Mr. Mengistu

Muluken and his wife and all of Ethernet staff IN Ministry of Education specially Mr. Yonatan

Mekuriyaw, and Mr. Eyuel for his kind and continuous support. Many thanks also go to my dear

friends for their continuous encouragement and support throughout my thesis. I wish to extend

my gratitude for my wife and my child who are my blessing for their unconditional love for their

support, patience and love. Without their encouragement, motivation and understanding, it would

have been impossible for me to complete this work. Finally, thanks to all people who supported

me to complete this work.

Habtamu Gebeyehu

V | P a g e

ABSTRACT

Software Defined Networking (SDN) is a rapidly growing technology that offers open and

flexible networking solutions through the management of virtual devices using a mininet

network emulator. It simplifies network administration by centralizing control and separating the

control plane from the data plane. One of the major research areas in SDN is performance

optimization, which involves considering three parameters and their dependencies. The research

gap by implementing using GNS3 and Mininet a performance enhancement of the Ryu controller

mechanism using Multiprotocol Label Switching (MPLS). The study utilized the Mininet

network emulator to create a network environment consisting of a virtual router and hosts

controlled by the Ryu controller.

The network system is followed by performance evaluation using the Cbench tool, which

measures throughput, latency and jitter metrics. To effectively distribute network loads, MPLS

used instead of a single controller. This thesis approach influenced MPLS networks to handle

low-level packet flows, allowed for efficient traffic management. The evaluation results

indicated that the integration of MPLS and load distribution using the Ryu controller led to

significant improvements in network performance. Based on the findings obtained from the

research conducted, it appears that integrating MPLS (Multi-Protocol Label Switching) with the

Ryu controller in an SDN environment resulted in performance enhancements. Specifically, the

average throughput was improved by 4% compared to without MPLS on the data plane; and the

latency was reduced by 5%. Based on the findings of the thesis, it was determined that

combining MPLS and SDN is an effective way to increase the overall performance of software-

defined networks compared to the normal SDN or without MPLS implementation.

Keywords: Software Defined Networking (SDN), Open Flow, Ryu Controller, Multiprotocol

Label Switching (MPLS), GNS3, Cbench, Throughput, Latency, Jitter.

VI | P a g e

Table of Contents

DECLARATION .. III

ACKNOWLEDGEMENTs... IV

ABSTRACT ... V

List of Figures .. VIII

List of Tables .. IX

List of Abbreviations and Acronyms ... X

Chapter One: Introduction .. 1

1.1 Background of the Study ... 1

1.2 Statement of the Problem .. 2

1.3 Objectives of the Study ... 4

1.3.1 General Objective ... 4

1.3.2 Specific Objectives ... 4

1.4 Scope of the Study... 4

1.5 Significance of the Study .. 4

1.6 Organization of the Thesis .. 5

Chapter Two: Literature Review .. 6

2.1 Introduction ... 6

2.2 Overview of SDN Architecture ... 6

2.2.1 SDN Northbound Interface ... 8

2.2.2 SDN Southbound Interface ... 8

2.3 Ryu Architecture ... 9

2.3.1Traditional Network Architecture ... 10

2.3.2 Limitations of Traditional Networks .. 12

2.4 Open Flow Protocol .. 13

2.5 Packet Processing Mechanism .. 15

2.6 Taxonomy of Load Balancing Approaches ... 15

2.7 Load balancing in SDN ... 17

2.8 Types of load-balancing algorithms: Static versus Dynamic .. 18

2.9 MPLS Architecture ... 19

VII | P a g e

2.9.1 MPLS Process using LSR... 20

2.9.2 Benefits of MPLS networks ... 22

2.10 Related works .. 24

2.11 Gap Analysis from Related Works.. 28

Chapter Three: The Proposed Enhanced RYU controller using MPLS 29

3.1. Introduction .. 29

3.2 RYU Controller ... 29

3.3 Research Methodology .. 30

3.4 Cbench Algorithm ... 31

3.5 Proposed Method... 31

3.6 Building blocks of MPLS .. 35

Chapter Four: Implementation, Result and Analysis .. 37

4.1 Setup of the simulation Environment .. 37

4.2 Topology ... 37

4.3 Simulation Tools and Techniques ... 38

4.3.1 Installation Ryu controller .. 38

4.3.2 Installation and version ... 39

4.4 Message establishment between a switch and a controller ... 42

4.5 Messages exchanged between two hosts ... 42

4.6 Performance Measuring Metrics ... 43

4.6.1 Throughput ... 44

4.6.2 Latency ... 49

4.6.3 Jitter .. 52

Chapter Five: Conclusions and Future Works .. 57

5.1 Conclusions ... 57

5.2 Future Works ... 58

References ... 59

Appendix ... 63

VIII | P a g e

List of Figures

Figure 2.1: The three layers in SDN architecture ... 7

Figure 2.2 : RYU SDN controller architecture ... 10

Figure 2.3 :.Legacy network architecture ... 11

Figure 2.4 : OpenFlow table entries .. 13

Figure 2.5: Open Flow architecture .. 14

Figure 2.6: Packet flow in Open flow switch ... 15

Figure 2.7: Taxonomy of Load Balancing Approaches .. 17

Figure 2.8: General MPLS Architecture [41] ... 20

Figure 2.9: Label Insertion [41] .. 21

Figure 2.10: Label Swapping [41] .. 22

Figure 3.1: General Methods using MPLS ... 32

Figure 3.2 Detail Flowchart Ryu Controller with MPLS network ... 34

Figure 4.1: GNS3 with Mininet Topology .. 38

Figure 4.2: Ryu-manager version ... 39

Figure 4.3: Mininet Versions .. 39

Figure 4.4: Python version .. 39

Figure 4.5: Open vSwitch and Database Schema Version ... 39

Figure 4.6: linear topology Installation ... 40

Figure 4.7: linear topology Installation 32 switches ... 40

Figure 4.8: Open vSwitch connections ... 41

Figure 4.9: Mininet Installation .. 42

Figure 4.10: Wireshark testing from h1 to h2 ... 43

Figure 4.11: Cbench Throughput Result without MPLS one switch .. 46

Figure 4.12: Number of switch Tests with and without MPLS Ryu controller 47

Figure 4.13: Cbench Throughput Result with MPLS one switch ... 47

Figure 4.14: Throughput of proposed method with MPLS and normal SDN 48

Figure 4.15: Cbench Latency Result without MPLS one switch .. 50

Figure 4.16: Cbench Latency switch tests with and without MPLS result 50

Figure 4.17: Latency of Ryu controller with MPLS ... 51

Figure 4.18: Latency Result proposed method and Normal SDN .. 51

Figure 4.19 : Jitter result h1 to h2 ... 53

Figure 4.20: Jitter result h1 to h4 .. 53

Figure 4.21: Jitter Result Bandwidth vs Jitter ... 54

IX | P a g e

List of Tables

Table 2.1: Gap Analysis of Related works ... 28

Table 3.1: Cbench Algorithm .. 31

Table 4.1: Cbench Running Options ... 44

Table 4.2: Cbench Throughput result with and without MPLS network (Normal SDN) 46

Table 4.3: Latency total result with and without MPLS Network .. 49

Table 4.4: Jitter Running Options ... 53

Table 4.5: Result Jitter single topology .. 54

Table 4.6: Shows the overall performance metrics used in this research study as compared to

previous works .. 55

X | P a g e

List of Abbreviations and Acronyms

SDN Software Defining Network

OF Open Flow

LB Load Balancer

CPU Central Processing Unit

PC Personal Computer

IP Internet Protocol

ODL Open Day Light

API Application Programming Interface

IoT Internet of Things

QoS Quality of Service

SDN Software Defined Networking

NFV Network Function Virtualization

ACLs Access Lists

ISP Internet service providers

MPLS Multiprotocol Label Switching

VPN Virtual Private Network

FEC Forwarding Equivalence Classes

LER Label Edge Router

LDP Label Distribution Protocol

RSVP-TE Resource Reservation Protocol - Traffic Engineering

LSR Label Switch Router

MPLS-TE Multiprotocol Label Switching-traffic Engineering

NFV Network Function Virtualization

TED Traffic Engineering Database

FIFO First in first out

ICMP Internet Control Message Protocol

XI | P a g e

MAC Media Access Control

ARP Address Resolution Protocol

NAT Network address Translation

LTS Long Term Support

VM Virtual Machine

RAM Random Access Memory

LDP Label Distribution Protocol

LSR Label switch router

TTR Time to Live

1 | P a g e

Chapter One

Introduction

1.1 Background of the Study

Technology has changed our lifestyles, and web services, such as the internet, have extremely

impacted various aspects of our lives, including business, entertainment, education, social

networking, and communication. This remarkable advancement in computer technology has led

to an increasing need for high speed, reliable, scalable, and rapid services.

The rapid development of technology has completely transformed our way of life, and internet-

based services, like the World Wide Web, have become an essential part of our daily routine.

These services provide to diverse aspects of our lives, encompassing areas such as e-commerce,

relaxation, learning, socializing, and staying connected.

The scope of the Internet has considerably outshined estimates due to its rapid development. The

traditional Internet will, however, become more and more challenging to create due to the

limitations of hardware capabilities and network communication protocol. Furthermore,

upcoming and current network applications and services are easier. Therefore, it is necessary to

address the old network shortages. The traditional network mostly consists of switches, routers,

and other network infrastructure, which complicates network administration. The network users

have higher expectations for the quality of network services as a result of the increase in network

performance [22].

Software-Defined Networking (SDN) is utilized to increase network programmability and

modernize network administration. SDN represents a novel network model that enables the

separation of control and data plane functionalities found in conventional networks, resulting in a

more agile, adaptable, automated, and easily controlled architecture [19]. SDN networks have

three layers: the infrastructure layer (Data Plane), the control layer (Control Plane), and the

application layer (Management Plane). The control plane is a controller that acts as a central

management entity [6].

Furthermore, the exponential growth of worldwide IP data traffic has placed considerable

pressure on traditional networks. The performance of traffic flows, particularly in terms of

throughput, has significantly diminished beyond a certain level of scalability, primarily due to

2 | P a g e

limitations in the existing physical topology. As a result, the significance of dynamic network

management has escalated, as it enables the overall enhancement of network throughput without

forcing any modifications to the physical infrastructure, ensuring effective network maintenance

[15].

Software-defined networking (SDN) is a centralized network management technology that aims

to minimize the network administration and policy enforcement burdens associated with

traditional IP networking [4]. This approach revolves around the separation of network

intelligence, which involves packet forwarding in the data plane, and centralizing it within a

logical controller.

The Open Flow for communication between separated data plane and control plain and Linux

based operating system to build mininet are deployed. However, it's important to note that the

OpenFlow protocol is just one example of a standard protocol used for this purpose, and there

are other protocols as well [11], load balancing decisions. Load balancing either statically or

dynamically [2].

There are numerous SDN Controllers, namely POX, Ryu, Trema, Open daylight (ODL), and

Floodlight, etc. that were developed. Ryu follows the OpenFlow standard protocol, which allows

it to interact with OpenFlow-enabled switches and devices. It supports various network

applications and services, enabling developers to create custom network applications that can run

on top of the Ryu controller. This flexibility makes Ryu a popular choice among researchers,

network administrators, and developers in the SDN community.

One of the key features of the Ryu controller is its ease of use and extensibility. It provides a

comprehensive set of APIs and libraries that simplify the development of SDN applications. The

Ryu controller uses Open Flow for traffic flow arrangement through different data plane devices

[21].

1.2 Statement of the Problem

An advanced and radical approach to network administration is the concept of Software-Defined

Networking (SDN) architecture. To deliver effective and reliable service to those who need it,

the daily increasing load on the servers carried on by increased demand must be balanced [23].

3 | P a g e

The performance of software defined networks is still being questioned, and it requires the hard

work of researchers; it is one of the hot topics to be investigated. The problems of Static packet

batching in RYU controller refers to a process where packets are grouped together into batches

based on fixed criteria. This batching process is considered more complex. In static packet

batching, packets are organized into fixed-size groups or according to specific rules, without

considering the network conditions or traffic similarities in real-time [21]. However, during static

batching, when new arrivals, such as incoming packets or tasks, are added to the switch, it

increases the workload or processing load on the switch. To efficiently handle this workload, a

batch processing approach is used, where a certain number of tasks or packets are processed

together as a batch.

If there is a large number of workload waiting to be processed, the schedule will allocate more

time for processing in order to accommodate the higher workload. This indicates high latency

mode, which means that many packets will have to wait for access to the resource. In SDN

(Software-Defined Networking), switches do not directly process incoming packets. Instead,

they examine the incoming packets to find a match in their forwarding table. If a match is found,

the switch can make a forwarding decision based on the table entry. If no match is found in the

forwarding table, the packet is routed to the controller for further processing. In this context, the

controller acts as the operating system of the SDN, responsible for making decisions about

packet forwarding or dropping.

Several researchers have proposed many techniques to improve SDN performance by describing

their target areas, such as: According to [9] has worked on Performance Evaluation of Ryu

Controller in Software Defined Networks to evaluate the performance of the Ryu controller in

terms of latency and throughput. Cbench is used for measuring throughput and latency of this

controller but this work is different from this research because to increase the performance of the

Ryu controller in this work used MPLS on data plane on the top of Cbench.

According to [6] in this research, a comparative evaluation of the performance of popular SDN

controllers has evaluated the performance of popular open source SDN (Software-Defined

Networking) controllers, including ONOS, Ryu, Floodlight, and Open Daylight. The evaluation

focuses on measuring latency and throughput to understand the performance characteristics of

these controllers. Additionally, they provided a feature-based comparison of the controllers to aid

4 | P a g e

in decision-making when selecting a controller for specific network requirements. This work

attempts to enhance the performance of the Ryu controller by using MPLS (Multiprotocol Label

Switching) on the data plane, in addition to use cbench algorithms to evaluating, comparing, and

optimizing the performance of SDN controllers by generating controlled simulated traffic for

difficult testing and analysis.

Hence, this work attempts to answer the following research questions:

 How to enhance throughput of the network in Ryu controller SDN?

 How to decrease latency of the network in Ryu controller SDN?

1.3 Objectives of the Study

1.3.1 General Objective

The general objective of this research is to enhance throughput and latency of the RYU

controller based software-defined networking using MPLS.

1.3.2 Specific Objectives

To meet the general objective of the study, the following specific objectives have been identified.

 To investigate the effect of throughput and latency modes with MPLS network and

without MPLS network (normal SDN).

 To implement MPLS network functionality into the RYU controller.

 To compare the performance of Ryu controller with and without MPLS network.

1.4 Scope of the Study

The purpose of this study is to analyze network performance metrics throughput performance

tests and latency performance tests on Ryu controller SDN using MPLS. Since it is beyond the

scope of the research work resource utilization, fault tolerance, connectivity, and bandwidth

usage would not be included or addressed as part of this research.

1.5 Significance of the Study

Gg

This research helps various network service providers and load balancing companies to achieve

their goal of updating their data centers. This paper should be important in several positions: For

instance;

5 | P a g e

 Network researchers, Data science and Researchers.

 Network engineers, and Network administrators who are interested in other areas of

the field, it is a good resource to know the level of software and the gaps, and the

future.

 Later work; opens the way for further investigation and improvement using a variety of

approaches. This study technique has a significant impact on the performance of software-

defined networks, and significantly improves throughput usage across the network and solves

performance problems by increasing performance issues.

1.6 Organization of the Thesis

The rest part of this thesis is organized as follows: Chapter two presents the literature review of the

SDN architectures, presents open flow protocols, different load balancing mechanism using the

data center on MPLS and related works on SDN. Chapter three presents the proposed methods of

the Ryu controller using MPLS network, and research methodology. Chapter four presents

implementation, result and analysis of the research, and topology of the general network. Finally,

conclusion and future works is discussed in chapter five.

6 | P a g e

Chapter Two

Literature Review

2.1 Introduction

Software-Defined Networking (SDN) introduces a model shift from traditional networks,

bringing forth a range of challenges that need to be addressed, including data forwarding, load

balancing, and energy management. In SDN, flow tables play a central role, with each entry

containing fields such as the header, counter, and action. Upon packet arrival at a switch, a

lookup operation is performed to match the flow entries. Network flow headers and counters are

updated when modifications occur, such as load balancing or re-routing. By leveraging preset

rules and header information, the switch processes the data flow, effectively controlling network

traffic. The flow control mechanism relies on algorithms employed for load balancing, as

dynamic load balancing holds significant importance in SDN's centralized controller [30].

A number of SDN load-balancing solutions have recently been introduced, with a focus on three

specific aspects: data plane, control plane, and application plane load-balancing techniques [9].

2.2 Overview of SDN Architecture

SDN has significantly change how to build networks, the way managing the networks, and the

way running our networks. A centralized controller in SDN enables independent management of

the network's data plane, resulting in reduced complexity compared to traditional networks. SDN

has mainly three parts these are [32].

 The control plane: A software-defined network's control plane is its central component,

where controllers select where to forward packets. To decide whether to forward or drop

the packet, it applies a set of flow rules. To guarantee the successful transmission of the

data throughout the network, the controllers are charge of determining the path between

data-transmitting nodes. The controllers consult the flow tables and/or group tables of

openvswitches to determine the path. In conventional networks, the control plane's is to

take routing decisions or to choose the optimum path for traffic routing.

 Data plane/Forwarding plane: Is a component of the software-defined network where

actual user data transmission takes place. The set of components that make up the data

plane, also known as the forwarding plane, are frequently referred to as switches. The

7 | P a g e

forwarding plane is in charge of carrying out the decisions made by the controllers, such

as packet forwarding. Consequently, the data plane has a number of pathways for sending

packets. The controller creates paths using group tables or flow tables. Multiple nodes are

connected in traditional networks using conventional routers and switches.

 Application plane: By connecting with the controllers using an API known as the

northbound interface, applications can be developed and installed /deployed on top of the

controllers to manipulate network activities. These applications are frequently user-

specific, multipurpose, and open source, and they operate without consideration for

physical network infrastructure. Through the SDN's northbound interface, applications

communicate with controllers to carry out certain tasks. Through northbound interfaces,

the programs frequently access network resources to carry out particular tasks. The

following below figure illustrates the components/general architecture of software-

defined networks.

Figure 2.1: The three layers in SDN architecture

Unlike the southbound interface, such as Open Flow, there is no commonly used communication

protocol in the northbound interface [13] so, each vendor should have an own protocol to set up

and simplify the communication of applications with the control plane. These applications could

not be interoperable, which could lead to a complicated problem. Using a southbound API, the

control plane and data plane are able to communicate with one another [9].

8 | P a g e

2.2.1 SDN Northbound Interface

The northbound interface is an API that enables software to be placed at the top of the controller,

or what refer to as the application plane, and it allows that software to function without regard

for the unique characteristics and situations of the network devices themselves [26]. This level of

abstraction has several significant benefits, one of which is that network applications can operate

the network service independently of the underlying physical network. The services enable the

hosting of devices in a manner that allows the hosts to remain unaware that the network

resources they utilize are virtual and not the original physical resources they were designed.

There is no currently accepted standard for the interaction of the controller with applications. So,

each brand of controller could have unique methods to ensure communication with applications.

It is very difficult to manage applications having conflicting functions even though controllers

provide very low-level abstraction so, there is a need for a high-level programming language that

translates high-level strategies into low-level ones [13].

2.2.2 SDN Southbound Interface

The southbound interface facilitates communication between the control plane and the data

plane. It is the protocol used for communication between controllers and data plane/open

vswitches devices. Southbound interfaces come in a variety of brands, including OVSDB, open

Flow, and others, although OpenFlow is the most popular [25] [20]. Commonly used

openvswitches are data plane devices that connect with the control plane using the openFlow

protocol, and the Ryu controllers act on behalf of flow entries that are stored in the

openvswitches flow tables. One or more controllers may be present on the control plane, and

they may be on-time configure devices, establish paths, or keep an eye on the entire network

from a distance. Business apps operate specific tasks at the top of the control plane by interacting

with the controllers via the northbound interface. There are four ideologies of SDN networks

such as:

1. The networking and IP routing flexible – Instead of spending many days performing

manual routing to enable reachability, SDN does this in a better way, ultimately saving a

lot of time. SDN flexibility enable packets or traffic to reach their destination. It does this

with the help of software and dynamic algorithm with full flexibility and agility

9 | P a g e

2. Decoupling control and data plane- In traditional networks, the router serves as both

the brain and the data forwarding layer. As a component of SDN, the centralized

controller determines traffic routing. Only the payload is transmitted over the data plane

to the actual destination.

3. Offloading intelligence to a centralized controller and obtaining a centralized view

of resources- SDN offers a centralized view of substantially more effective resource

allocation and continues to monitor network services

4. Software-defined network, centrally administered, Flexible for varied demands-

Network control becomes directly programmable with centralized control planes, and

applications and network services are shielded from the underlying

infrastructure. Network operators can enable a variety of applications thanks to SDN,

including dynamic bandwidth provisioning, automatic scale-out and scale-in etc.

2.3 Ryu Architecture

The Ryu SDN controller presents an architecture based on components, serving as a framework.

In addition to the OpenFlow protocol, it also provides compatibility with Netconf, OF-config etc.

[18]. SDN Controller architecture encompasses three layers. The uppermost layer encompasses

business and network logic applications, referred to as the application layer. The middle layer

comprises network services, known as the control layer or SDN framework. The lowest layer

encompasses physical and virtual devices, constituting the infrastructure layer. The middle layer

hosts both northbound APIs and southbound APIs. The controller provides open northbound

APIs accessible to applications, including Restful administration.

 RYU works OpenFlow to establish communication with the forwarding plane, containing

switches and routers, aiming to alter how traffic flows are managed. Various OpenFlow

switches, including OpenvSwitch and products from Centec, Hewlett Packard, IBM, and NEC,

have been tested and certified to work with it [18].

10 | P a g e

Figure 2.2 : RYU SDN controller architecture

2.3.1Traditional Network Architecture

According to the traditional network architecture, a network is made to facilitate communication

between end hosts and a network node's combined control and data planes. The control plane is

responsible for configuring the network nodes and programming the data flow routes. It is the

component of a network architecture that handles tasks related to network management. The

control plane uses protocols and algorithms to establish and maintain the overall network

structure and behavior. Once the paths have been determined and configured by the control

plane, the control information is "pushed down" to the data plane. "Pushed down" means that the

control information is communicated or transmitted to the data plane, which consists of the

network devices' hardware and software responsible for data forwarding.

The control information received by the data plane includes instructions on how to handle and

forward data packets based on the established paths. The data plane then performs data

11 | P a g e

forwarding at the hardware level according to this control information. This involves the actual

movement of data packets through the network, ensuring they are directed along the intended

routes as defined by the control plane. Because there is no control plane abstraction of the overall

infrastructure, the traditional network system uses a distributed way to administer the network.

As a result, networks are now difficult to configure and administer when something goes wrong.

The traditional networks system's drawbacks include manual configuration, debugging, security,

scalability, and mobility [18].

As below Figure 2.3 shows, the traditional network pairs data plane and control plane, making it

challenging to mechanize the network. Traditional network infrastructures use physical devices

or equipment to implement networking and network devices such as switches, routers, firewalls,

and intrusion prevention systems, etc. Network topology determines networking flows, and each

network device locally decides how to best move a packet to its destination. But as virtualized

servers and network architectures based in the cloud have expanded, the capacity to rapidly

install new applications without requiring significant network upgrades has become a

prerequisite. The needs of today's businesses, carriers, and end users could be satisfied by these

kinds of network topologies. A new network design called Software Defined Networking (SDN)

decouples network control from the network infrastructure, modernizing networking architecture

[15].

Figure 2.3 :.Legacy network architecture

12 | P a g e

2.3.2 Limitations of Traditional Networks

Traditional network architecture makes it impossible to satisfy current market demands. The

traditional network was not designed in a manner that aligns with the current needs and

expectations of end-users, service providers, and enterprises some of the drawbacks are below

[15].

 Management Complexity: The computer network technologies are historically relied on

a suite of routing protocols methodically designed to establish dependable connections

between hosts spanning vast distances, ensuring high speeds across diverse network

topologies. However, to address modern industry demands such as enhanced availability,

security, and expanded connectivity, protocols have experienced various design

approaches resulting in different separation, where each protocol provides to solving

specific problems without implementing main concept abstractions. Unfortunately, this

approach has led to a prominent difficulty encountered by network administrators

Network administrators often maintain a static network design to minimize or prevent service

downtime resulting from changes. However, this static nature restricts the dynamic capabilities

of server virtualization and subsequently increases the number of hosts requiring connectivity.

Before the advent of virtualization services, a single server would establish connections with

specific clients. Today, virtualization enables applications to be distributed across multiple

virtual machines, allowing for increased scalability and flexibility. Additionally, virtual

machines often need to migrate to achieve balanced workloads

1. Policy configuration challenges: In order to maintain an enterprise network policy,

network managers may be necessary to setup a large number of routers and switches that

can support the network. When using virtualization, it typically takes up to hours or if not

days to add a virtual machine to the network since the network administrator needs to

configure and adjust Access Lists (ACLs) for the overall infrastructure.

2. Rapid growth demands: Due to the rapid growth requirements of data centers, the

network must expand at an equivalent bound , and Device vendor dependability

13 | P a g e

2.4 Open Flow Protocol

The foundation of the whole SDN topology is the open Flow protocol.

OpenFlow's flexibility allows researchers to achieve great performance with little financial

outlay and the ability to handle manufacturers’ requirements for closed platforms and as well as

the ability to handle manufacturers’ requirements for closed platforms and to separate

experimental data from actual data [1].

The interaction between the controller and the OpenFlow channel is facilitated through the

utilization of the OpenFlow protocol. The OpenFlow protocols leverages to configure flows and

amass network traffic information from switches. An essential element of an OpenFlow switch is

the flow table, which encompasses specific instructions for each flow entry and provides

guidance to the switch on how to manage incoming flows. The Flow table also connects the

switch to a remote controller over a secure channel. The switch and controller can exchange

packets and commands due to a flow table [10].

Figure 2.4 : OpenFlow table entries

A common interface for configuring the data plane switches is made up of OpenFlow protocol.

Open Flow architecture is composed of three fundamental parts. The data plane is housed within

OpenFlow switches, whereas the control plane consists of OpenFlow controllers. The switches

and controllers are interconnected through secure control channels, forming the connection

between the switches and the control plane [16].

14 | P a g e

Figure 2.5: Open Flow architecture

An OpenFlow switch, functioning as a data plane device, forwards packets based on its flow

table that encompasses a set of OpenFlow entries comprising match fields, counters, and

instructions. These entries, known as flow rules, govern the handling of packets within the

switch. Match fields in a flow table entry define the characteristics used to identify relevant

packets. Counters in the flow table primarily collect statistics on flows, including packet count,

byte count, and flow duration. A flow table entry header fields are responsible for evaluating

various protocols according to the OpenFlow definition. Finally, OpenFlow actions, such as

forwarding, dropping, and modifying field values, dictate the processing of packets belonging to

specific flows [5].

The controller, a fundamental component of OpenFlow, assumes the crucial role of overseeing

and regulating the flow tables within the switches. The controller is accountable for performing

various operations, including the addition, alteration, and deletion of flow entries [10]. The

controller also has the ability to adapt the forwarding conduct of switches. Furthermore,

OpenFlow establishes a particular communication protocol that empowers the controller to

command the switches via a secure control channel.

15 | P a g e

2.5 Packet Processing Mechanism

An OpenFlow switch consists of one or more flow tables, each with unique arrangements of

fields, such as match fields, action fields, and counters. The switch is responsible for processing

packets once each one has been compared to its corresponding flow table. The action for that

entry is applied to the packet if a flow entry and a packet header match. This suggests that

sending a packet to a certain port may be part of the action. If no match is identified, transmit a

packet IN message to the controller or send it through a secure communication channel [3]. The

counters are reserved for gathering flow-related data. They keep track of the number of packets,

bytes, and flow times that were received. A switch analyzes the header field of each packet it

receives and matches with the flow table's rules

Figure 2.6: Packet flow in Open flow switch

2.6 Taxonomy of Load Balancing Approaches

Load balancing also referred to as server farm is the process of effectively distributing incoming

network traffic among a collection of backend servers.

Today's high traffic websites must quickly and reliably respond to hundreds of thousands, of

concurrent user or client requests for the appropriate text, photos, videos, or application data.

Modern computing best practice typically requires deploying more servers in order to cost-

effectively scale to handle those high loads.

These are some commonly used load-balancing methodologies in distributed computing systems.

Each methodology has its advantages and trade-offs, and the selection depends on factors such as

16 | P a g e

system architecture, workload characteristics, and performance requirements. In order to

improve resource efficiency and request response times, load balancing reassigns the entire load

to each individual server in the cluster. This method also removes the problem where Addressing

load imbalance is crucial to ensure optimal resource utilization and prevent overloaded servers

from experiencing performance degradation or failure. Load-balancing algorithms and

techniques are employed to distribute the workload evenly and alleviate the load imbalance.

These techniques aim to dynamically adjust the workload distribution based on factors such as

server capacity, current load, and system performance metrics. By mitigating load imbalance,

organizations can achieve improved system performance, enhanced scalability, and better

utilization of available resources.

To effectively load balance client requests among server pools, a variety of techniques can be

utilized. The algorithm selected will depend on the kind of service or application being provided,

the network and service state at the time of requests, and the type of service or application.

Which approach is employed frequently depends on the volume of requests currently being

processed by the load balancers. These benefits demonstrate the importance of server load

balancing in achieving optimal performance, high availability, and efficient resource utilization

in distributed systems. Various load balancing algorithms, such as round robin, weighted round

robin, least load, ratio, priority, and predictive algorithms, contribute to realizing these

advantages

 High availability: Server load balancing helps increase the overall availability of the

system by distributing incoming traffic across multiple nodes. If one node experiences

issues or becomes overwhelmed, other nodes can handle the traffic, ensuring that the

application or service remains accessible.

 Fault tolerance: Load balancing enhances the fault tolerance of a system by providing

redundancy. If a server fails or becomes overloaded, load balancers can automatically

redirect traffic to other available servers, minimizing service disruptions.

 Resilience: Load balancing contributes to system resilience by distributing the workload

among multiple servers. This allows the system to withstand sudden increases in traffic or

unexpected spikes without being overwhelmed.

17 | P a g e

 Scalability: Load balancing enables the system to handle increased traffic by distributing

it across multiple servers. This scalability helps ensure that the application or service can

accommodate growing user demands without compromising performance or availability

[42].

Figure 2.7: Taxonomy of Load Balancing Approaches

2.7 Load balancing in SDN

Software-defined networks (SDN) framework provides numerous benefits over traditional

networks, including the effectiveness and convenience of network management and the

application of security standards. The limitations of traditional networks, such as their capacity

to provide end-to-end quality of service and efficient load balancing, are overcome by SDN.

With increasing access and data traffic, the network's processing power should rise accordingly.

It is essentially expensive and a waste of resources to attempt to solve this issue by upgrading or

replacing the current hardware. With the help of load balancing, the server's processing power

can be increased while the time it takes to respond to user requests is decreased by distributing a

large volume of concurrent admission or data movement among numerous computing devices.

18 | P a g e

Improving QoS metrics: The main goal of load balancing in guaranteeing complete Quality of

Service (QoS) for SDN networks and improving system reliability and overall performance

through the prevention of excessive device delay, performance optimization, and response time

reduction, the QoS strives to improve user experience.

1. Optimize the use of resources: This is one of the main objectives of load balancing

since efficient use of resource is essential for the effectiveness of the SDN load balancing

architecture. As a result, there is a limitation to how much network resources like links,

bandwidth, processors, and memory can be used. The most effective use of resources for

load balancing is ensured by an appropriate resource provision algorithm.

2. Reduce transmission latency: The amount of time it takes the host switch to transmit

data is referred to as transmission latency. This is dependent on a number of variables,

including the switch's efficiency, the size of the data packets, and whether or not the

transmission queue is backed up. Transmission latency serves as both a sign of network

congestion and, in a sense, a measure of switch load. As a result, the SDN controller must

record both the number of bytes delivered within a given time period and the

transmission rate.

3. Avoiding bottlenecks: In the SDN network environment, load balancing techniques are

essential to distribute the load correspondingly among several routers and controllers so

that no router or controller becomes loaded. By making optimum use of the resources that

are already available, proper load balancing can lower resource use. It also enforces

failover, permits scaling, avoids bottlenecks, and speeds up response time.

4. Increase throughput: A high-performance network should have high throughput, which

is only possible if the workload and resources are distributed evenly across the nodes.

This is the volume of data that was successfully moved from one location to another over

a protracted period of time.

2.8 Types of load-balancing algorithms: Static versus Dynamic

Static load balancing techniques only take into account data on the typical system behavior.

Static load balancing algorithms ignore the condition or load of the system's nodes right now.

The workload distribution is decided upon at run-time using dynamic load balancing. Depending

on the most recent information gathered, the master offers the worker a new assignment to do.

Since the workload distribution is carried out while the program is running, performance might

19 | P a g e

well be improved. However, the improved performance comes at the expense of increased

communication costs. So, the overhead associated should be in reasonable limit to achieve better

performance [29].

Load-balancing is a method to distribute load among network components to enhance QoS and

maximize network performance. By allocating or Load balancing techniques shift the load to

support service providers and end users and algorithms significantly contribute to increased

efficiency.

 Essential for Load Balancing: The network's servers are being overloaded as the

number of concurrent requests from client’s increases; as a result, the load must be

balanced in order to provide better service and observe QoS standards. Neglecting this

issue results in links failing and sometimes server crashes. In contrast to traditional

networks, software-defined networks separate all control planes from switches and place

them in a centralized unit known as a controller.

 Significance of Load-balancing: In SDN interfaces are used to connect the three layers.

The infrastructure layer's network devices forward requests to the control plane. On the

other hand, it is necessary to fulfill the demands placed on applications by various

services at the application layer. Therefore, the control plane plays an essential intelligent

role in satisfying the requirements. The amount of requests from clients is increasing

along with customer demand for cloud services, which increases the workload on the

networking components to manage them [8].

2.9 MPLS Architecture

In MPLS architecture, packets are assigned labels at the ingress router (also known as Label

Edge Router or LER). The labels are distributed throughout the network using protocols like

Label Distribution Protocol (LDP) or RSVP-TE (Resource Reservation Protocol - Traffic

Engineering). Each router along the path, known as Label Switch Router (LSR), examines the

packet's label and forwards it based on the label forwarding table. This label-based forwarding

allows for faster and more efficient routing decisions, as the routers don't need to perform

complex IP lookups for each packet. MPLS networks classify packets into Forwarding

Equivalence Classes (FECs). FECs group packets with similar characteristics or forwarding

requirements, such as destination IP address, QoS requirements, or application type. Each FEC is

associated with a unique MPLS label. The labels represent the specific treatment and forwarding

20 | P a g e

instructions for packets within the MPLS network. By using FEC-based forwarding, MPLS

architecture provides flexibility in implementing different traffic engineering and QoS policies.

Traffic Engineering and Virtual Private Networks (VPNs): MPLS architecture enables traffic

engineering capabilities, allowing network operators to optimize the utilization of network

resources. Traffic engineering techniques, such as MPLS Traffic Engineering (MPLS-TE),

enable the establishment of explicit paths for traffic, ensuring efficient utilization of available

bandwidth and avoiding congestion. Additionally, it is widely used for implementing Virtual

Private Networks (VPNs). MPLS VPNs provide secure and isolated communication between

different sites of an organization over a shared MPLS network. By assigning unique labels to

VPN traffic, MPLS architecture ensures privacy and separation of customer traffic within the

network.

Figure 2.8: General MPLS Architecture [41]

2.9.1 MPLS Process using LSR

When an LSR receives an incoming packet, it examines the MPLS label carried in the packet's

header. This label serves as a key to perform a lookup in the LSR's label forwarding table. The

label forwarding table contains entries that map MPLS labels to the corresponding outgoing

interfaces or next-hop routers. Each entry in the table specifies the label value, the corresponding

outgoing interface or next-hop router, and any necessary instructions for label operations.

Based on the lookup result, the LSR determines the appropriate outgoing interface or next-hop

router for the packet. It then encapsulates the packet with the appropriate MPLS label for the

next hop and forwards it along the determined path. This label-based forwarding mechanism

21 | P a g e

allows LSRs to make fast and deterministic routing decisions, as they don't need to perform

complex IP lookups for each packet. Instead, they rely on the MPLS label for forwarding.

In some cases, LSRs may need to perform label operations, such as swapping or stacking labels.

Label swapping involves replacing the incoming MPLS label with a new label based on the label

forwarding table entry. This swapping allows LSRs to adjust the label based on the network's

requirements. Label stacking involves adding additional labels to the existing MPLS label stack.

This stacking occurs when a packet needs to traverse multiple MPLS domains or undergo

different label-based operations.

The label lookup and forwarding process continues at each LSR along the path until the packet

reaches the egress LER (Label Edge Router). The egress LER determines the exit point of the

packet based on the MPLS label. It removes the MPLS label and forwards the packet to the

appropriate destination based on the network layer header information.

 The following figure 2.8, 2.9, 2.10 illustrates how packets are labeled and forwarded in MPLS

backbone.

Figure 2.9: Label Insertion [41]

22 | P a g e

Figure 2.10: Label Swapping [41]

2.9.2 Benefits of MPLS networks

MPLS (Multiprotocol Label Switching) networks, when combined with SDN (Software-Defined

Networking) principles, offer additional benefits that leverage the flexibility and

programmability of SDN. Here are some key benefits of MPLS networks in an SDN

environment:

1. Simplified Network Management: SDN provides centralized control and

programmability, allowing network administrators to manage and configure

MPLS networks more efficiently. With SDN, the network management tasks,

such as provisioning MPLS tunnels, setting up MPLS labels, and traffic

engineering, can be automated through a centralized controller, reducing

complexity and operational overhead.

2. Dynamic Traffic Engineering: SDN-enabled MPLS networks can leverage the

real-time traffic and network state information provided by the SDN controller to

dynamically adjust traffic paths based on current network conditions. This

dynamic traffic engineering capability improves network efficiency, optimizes

resource utilization, and enables better load balancing and congestion avoidance.

23 | P a g e

3. Rapid Service Deployment: SDN allows for on-demand service provisioning

and rapid deployment of MPLS-based services. By programmatically configuring

MPLS tunnels and labels through the SDN controller, service providers can

quickly deliver new services or make changes to existing services without manual

configuration on individual network devices.

4. Service chaining and Network Function Virtualization (NFV): SDN combined

with MPLS enables service chaining and integration with NFV. Service chaining

refers to the ability to direct traffic through a series of virtualized network

functions (VNFs) in a specific order. MPLS can be used to establish the necessary

tunnels and labels to steer traffic through different VNFs, allowing for flexible

service chaining and efficient deployment of network services.

5. Enhanced Security and Privacy: SDN-based MPLS networks offer enhanced

security and privacy features. By leveraging the programmability of SDN,

network administrators can enforce security policies, implement access control,

and isolate traffic flows more effectively. MPLS-based VPNs in SDN

environments can provide secure and private communication between different

network segments or customer sites.

6. Seamless Integration with SDN-enabled Applications: SDN enables the

integration of applications and network services with the MPLS network. By

leveraging APIs and northbound interfaces provided by the SDN controller,

applications can directly interact with the MPLS network, enabling the

development of innovative services and applications that can control and utilize

MPLS functionalities.

7. Scalability: MPLS involves designing and implementing a network architecture

that can accommodate growth, handle increased traffic volumes, support a large

number of network elements, efficiently manage routing information, and provide

seamless provisioning of services. By ensuring scalability, MPLS networks can

adapt to evolving requirements, accommodate future growth, and deliver efficient

and reliable connectivity and services.

8. MPLS based traffic engineering architecture: MPLS networks is a framework

that enables network operators to optimize the utilization of network resources

24 | P a g e

and control the flow of traffic in a more efficient and controlled manner. It

involves the use of specialized mechanisms and protocols to establish explicit

paths for traffic, considering factors such as bandwidth, latency, and link

utilization. At the core of MPLS TE architecture is the concept of constraint-

based path computation, where algorithms calculate the optimal paths that satisfy

specified constraints. This is facilitated by a Traffic Engineering Database (TED)

that stores information about the network topology, link attributes, and available

resources. Signaling protocols like RSVP-TE are utilized to establish and

maintain explicit paths across the network, ensuring that network resources are

efficiently allocated and quality of service requirements are met. MPLS TE also

incorporates traffic splitting and load balancing techniques to distribute traffic

across multiple paths, optimizing resource utilization. Additionally, fast reroute

mechanisms minimize service disruptions by quickly switching traffic to backup

paths in case of link or node failures, enhancing network reliability and resilience.

By combining the benefits of MPLS networks with the programmability and centralized control

of SDN, organizations can achieve greater flexibility, scalability, and efficiency in their network

operations. However, it's important to plan and design the SDN-enabled MPLS network

carefully, considering factors such as traffic patterns, service requirements, and the capabilities

of the SDN controller and network devices to fully leverage the advantages of this integration.

2.10 Related works

For a comprehensive understanding of the subject and to provide effective solutions to the

identified problems, extensive research has been conducted by reviewing various sources. These

sources include published articles in journals, reference books, conference papers, and other

online resources. The purpose of this review is to gain insights into the concept of software-

defined networking (SDN) and its current state-of-the-art. The study extensively examines

previously published articles and scholarly works written by researchers and experts in the field.

By analyzing these research articles and literature, a thorough understanding of SDN and its

various aspects is achieved. The review covers topics related to the performance enhancement of

the RYU controller in the context of SDN. By exploring into the existing body of knowledge, the

study aims to gather valuable information and insights that can contribute to addressing the

identified challenges and improving the performance of the RYU controller. The review of

25 | P a g e

related works provides a foundation for the study, enabling the researchers to build upon the

existing research and identify potential gaps or areas that require further investigation.

MPLS introduces label-based packet forwarding, where packets are assigned labels and

forwarded based on these labels instead of performing complex IP lookups. This label-based

forwarding mechanism significantly improves packet forwarding efficiency, reducing the

processing overhead on routers and enhancing overall network performance. By streamlining the

forwarding process, MPLS enables faster and more efficient packet delivery, resulting in

improved network responsiveness and reduced latency. In the context of traditional networks, a

recent study conducted [35] focused on enhancing the quality of service (QoS) through the

implementation of segment routing multiprotocol label switching (SR-MPLS). This research

work in the area of traditional networks explored the utilization of SR-MPLS as a means to

improve QoS. The findings of the study demonstrated significant reductions in packet loss and

jitter, indicating the effectiveness of the proposed approach. Furthermore, the study identified the

importance of considering the influence of SR-MPLS on resource utilization, suggesting that

optimizing resource allocation can further enhance network performance and QoS.

According to [36] mentioned study proposed a solution to improve resource allocation and study

the interdependency between flows by utilizing both Software-Defined Networking (SDN) and

Multi-Protocol Label Switching (MPLS) technologies.

They introduced two resource re-allocator modules: the flow level resource re-allocator and the

LSP level resource re-allocator. These modules aim to optimize resource allocation and prevent

congestion in the network. The flow level resource re-allocator is responsible for managing

individual flows. It uses openflow switches to assign flows to existing MPLS network Label

Switched Paths (LSPs). When there is a risk of congestion due to overflow in a link, the flow

level resource re-allocator re-routes the flow to avoid congestion, based on a predefined

threshold. However, if the flow level resource re-allocator is unable to control congestion, the

LSP level resource re-allocator comes into play.

The proposed approach aims to improve resource utilization and overall throughput in the

network. However, the authors did not take into account the issue of packet loss during rerouting.

This means that there is a potential for packet loss when flows are re-routed to avoid congestion

26 | P a g e

and propagation delay of every link in the network is the same. The propagation delays can vary

depending on the physical characteristics of the links and the distance between nodes. Therefore,

considering all links to have the same propagation delay may not accurately represent the

network's behavior.

According to [36] the research approach, the authors combine Software-Defined Networking

(SDN) and Multiprotocol Label Switching (MPLS) to enhance resource allocation and

investigate flow interdependency. They introduce the "flow level resource re-allocator" as a key

component. This approach involves the use of OpenFlow switches to direct flows onto the

existing MPLS network Label Switched Paths (LSPs). The "flow level resource re-allocator" is

responsible for preventing congestion by dynamically rerouting flows when a link's utilization

exceeds a predefined threshold. This measure ensures efficient load balancing and prevents

individual links from becoming overloaded, ultimately leading to improved resource utilization

and higher throughput. By leveraging the advantages of both SDN and MPLS, their approach

explores how these technologies can optimize resource allocation in the network and study the

relationships between flows. Through the flow level resource re-allocator, they demonstrate how

SDN-based dynamic rerouting can complement the capabilities of MPLS, leading to a more

efficient and resilient network.

According to [6] this study, the core element of Software-Defined Networking (SDN) network,

the controller, is explored. With SDN being an alternative to traditional networks, various

controllers have been developed, including Beacon, Floodlight, RYU, OpenDaylight, ONOS,

NOX, and POX. Due to the diversity of SDN applications and the availability of different

controllers, choosing the most suitable controller has become an application-dependent process.

To address this, the study evaluates different SDN controllers based on their impact on SDN

Quality of Service (QoS) performance.

The evaluation focuses on comparing the performance of POX and RYU controllers using the

Mininet and Miniedit emulation tools. For the emulation, Mininet, iperf3, ping, and the POX and

RYU controllers were run on an emulation machine with specific specifications. The study

investigates the QoS performance in terms of key parameters, namely Throughput, Round-Trip

Time (RTT), and Jitter. These parameters are measured under different traffic scenarios

involving TCP, UDP, and ICMP traffic. By conducting evaluations for both POX and RYU

27 | P a g e

controllers, the study aims to gain insights into how these controllers impact QoS performance in

SDN networks. Through this investigation, the study can provide valuable information to help

users and network administrators make informed decisions when choosing the most suitable

controller for their specific SDN application and use case.

According to [33] furthermore, a single-threaded centralized controller can still outperform

multi-threaded controllers in simplified topologies, but multi-threaded controllers are preferred

for complicated conditions. Second, the physical topology of the controller has a direct impact on

various performance characteristics. This work has not gone in this path; however, topology-

specific controller placement experiments, particularly for specialized networks, might be

interesting future work. Third, quantifying the performance of specialized network controllers is

a significant difficulty.

According to [39] this researchers to address the interoperability challenge, it is essential to

establish standardized interfaces for communication between the SDN control plane and non-

SDN control plane components. This interface acts as a bridge, enabling effective

communication and coordination between traditional networking devices and the SDN

architecture. These interfaces play a vital role in facilitating the integration of SDN into existing

network infrastructures, allowing for a smooth migration and coexistence of SDN with legacy

networking systems.

By providing a standardized communication interface, SDN can work alongside non-SDN

control plane components, supporting gradual deployment and enhancing network flexibility.

Moreover, such interfaces enable the development of hybrid SDN deployments, where SDN and

traditional networking coexist, facilitating the transition and adoption of SDN at a pace suitable

for the organization's needs.

According [37], implemented MPLS within a Software-Defined Network (SDN) environment.

The main idea behind this implementation was to allow the controller to assign labels to packets

when requested by the edge switches. In this approach, both edge switches and core switches are

utilized. The edge switches forward packets to the core switches using labels assigned by the

controller. Additionally, the controller is responsible for installing the path on the core switches.

To store the labels, the author introduced the concept of label mapping. All labels assigned to a

particular packet are converted into a static label and stored in the MAC address table. The MAC

28 | P a g e

address table contains forwarding rules in the form of static Address Resolution Protocol (ARP)

entries. Each entry includes the label value and the destination port number on the switch.

2.11 Gap Analysis from Related Works

In this section from the related works discussed above the research.

Table 2.1: Gap Analysis of Related works

Author Title of the research Methods Conclusion Gap identified

Mohammad et

al [36]

SDN-based resources

allocation in MPLS

networks: a hybrid

approach

SDN-MPLS networks Improve the resource

utilization and throughput

Observing the loss of

packets when re-routing

traffic.

John, B[40] implementing MPLS

with Label Switching in

SDN

Enabling the

controller to assign

labels to the packets

when the edge

switches request for

labels

High hit rate to fill flow rules

in the entire topology

Offloads the controller

Askar, S., &

Keti, F [6]

Performance

Evaluation of Different

SDN Controllers

SDN uses mininet and

miniedit an emulated

tool

Improve throughput , and jitter Considering latency and

other metrics

E.Gamess et al

33]

SDN Controllers:

Benchmarking &

Performance

Evaluation

OpenFlow protocol,

SDN controllers

They propose Open Flow

Benchmarking Tools by

customizing the feature of

Cbench. They perform

performance evaluation on

OpenDaylight, Floodlight,

Ryu, OpenMUL controllers.

Other than OpenFlow

protocols has not been

addressed.

S.Mishra et

al.[39]

A Survey on Software

Defined Networking

with Multiple

Controllers

OpenFlow protocol,

SDN controllers

Survey research challenges in

the SDN network, identify the

best SDN controller and

improve the performance.

Interoperability in SDN

and non-SDN controllers

and performance

constraint in SDN

controllers.

29 | P a g e

Chapter Three

The Proposed Enhanced RYU controller using MPLS

3.1. Introduction

Chapter three the proposed of enhancement of Ryu controller using MPLS network. In this

chapter, the research methodology, proposed methods are described. In this proposed method

design the Ryu controller, being an SDN controller, controls the capabilities of the OpenFlow

protocol to manage and control the behavior of network devices. By utilizing OpenFlow features,

the Ryu controller can establish whole communication with both the Openvswitch and the legacy

network devices. To facilitate communication between the Ryu controller and the Openvswitch,

the OpenFlow protocol is active. OpenFlow acts as a conduit for the Ryu controller to send

instructions and commands to the Openvswitch or Openflow event controller. These instructions

encompass a range of actions, including packet forwarding, header modification, and MPLS

label assignment.

The MPLS devices are configured to support, which is a best technique used in packet-switched

networks. MPLS enables efficient packet routing by utilizing labels attached to packets. Through

the MPLS network configuration, the context of the MPLS network, the Ryu controller is

capable of setting up MPLS labels on the packets. These labels play an essential role in the label

switching mechanism, which enables efficient and accurate routing. By assigning MPLS labels,

the Ryu controller can direct packets through the network, ensuring optimal path selection and

efficient data transmission.

3.2 RYU Controller

The Ryu controller, developed and designed by NTT Company in Japan, is an open-source SDN

controller. It offers a range of tools and libraries that facilitate the easy and convenient of SDN

networks. The Ryu controller is compatible with various versions of the OpenFlow protocol,

including 1.0, 1.2, 1.3, and 1.4. It is implemented entirely in Python, which is a widely accepted

programming language used for communication between the control and forwarding layers (data

plane) in the networking domain. The Ryu controller is recognized as a component-based and

open-source software defined networking framework. It is developed in Python, providing a

flexible and extensible platform for managing network devices. It supports multiple southbound

30 | P a g e

protocols for device management, including OpenFlow, NETCONF (Network Configuration

Protocol), OFConf (OpenFlow Management and Configuration Protocol), and other protocols.

Additionally, the Ryu controller also supports Nicira extensions, enhancing its capabilities and

compatibility with various networking technologies and architectures.

 It is an open-source platform for managing networks at the software level, rather than the

traditional hardware-level control.

 Ryu provides a well-defined Application Programming Interface (API) between the

control layer and the data forwarding layer (data plane), allowing for the application of

custom control logic to the network.

3.3 Research Methodology

The methodology of this research, which aims to enhance the performance of the RYU controller

in SDN through the utilization of the MPLS (Multiprotocol Label Switching) method and in

addition to testing SDN infrastructure by emulating controlled workloads. It generates a

substantial volume of OpenFlow messages to scale how efficiently controllers and switches

handle diverse traffic patterns. Cbench tool allows network administrators and researchers to

assess the scalability, throughput, and latency of their SDN deployments under different traffic

conditions. To achieve the study's objectives and address the research questions, various aspects

of the existing RYU controller are examined. To investigate the networks of the MPLS in this

context, a comprehensive review of different methodologies is conducted. Relevant literature

sources such as books, journals, and conference papers are extensively researched. The aim is to

gather insights from the state of the art in SDN and related MPLS-based systems. These

methodologies are carefully evaluated and compared, considering two performance evaluation

metrics.

By adopting this research methodology, a thorough understanding of the existing RYU

controller's features is gained, enabling the identification of areas for improvement. These thesis

approach is then developed and implemented, facilitating performance analysis to assess its

impact.

31 | P a g e

3.4 Cbench Algorithm

To conduct throughput and latency tests on the controller [34]. For the Ryu controller with a

different number of switches (1, 2, 4, 8, 16, and 32 etc.) used to investigate the performance

evaluation of the controller.

cbench is a benchmarking tool for controllers

Algorithm:

 pretend to be n switches

 create “n “ openflow sessions to the controller

 if latency mode (default):

 for each session:

 1) send up a packet in

 2) wait for a matching flow mod to come back

 3) repeat

 4) count how many times #1-3 happen per sec

 else in throughtput mode (i.e., with '-t'):

 for each session:

 while buffer not full:

 queue packet_in's

 count flow_mod's as they come back

Table 3.1: Cbench Algorithm

3.5 Proposed Method

MPLS (Multiprotocol Label Switching) network can be used in an SDN (Software-Defined

Networking) environment as part of the data plane to provide traffic engineering and path

optimization. SDN separates the control plane from the data plane, allowing network

administrators to manage the network more easily and efficiently. In an SDN architecture, the

Ryu controller consists of a centralized controller that manages the networks. It can be used to

optimize traffic flows between different network nodes by assigning labels to packets that

identify the desired path through the network. By using MPLS network in the data plane,

network administrators can dynamically adjust traffic routing and prioritize traffic based on

32 | P a g e

performance requirements. The Ryu controller manages the Open flow Vswitch via the Open

Flow protocols. The packet initially arrives at the data plane, specifically the OpenFlow switch.

The packet is initially received by the data plane, more precisely the OpenFlow switch. It helps

us which path the packet either follow or not, this approach reduces unnecessary flows that

offload the controller and even the path. So, packets are processed and transferred via a pre-

configured path.

The packets are encapsulated whenever they are transferred from source to destination as shown

in Figure 3.1. The RYU controller takes on the responsibility of coordinating the entire system.

MPLS network is a technique used in networking that allows, it would be used to route traffic

through the network based on labels, rather than using traditional IP routing protocols. Overall,

this thesis should be scalable the controller with the help of MPLS network services.

Figure 3.1: General Methods using MPLS

Multiprotocol Label Switching (MPLS) is a protocol-independent method utilized in computer

networks to optimize the effectiveness and efficiency of packet forwarding. It has a mechanism

for fast and scalable forwarding of IP packets, as well as packets of open flow protocols, and

introduces the concept of labels, which are short identifiers assigned to packets or flows.

Control Plane
Ryu Controller

Switch “x”

 MPLS

Switch

South Bound Interface (Open Flow)

Data Plane

 Ingress

router

 Egress

router

PC PC

33 | P a g e

The internal components of OpenFlow comprise multiple flow tables and a group table,

responsible for packet lookups and forwarding operations. As shown the above Figure 3.1, the

data plane links with the Ryu controller via the OpenFlow protocol, is a secure communications

protocol used to protect data transmitted. It ensures that data is not accessed by unauthorized

users and provides encryption for data sent over the network and the Ryu controller manages all

networks. They are used to define the rules for how packets should be forwarded, as well as

specify which interfaces to use and which actions to take when a packet arrives at a router. All of

these components are related in that they are used to manage and optimize the performance of

Ryu controller.

MPLS networks are characterized as single-threaded systems, encompassing diverse

functionalities. They incorporate a receive queue for events, typically adhering to a First-In-First-

Out (FIFO) approach to maintain event order. Moreover, each application includes a dedicated

thread responsible for processing events from the queue. The primary loop of this thread

retrieves events from the receive queue and invokes the appropriate event handler. Consequently,

the event handler is executed within the context of the event-processing thread, operating in a

blocking manner, which means that no additional events for the Ryu network would processed

until control is relinquished.

34 | P a g e

Open Flow Event

Handler

Figure 3.2 Detail Flowchart Ryu Controller with MPLS network

Event Receiving

Queue

Event

Ryu Controller
Control Plane

Data Plane

Packet

End

Drop packet

Ingress

router

Egress

router

Event

Check the

priority Apply

MPLS

Higher

Wait

35 | P a g e

3.6 Building blocks of MPLS

Multiprotocol label switching contains the following components.

 An ingress router, also known as an entry router or edge router, is a network device

located at the edge of a network. It serves as the entry point for incoming traffic from external

networks into an internal network or network segment. The primary function of an ingress router

is to receive packets from external networks and forward them into the internal network based on

routing and forwarding decisions.

 An egress router is exit router or edge router, is a network device located at the edge of

a network. It serves as the exit point for outgoing traffic from an internal network or network

segment to external networks. The primary function of an egress router is to receive packets from

the internal network and forward them to the appropriate external destination based on routing

and forwarding decisions.

Configuring and managing the priority of MPLS within an ingress and egress router involves

emphasizing the efficient flow of traffic and handling of events in the network. The prioritization

process is crucial for proper event handling and control through the Ryu controller, and

managing the Event Receiving Queue to ensure whole operation.

In an MPLS network, the ingress router plays a fundamental role in packet classification and

assigning appropriate labels. MPLS determines the routing path based on labeled packets, the

ingress router needs to have robust configuration settings that identify traffic types and apply

corresponding Quality of Service (QoS) policies. These policies dictate how the router gives

packets, assigning priority levels based on defined parameters

Simultaneously, the egress router is responsible for forwarding labeled packets based on the

assigned labels and handling their priority according to the QoS policies defined by the ingress

router. It ensures that traffic flows smoothly through the network while maintaining the

prioritization set at the ingress point.

Ryu controller may command specific MPLS-enabled routers or switches to alter their label

operations, re-route traffic through different paths, or prioritize certain types of MPLS traffic.

These handlers receive notifications from the network elements, such as routers, regarding events

like changes in MPLS label information or packet prioritization alterations. To connect the event

36 | P a g e

handlers to the routers, the Ryu controller utilizes various protocols like OpenFlow to

communicate with the network devices and exchange information.

The Event Receiving Queue acts as a buffer for incoming events from the network, enabling the

Ryu controller to process and respond to these events efficiently. Prioritizing this queue ensures

that critical events are handled promptly and avoids potential bottlenecks in event processing

37 | P a g e

Chapter Four

Implementation, Result and Analysis

4.1 Setup of the simulation Environment

The simulation environment has been configured using a PC:

 Processor: Intel(R) Core™ i7-7500U CPU @2.90GHZ

 Installed RAM:8.0 GB

 System type: Windows 10 64-bit Operating System

 Oracle VM Virtual box: an open source hypervisor type 2 to run Ubuntu 20.04 LTS.

 Ubuntu 20.04 LTS

 Mininet: installed inside Ubuntu 20.04 LTS

 RYU: installed Ubuntu 20.04 LTS

4.2 Topology

In this research created a network topology containing MPLS core network integrated with SDN;

the core network contains five MPLS enabled router having the capability to process the packets

on the data planes. In this scenario, the controllers are responsible for bottom to up flows detail

below figure, whereas low level flows, such as data transmission among low level users is

handled by MPLS.

The GNS3 are installed on virtual machines Ubuntu 20.04 LTS, and in this work integrated them

with GNS3 to operate together. Mininet is used to create topologies integrated with GNS3, then

added the interfaces of routers with MPLS capability to openvswitches interfaces so as to

establish the communication between the MPLS and mininet topology. The interfaces of the

routers connected to openvswitches are managed by the openflow controller while they are

sending and receiving the packet.

38 | P a g e

Figure 4.1: GNS3 with Mininet Topology

NAT is enabled on both MPLS and openvswitch that interconnects two different branches. NAT

is used to ensure global communication across virtual devices and physical network. So, in this

work established the communication between virtual machines containing SDN controllers and

cisco routers in MPLS domain through NAT. CE1, CE2, PE1, PE2, and C inside GNS3 topology

represent routers, and the topology shows us the physical integration of MPLS with

openvswitches, whereas the topology inside mininet does not show physical integration of MPLS

with openflow networks.

4.3 Simulation Tools and Techniques

In this thesis, make use of different software solutions, Mininet, Cbench or iperf, and Wireshark,

to facilitate the development and building of the methodology.

4.3.1 Installation Ryu controller

To begin with ensure your system has python installed, by executing python on the terminal,

which would turn into the python shell, besides displaying the version.

39 | P a g e

 Sudo pip3 install ryu

 4.3.2 Installation and version

 Ryu-manager –version

Figure 4.2: Ryu-manager version

 sudo mn –version

Figure 4.3: Mininet Versions

 python3 –version

Figure 4.4: Python version

 ovs-vsctl –version

Figure 4.5: Open vSwitch and Database Schema Version

The RYU controller operates as a software component responsible for the administration of

network devices. Its core function revolves around the management and control of the network

and its corresponding devices through the utilization of the OpenFlow protocol. The performance

evaluation of the system is conducted using a testbed including a controller and a specific

number of ingress router, Core MPLS, and Egress router directly linked to the controller, as

depicted in Figure 4.1. The Ryu controller gets instantiated using a script called Ryu-manager. In

40 | P a g e

this work next add this to the python path variable, so that we don't need to give the complete

path to invoke the controller at all times: Now to test the installation and using four terminals. In

the first one, get the controller up and running:

1. In Terminal One

 Ryu-manager ryu.app.simple_switch_13. This starts the ryu controller with a

simple_switch script that pushes down rules to the router. In case of your own NetApp

(Ryu), replace simple_switch.py with your own .py file, with its complete path.

 In case you see an oslo.config error, try, as shown here:

 sudo pip install oslo.config

2. Wireshark run testing from h1 to h2

 sudo wireshark &

3. In terminal three

 sudo mn - - controller =remote, ip=127.0.0.1 - - mac - - switch= ovsk, protocols=

OpenFlows13 - - topo =linear,8

Figure 4.6: linear topology Installation

Figure 4.7: linear topology Installation 32 switches

41 | P a g e

4. In terminal four

Next upgrade Open vSwitch switches so that they are good to go with OpenFlow version 1.3

scripts that we may run later.

 sudo ovs-ofctl –O OpenFlow13 dump-flows s1

Figure 4.8: Open vSwitch connections

Mininet allows users to quickly create a realistic virtual network topology with hosts, router,

links, and controller’s .It provides a platform for rapid prototyping and testing of software-

defined networks (SDN). Mininet also provides a simple interface for creating and controlling

virtual networks, allowing users to test their network applications on a virtual network in

seconds, while also providing the option of connecting the virtual network to a physical network.

Mininet's powerful scripting capabilities allow users to easily customize their virtual networks,

making it an invaluable tool for testing, debugging, and developing SDN applications. It has also

supports a variety of programming languages, including Python, C, and Java, making it easy for

developers to quickly develop and test their applications.

4.3.2.1 Mininet Installation

 Use the command: sudo apt-get install mininet

 Pingall

 sudo apt-get install git

 Git clone https://github.com/mininet/mininet

 Sudo apt install python3-pip

 Sudo pip3 install mininet

 Sudo apt-get install python3-tk

https://github.com/mininet/mininet

42 | P a g e

 sudo apt-get install xterm

Figure 4.9: Mininet Installation

 Sudo python3 mininet/examples/miniedit.py

4.4 Message establishment between a switch and a controller

The switch uses the controller's IP address, which is typically the Loopback interface 127.0.0.1,

and the default port 6633 to establish a TCP connection with the OpenFlow controller. The

foundation for creating a successful OpenFlow communication channel is this TCP connection.

The controller can effectively manage the flow entries made by the switch and the behavior of

the entire network. Using Wireshark or comparable network analysis software might be helpful

for identifying and fixing problems. These tools make it easier to capture and examine the

particular packets exchanged during this process.

4.5 Messages exchanged between two hosts

In order to demonstrate host-to-host connectivity in an OpenFlow network, in this work used the

Ping tool to send ICMP packets from host h1 to host h2 and the other way around. In order to

find the MAC address of h2, h1 sends an ARP request to the switch, starting this procedure.

Because there is no predetermined path of action for this packet, the switch encapsulates it as a

PACKET-IN message and sends it to the controller.

In response, the controller creates a PACKETOUT message with an action directive inside that

tells the switch to broadcast the packet to every port but the one it was received through, and

then wait for a matching response. When h2 responds to this request, the switch relays this

response back to the controller under the controller's direction.

43 | P a g e

The controller sends a FLOW-MOD message to the switch after receiving the ARP response

from the switch. By creating a new flow entry with this message, the switch will immediately

transmit any upcoming ARP replies from h2 that are meant for h1 without the need for controller

action. When h1 sends an ICMP request and receives a response, a parallel process occurs. The

same thing happens when h2 sends an ARP request to find h1's MAC address, followed by an

ARP reply.

Figure 4.10: Wireshark testing from h1 to h2

4.6 Performance Measuring Metrics

To measure the performance of the network, in this research used only two metrics that have

significant effects on the overall performance of the network. Particularly in this study,

throughput, and latency are given strong focus since they are commonly used in the process of

measuring the overall performance of the network.

The performance of the Ryu controller was evaluated using the Cbench tool, which measures

throughput and latency by sending messages to the controller following the OpenFlow protocol

and monitoring the arrival of Flow_mod messages. The Cbench tool calculates throughput and

latency using the following methods

44 | P a g e

1. The throughput is determined by counting the total number of (Flow_mod) messages

transmitted by the controller and the latency Cbench measures the time taken by the

controller to process each message from the moment it is received until the

corresponding Flow_mod message is sent and or latency is determined by calculating

the average time taken for message processing across multiple iterations.

2. Cbench initiates the transmission of multiple packets to the controller (Packet_in) and

awaits the controller's response by sending (Flow_mod) messages. This process is

repeated several times, and subsequently, the latency value is calculated.

Table 4.1: Cbench Running Options

Option Description Default Values

-c/ --Controller Controller by his name "localhost"

-d/--debug enable debugging off

-l/--loops loops per test 16

-M/--mac-addresses unique source MAC addresses per

switch

 100000

-m/--ms-per test The test time length in ms 1000

-p/--port controller port number 6633

-s/--switches Number of switches

-t/--throughput test throughput instead of latency

-i/--connect-delay to

the controller

<int>delay between groups of

switches connecting

in ms

-I/--connect-group-

size

<int> number of switches in a

connection delay

-1-

-L/--learn-dst-macs

macs before testing

send gratuitious ARP replies to learn

destination (on)

 -on-

4.6.1 Throughput

Throughput refers to the amount of data that can be transmitted or processed within a given time

period. It represents the capacity or speed at which data can flow through the network. SDN

separates the control plane (which makes decisions about how the network should operate) from

the data plane (which forwards network traffic).

45 | P a g e

In terms of throughput, SDN can provide several benefits. The centralized control allows for

efficient resource allocation and traffic engineering, enabling better utilization of network

resources and improved performance. SDN controllers can dynamically adjust network paths,

prioritize traffic, and optimize routing decisions, which can enhance throughput. The throughput

is commonly expressed in units such as bits per second (bps), data packets per second (pps), or

data packets per time slot. A higher throughput is generally preferred in a communication system

as it signifies increased data transfer capacity.

 Throughput=
∑

 -------------------------- (Equation1)

The throughput can be defined as the ratio of the total number of packets transmitted during a

specific time period. It can be calculated by determining the difference between the packet

transmission time at the source node and the time of receipt at the destination node. This

calculation provides an estimation of the throughput in terms of the number of packets

successfully transmitted between the source and destination.

. /cbench -c localhost -p 6653 –s 1/2/4/8 –l 8 -t

4.6.1.1 Throughput Result

The integration of MPLS with openflow improved the throughput of the network. In this thesis,

enabled packet processing and monitoring on both the control plane and the data plane. In this

work enabled MPLS to operate with SDN controllers it can handle low level traffic flows by the

help of standalone switch, and the low level flows are directed to MPLS pipe lines instead of

being sent to SDN controller’s. So, this approach reduced the load of the controllers during

simultaneous transmission of packets among all classes of users, and then packet transmission

becomes faster and faster.

46 | P a g e

Table 4.2: Cbench Throughput result with and without MPLS network (Normal SDN)

Switch Total throughput

with MPLS

Network

Total

throughput

without MPLS

Network

Min with

MPLS

Max with

MPLS

Ave with

MPLS

Min

without

MPLS

Max

without

MPLS

Ave

without

MPLS

1 7,140 Flows Per

second

6,850 Flows

Per second

3234.71 4073.57 3838.07 2527.03 3012.47 2759.13

2 6,730 Flows Per

second

6,470 Flows

Per second

3411.17 3527.70 3481.57 2921.91 3468.63 3162.78

4 4,800 Flows Per

second

4,100 Flows

Per second

3704.10 3904.80 3804.50 3033.02 3181.70 3107.38

8 3,560 Flows Per

second

3,020 Flows

Per second

4365.10 4565.00 4465.30 3765.30 3965.90 3853.60

16 2,970 Flows Per

second

2,600 Flows

Per second

4352.17 4751.17 4451.17 3451.17 3651.17 3531.17

Figure 4.11: Cbench Throughput Result without MPLS one switch

47 | P a g e

Figure 4.12: Number of switch Tests with and without MPLS Ryu controller

Figure 4.13: Cbench Throughput Result with MPLS one switch

48 | P a g e

Figure 4.14: Throughput of proposed method with MPLS and normal SDN

Discussion

The above figure 5.10 illustrates if the number of switches are devices that allow network

packets to be forwarded between different network segments. In networking, flows per second

refers to the time it takes for a request to be processed and a response to be sent back. Both the

average throughput of With MPLS and without kept slightly decrease based on number of

switch, as shown in the above graph. The achieved maximum throughput of the proposed method

clearly showcases its exceptional performance, demonstrating that when connecting to a single

switch results in maximum 7,148 flows per second. And the Ryu controller without MPLS

network has the maximum throughput for a single switch 6,850 flows per second. The proposed

method, which includes MPLS (Multiprotocol Label Switching), demonstrates superior

performance compared to the normal SDN implementation, particularly in terms of throughput.

When evaluating network performance, throughput is a critical metric that measures the amount

of data transmitted successfully over the network within a given timeframe. MPLS, being a high-

49 | P a g e

performance protocol designed to efficiently route and forward data packets using labels,

significantly enhances the network's ability to handle data traffic and reduces the processing

overhead on switches and routers.

4.6.2 Latency

Latency refers to the amount of time it takes for the controller to process a network event or

execute an action in response to a request or event received from the switches in the network.

SDN controller can be measured by the time delay between the occurrence of a network event,

such as a packet arrival or a switch status change, and the controller's response to that event. It

includes the time taken for message parsing, flow table lookup, decision-making, and sending

instructions back to the switches. The general formula to calculate response time is expressed as

follow

. /cbench -c localhost -p 6653 –s 1/2/4/8 –l 4

4.6.2.1 Latency Result

The ability of handling packets on both the data plane and the control plane allowed network

operations to be quicker and quicker because the controllers are no more be overloaded, and low

level packets are handled by the switches by the help of MPLS. MPLS shares the load of the

controller when there is simultaneous packet transmission among the groups of users; not only

this, having one controller on the control plane and the controller are no longer be in a busy tone,

as a result, there is no more queuing delay.

Table 4.3 Latency total result with and without MPLS Network

Sw

itc

h

Total latency

with MPLS

Network

Total latency

without

MPLS

Network

Min

with

MPLS

Max

with

MPLS

Ave

with

MPLS

Min

WO

MPLS

Max

WO

MPLS

Ave WO

MPLS

1 1.123 per ms 1.189 per ms 0.853 1.107 0.977 1.000 1.290 1.153

2 1.300 per ms 1.325 per ms 0.843 0.843 0.843 1.281 1.325 1.300

4 1.320 per ms 1.368 per ms 0.811 0.811 0.811 1.356 1.452 1.411

8 1.320 per ms 1.534 per ms 0.811 0.811 0.811 1.459 1.562 1.519

16 1.320 per ms 1.642 per ms 0.811 0.811 0.811 1.538 1.701 1.608

50 | P a g e

Figure 4.15: Cbench Latency Result without MPLS one switch

Figure 4.16: Cbench Latency switch tests with and without MPLS result

51 | P a g e

Figure 4.17: Latency of Ryu controller with MPLS

Figure 4.18: Latency Result proposed method and Normal SDN

52 | P a g e

In this section, analyze the test results to compare the performance enhancements of the Ryu

controller with MPLS integration and normal SDN. As shown in the above figure, the Ryu

controller with MPLS demonstrated a latency of 1.123 ms, whereas the Ryu controller without

MPLS exhibited a latency of 1.189 ms, the latency results indicate that the Ryu controller with

MPLS had the highest latency among the tested result. According to [38] the experiment setup

cbench was used to emulate different number of switches (1, 2, 4, 8, 16, and 32) which connect

to the Ryu controller. The objective was to evaluate the network throughput and latency

performance evaluation. The result shows that the above figure that performance is increase

independent of the number of switches emulated. The researcher only one switch is greater

latency than proposed method but the rest of the switch has a better latency performance using

the Ryu controller with MPLS integration.

4.6.3 Jitter

Jitter refers to the variation in the delay of received packets in a network [33], it is a measure of

the variability in the time it takes for data packets to travel from the sender to the receiver.

Measured in milliseconds (ms) or microseconds (µs), representing the time variation in packet

arrival.

 Install iperf : Sudo apt-get install iperf

 Start the Ryu-Controller: ryu-manager ryu.app.simple_switch_13

 Create the topology : sudo mn - - controller =remote, ip=127.0.0.1 - - mac - -

switch= ovsk, protocols= OpenFlows13 - - topo =single,4

 Verify iperf Server: Inside the Mininet CLI, you should see the iperf server running

on the specified host

H2: iperf -s -u -p 6653 -l 1 - This command starts the iperf server

 Test with iperf Client: On another host in the Mininet environment, start an iperf

client to test:

H1: iperf -c <iperf_server_ip> -u -b 10M /20M/30M/40M/50M –t 15 -p 6653

53 | P a g e

Table 4.4: Jitter Running Options

Option Description

-s Acts as a server

-c Acts as a client

-u UDP test

-p Port number of the controller

-b Bandwidth test 10M /20M/30M/40M/50M

-i Iteration of testing results

6653 Port numbers of the RYU controller

Figure 4.19 : Jitter result h1 to h2

Figure 4.20: Jitter result h1 to h4

54 | P a g e

Table 4.5 Result Jitter Single Topology

Bandwidth

(Mbits/sec)

h 1 to h2

jitter (ms)

h1 to h3

jitter (ms)

h1 to h4

jitter (ms)

h2 to h3

jitter (ms)

h2 to h4

jitter (ms)

h3 to h4

jitter (ms)

10 0.017ms 0.013 ms 0.010 ms 0.016 ms 0.017 ms 0.013 ms

20 0.012ms 0.010 ms 0.009 ms 0.010ms 0.009 ms 0.012 ms

30 0.007ms 0.005 ms 0.007 ms 0.007ms 0.007 ms 0.005 ms

40 0.011ms 0.005 ms 0.004 ms 0.011ms 0.005 ms 0.005 ms

50 0.011ms 0.011 ms 0.009 ms 0.011ms 0.011 ms 0.008 ms

Figure 4.21: Jitter Result Bandwidth vs Jitter

55 | P a g e

Table 4.6: Shows the overall performance metrics used in this research study as compared to

previous works

Authors Protocol

used

Topol

ogy

Nature

of SDN

Simulat

ion

Tools

Evaluati

on Tools

Performance

Evaluation

Metrics

SDN

Controllers

used

 Alaa Taima

Albu-Salih
[36]

Openflo

w

Single,

linear

Pure

SDN

Mininet

Cbench Throughput and

latency

OpenFlow,

Ryu

controller

Lusani

Mamushiane,

Albert

Lysko,

Sabelo

Dlamini [23]

Openflo

w

Single,

linear

plus

MAC

testing

Pure

SDN

Mininet

Cbench Throughput and

latency

OpenFlow,

Ryu,

floodlight,

Opendaylight

, &

ONOScontro

ller

Shavan

Askar &

Faris Keti.[6]

Openflo

w

Single Pure

SDN

Mininet

iperf3

benchma

rk

Throughput &

RTT using

TCP,UDP,ICMP

traffic

OpenFlow,

Pox and Ryu

Controller

Bhardwaj, S.,

& Panda, S.

N. [9]

Openflo

w

single Pure

SDN

Mininet

Cbench Throughput,

Band width,

Round trip time

(RTT) and

Transmission

Open flow

Packets

OpenFlow,

Ryu

Controller

Islam, M. T.,

Islam, N., &

Refat, M.

Al.[18]

Openflo

w

Single Pure

SDN

Mininet

Cbench Throughput,

Round-Trip

Time(RTT),

Jitter and Packet

lose

Open Flow,

Ryu

controller

Proposed

Study

MPLS

and

Open

flow

Single,

linear[

2,4,16,

32]

Pure

SDN

GNS3

and

mininet

Cbench Throughput,

Jitter and latency

Open Flow,

Ryu

controller

In the first chapter of the research, a fundamental question has raised concerning the impact of

network size on data plane requests and its consequent effect on network performance as given

below questions

 How to investigate the effect of with and without MPLS network on throughput, and

latency using Ryu controller?

 How to compare the performance of Ryu controller without MPLS or normal SDN and

with MPLS network

The implementation of an MPLS network has a significant impact on both throughput and

latency. One of the most important advantages of MPLS is when the workload increases, the

56 | P a g e

network dynamically adjusts itself to handle the rising demand efficiently. This adaptability is

essential in maintaining a smooth flow of data and minimizing delays in processing.

Furthermore, MPLS helps to optimize the workload distribution across the network by updating

the workload based on the capacity of the queue size in the OpenFlow switches. When many

queues become congested, MPLS adjusts the size of data batches, which allows for more

effective management of network resources and improves potential bottlenecks.

The latency of an MPLS network based on the RYU controller is especially reduced due to its

ability to minimize the wait time for packets to access network resources. MPLS efficiently

directs data packets along predefined paths, reducing the time taken for packets to reach their

intended destinations. By prioritizing packet forwarding, MPLS effectively minimizes latency

and enhances the overall responsiveness of the network.

In terms of throughput, the implementation of MPLS in a RYU controller based network leads to

significant improvements. As the MPLS network efficiently handles data plane requests, there is

a clear increase in the system's ability to process multiple requests simultaneously. This

streamlined processing allows the RYU controller to handle job requests quickly and efficiently,

without the saturation of many queues. As a result, the throughput of the MPLS-based network is

improved, providing a more continuous and faster data transmission experience.

57 | P a g e

Chapter Five

Conclusions and Future Works

5.1 Conclusions

The utilization of MPLS networks for enhancing the performance of the Ryu controller offers

significant improvements in terms of throughput and latency. By using MPLS, the Ryu controller

can optimize network paths, allocate resources efficiently, and ensure reliable

MPLS implements on the data plane enables techniques using Ryu controller, such as traffic

shaping and load balancing. These techniques allow for increased throughput and decrease the

latency. By the label routing mechanism of MPLS enables the Ryu controller to make faster

routing decisions compared to without MPLS Ryu controller. Additionally, it has supports

explicit paths and fast rerouting, which further contribute to minimizing latency by quickly

redirecting traffic along alternative paths in case of link failures, and provides Quality of Service

(QoS) mechanisms that enable the Ryu controller to prioritize traffic based on different service

requirements. With MPLS, the Ryu controller can assign different labels to packets, allowing for

differentiated handling of traffic flows.

The controller is located between the infrastructure layer (Data plane), which is made up of

various network devices, and the application layer (Application plane). As a result, the controller

is in responsibility for controlling the network's resources using the OpenFlow protocol. Based

on the results illustrated in chapter four figure 4.12 or table 4.2 it can be concluded that the Ryu

controller integrated with the MPLS network achieved the highest throughput, reaching in one

switch 7,140 flows per second. In comparison, the throughput for the SDN controller varied only

based on the number of flows set up and reached in one switch 6,850 flows per second, when

connected without MPLS. Therefore, using the Ryu controller with MPLS resulted in an average

throughput enhancement of 4%.

Additionally, latency tests were performed on the controllers with different routers of connected

switches to observe the impact of increasing workload on switches, as shown the above figure

4.17 or table 4.3 in chapter four. The tests shown that the Ryu controller with MPLS had a

latency of 1.123 ms, while the Ryu controller without MPLS had a latency of 1.189 ms. In

58 | P a g e

general, the Ryu controller with MPLS exhibited an average latency improvement of 5%

compared to the Ryu controller without MPLS.

Consequently, the implementation of the Ryu controller with MPLS led to an average

enhancement of 4% in throughput and 5% reduction in latency. These findings indicate that the

proposed mechanism successfully improved throughput and reduced latency when compared to

without MPLS integration or normal SDN.

5.2 Future Works

This research successfully integrated and executed an MPLS networks to increase the performance

of the Ryu controller. Moreover, with this methodology significantly optimized the controller's

functionality. Futures works will aim at considering:

 We conducted our experiments on virtual machines, which limited the available resources

for running applications, impacting our experimental outcomes. Therefore, we suggest

transitioning to real machines.

 We have evaluated and analysis the performance metrics using latency and throughput,

we suggest evaluated and analysis the performance of the RYU controller using resource

utilization, fault tolerance, and bandwidth usage etc.

59 | P a g e

References

[1] minike kpovi, ., . . debayo, and . . sisanwo. Introduction to Software

Defined etworks (SD). ." International Journal of Applied Information Systems (2016):

10-14 .https://doi.org/10.5120/ijais2016451623

 [2] Al Bowarab, M. H., Zakaria, N. A., & Zainal Abidin, Z. (2019). Load balancing algorithms

in software defined network. International Journal of Recent Technology and Engineering,

7(6), 686–693.

[3] Ali, S., Alvi, M. K., Faizullah, S., Khan, M. A., Alshanqiti, A., & Khan, I. (2020). Detecting

DDoS attack on SDN Due to vulnerabilities in OpenFlow. 2019 International Conference

on Advances in the Emerging Computing Technologies, AECT 2019.

https://doi.org/10.1109/AECT47998.2020.9194211

[4] Alraawi, Abdulmaged Ali M., and Sami Abbas Nagar Adam. "Performance evaluation of

controller based sdn network over non-controller based network in data center network."

In 2020 International Conference on Computer, Control, Electrical, and Electronics

Engineering (ICCCEEE), pp. 1-4. IEEE, 2021

[5] A sadollahi, Saleh, Bhargavi Goswami, Ahmad Sohaib Raoufy, and Hedmilson Guimaraes

Jose Domingos. "Scalability of software defined network on floodlight controller using

OFNet." In 2017 International Conference on Electrical, Electronics, Communication,

Computer, and Optimization Techniques (ICEECCOT), pp. 1-5. IEEE, 2017.

[6] Askar, S., & Keti, F. (2021). Performance Evaluation of Different SDN Controllers: A

Review. 67–80. https://doi.org/10.5281/zenodo.4742771

[7] Belayeneh, T. (2021). Improving the performance of of software defined Networks in multi

metrics perspective , MSc Thesis. https://doi.org/10.1201/9780203970843-50

[8] Belgaum, M. R., Musa, S., lam, M. M., & Su’Ud, M. M. (2020). Systematic Review of

Load Balancing Techniques in Software-Defined Networking. IEEE Access, 8, 98612–

98636. https://doi.org/10.1109/ACCESS.2020.2995849

[9] Bhardwaj, S., & Panda, S. N. (2022). Performance Evaluation Using RYU SDN Controller

in Software-Defined Networking Environment. Wireless Personal Communications, 122(1),

701–723. https://doi.org/10.1007/s11277-021-08920-3

60 | P a g e

[10] Braun, W., & Menth, M. (2014). Software-Defined Networking Using OpenFlow:

Protocols, Applications and Architectural Design Choices. Future Internet, 6(2), 302–336.

https://doi.org/10.3390/fi6020302

[11] Capdevila-Werning, R. (2018). Open Networking Foundation. SDN Architecture, 1, 373–

380. https://doi.org/10.1002/9781119154242.ch42

[12] Chuang, P. J., & Chen, H. J. (2018). Efficient load balancing in software defined networks.

Proceedings of the 2017 IEEE International Conference on Information, Communication

and Engineering: Information and Innovation for Modern Technology, ICICE 2017, 12,

526–528. https://doi.org/10.1109/ICICE.2017.8478924

[13] Stallings, W. (2015). Foundations of modern networking: SDN, NFV, QoE, IoT, and Cloud.

Addison-Wesley Professional.

[14] Liyanage, M., Gurtov, A., & Ylianttila, M. (Eds.). (2015). Software defined mobile

networks (SDMN): beyond LTE network architecture. John Wiley & Sons.

[15] Erel, M., Teoman, E., Özçevik, Y., Seçinti, G., & Canberk, B. (2016). Scalability analysis

and flow admission control in mininet-based SDN environment. 2015 IEEE Conference on

Network Function Virtualization and Software Defined Network, NFV-SDN 2015, 18–19.

https://doi.org/10.1109/NFV-SDN.2015.7387396

[16] Erickson, D. (2013). The Beacon OpenFlow controller. HotSDN 2013 - Proceedings of the

2013 ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking, 13–18.

https://doi.org/10.1145/2491185.2491189

[17] Fernandez, C., & Muñoz, J. L. (2015). Software Defined Networking (SDN) with

OpenFlow 1.3, Open vSwitch and Ryu. 11–181.

https://upcommons.upc.edu/bitstream/handle/2117/ 77684/sdn-book.pdf.zip

[18] Islam, M. T., Islam, N., & Refat, M. Al. (2020). Node to Node Performance Evaluation

through RYU SDN Controller. Wireless Personal Communications, 112(1), 555–570.

https://doi.org/10.1007/s11277-020-07060-4

[19] Lara, A., Kolasani, A., & Ramamurthy, B. (2013). White-Energy-Cultural-Evolution.pdf. 1–

20.

[20] Latif, Z., Sharif, K., Li, F., Karim, M. M., Biswas, S., & Wang, Y. (2020). A comprehensive

survey of interface protocols for software defined networks. Journal of Network and

61 | P a g e

Computer Applications, 156, 102563. https://doi.org/10.1016/j.jnca.2020.102563

[21] Li, X., Mhamdi, L., & Hamdi, M. (2007). High-performance Packet Switching rchitectures.

In High-performance Packet Switching Architectures (Issue January 2016).

https://doi.org/10.1007/1-84628-274-8

[22] Li, Y., Guo, X., Pang, X., Peng, B., Li, X., & Zhang, P. (2020). Performance Analysis of

Floodlight and Ryu SDN Controllers under Mininet Simulator. 2020 IEEE/CIC

International Conference on Communications in China, ICCC Workshops 2020, 85–90.

https://doi.org/10.1109/ICCCWorkshops49972.2020.9209935

[23] Mamushiane, L., Lysko, A., & Dlamini, S. (2018). A comparative evaluation of the

performance of popular SDN controllers. IFIP Wireless Days, 2018-April, 54–59.

https://doi.org/10.1109/WD.2018.8361694

[24] Mitiku, K. (2022). Improving the Performance of Software-Defined Network Load Balancer

Using Open Flow Based Multi-Controller Topology.

[25] Mittal, S. (2018). Performance Evaluation of Openflow SDN Controllers. In Advances in

Intelligent Systems and Computing (Vol. 736). Springer International Publishing.

https://doi.org/10.1007/978-3-319-76348-4_87

[26] Nunes, B. A. A., Mendonca, M., Nguyen, X. N., Obraczka, K., & Turletti, T. (2014). A

survey of software-defined networking: Past, present, and future of programmable

networks. IEEE Communications Surveys and Tutorials, 16(3), 1617–1634.

https://doi.org/10.1109/SURV.2014.012214.00180

[27] Petros, B. (2019). Performance Enhancement of Floodlight Software Defined Networking

Controller using Workload Adaptive Packet Batching. MSc Thesis.

[28] Shah, S. A., Faiz, J., Farooq, M., Shafi, A., & Mehdi, S. A. (2013). An architectural

evaluation of SDN controllers. IEEE International Conference on Communications, 1,

3504–3508. https://doi.org/10.1109/ICC.2013.6655093

[29] Talavera, M. (2014). Load balancing control of a server network cluster. July.

[30] Xue, H., Kim, K. T., & Youn, H. Y. (2019). Dynamic load balancing of software-defined

networking based on genetic-ant colony optimization. Sensors (Switzerland), 19(2).

https://doi.org/10.3390/s19020311

62 | P a g e

[31] Zakia, U., & Ben Yedder, H. (2017). Dynamic load balancing in SDN-based data center

networks. 2017 8th IEEE Annual Information Technology, Electronics and Mobile

Communication Conference, IEMCON 2017, 10(03), 242–247.

[32] Zerifi, M., Ezzouhairi, A., & Boulaalam, A. (2020). Overview on SDN and NFV based

architectures for IoT environments: Challenges and solutions. 4th International Conference

on Intelligent Computing in Data Sciences, ICDS 2020.

https://doi.org/10.1109/ICDS50568.2020.9268779

[33] Zhu, Liehuang & Karim, Md Monjurul & Sharif, Kashif & Xu, Chang & Li, Fan & Du,

Xiaojiang & Guizani, Mohsen. (2020). SDN Controllers: A Comprehensive Analysis and

Performance Evaluation Study. ACM Computing Surveys. 53. 1-40. 10.1145/3421764.

[34] B. Heller. Cbench [Online]. Available:https://github.com/mininet/oflops/tree/master/cbench.

[Accessed: Jan. 5, 2019].

[35] Alemayehu, K. (2019, December). Analyzing Impact of Segment Routing MPLS on QoS

Addis Ababa University, Addis Ababa, Ethiopia.

[36] Mohammed, T. M., Behzad , A., Nader , M., & Luca , C. (2018). SDN-Based Resource

 Allocation in MPLS Networks: concurrency and computation practice and experience (pp.

1-11). 2018 John Wiley & Sons, Ltd.

[37] Bellessa, J. (2015). Implementing MPLS with Label Switching in Software-Defined

Networks University of Illinois, Urbana, Illinois, USA.

[38] Albu-Salih, A. T. (2022). Performance evaluation of ryu controller in software defined

networks. Journal of al-qadisiyah for computer science and mathematics, 14(1), Page-1.

[39] Zhang, Y., Cui, L., Wang, W., & Zhang, Y. (2017). A survey on software defined networking with

multiple controllers. Journal of Network and Computer Applications, 103, 101-118.

[40] John, B (2015). Implementing MPLS with Label Switching In Software-Defined Networks. Thesis

paper University of Illinois at Urbana-Champaign.

[41] Enno Rey (2016, June 1) MPLS and VPLS security [On-line].Available

https://docplayer.net/2887672-Mpls-and-vpls-security.html

[42] E., Systems, O., Edition, S., & Communications, B. D. (2011). Foundations of Modern networkin

SDN, NFV, QoE, IoT, and Cloud. In Network (Vol. 139, Issue 3). https://doi.org/10.1007/11935070

63 | P a g e

Appendix

Figure 1: Starting Web topology

Figure 2: Topology Web access Ryu controller

Figure 3: Starting Ryu Controller

from ryu.base import app_manager

from ryu.controller import ofp_event

from ryu.controller.handler import MAIN_DISPATCHER, set_ev_cls

from ryu.ofproto import ofproto_v1_3

from ryu.lib.packet import packet, ethernet, mpls

class MPLSHandler(app_manager.RyuApp):

64 | P a g e

 def __init__(self, *args, **kwargs):

 super(MPLSHandler, self).__init__(*args, **kwargs)

 self.waiting_queue = {

}

 @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)

 def packet_in_handler(self, ev):

 msg = ev.msg

 datapath = msg.datapath

 pkt = packet.Packet(msg.data)

 eth = pkt.get_protocol(ethernet.ethernet)

 if eth.ethertype == ethernet.ETH_TYPE_MPLS:

 mpls_pkt = pkt.get_protocol(mpls.mpls)

 if mpls_pkt:

 label = mpls_pkt.label

 self.handle_mpls_packet(label, pkt)

 def handle_mpls_packet(self, label, pkt):

 if self.waiting_queue:

 # Check if there are packets waiting

 waiting_label = next(iter(self.waiting_queue))

 if label1> waiting_label:

 # Forward label1 to the destination

 self.forward_packet(pkt, f"Forwarding label {label} to the destination")

 # Add label2 to waiting

 self.waiting_queue[label] = pkt

 return

 else:

 # Forward label2 to the destination

 self.forward_packet(self.waiting_queue[waiting_label], f"Forwarding label

{waiting_label} to the destination")

Clear waiting queue

 self.waiting_queue = {}

65 | P a g e

 self.forward_packet(pkt, f"No packets waiting. Forwarding label {label} to the

destination")

 def forward_packet(self, pkt, action):

 # This function simulates forwarding the packet

 print(action)

 # Implement the actual forwarding logic here

def main():

 app_manager.instantiate(MPLSHandler)

}

}

 MPLS network Configuration

====================================

P#show running-config

Building configuration...

Current configuration : 1787 bytes

!

version 12.4

service timestamps debug datetime msec

service timestamps log datetime msec

no service password-encryption

hostname P

!

boot-start-marker

boot-end-marker

!

!

no aaa new-model

memory-size iomem 5

no ip icmp rate-limit unreachable

ip cef

!

!

!

!

66 | P a g e

no ip domain lookup

!

!

!

!

!

!

ip tcp synwait-time 5

!

!

!

interface Loopback0

 ip address 3.3.3.3 255.255.255.255

!

interface FastEthernet0/0

 ip address 192.168.23.3 255.255.255.0

 duplex auto

 speed auto

 mpls ip

!

interface FastEthernet0/1

 ip address 192.168.34.3 255.255.255.0

 duplex auto

 speed auto

 mpls ip

!

interface FastEthernet1/0

!

interface FastEthernet1/1

 no switchport

 ip address 192.168.20.3 255.255.255.0

!

interface FastEthernet1/2

!

interface FastEthernet1/3

!

interface FastEthernet1/4

!

interface FastEthernet1/5

!

67 | P a g e

interface FastEthernet1/6

!

interface FastEthernet1/7

!

interface FastEthernet1/8

!

interface FastEthernet1/9

!

interface FastEthernet1/10

!

interface FastEthernet1/11

!

interface FastEthernet1/12

!

interface FastEthernet1/13

!

interface FastEthernet1/14

!

interface FastEthernet1/15

!

interface Vlan1

 no ip address

!

router ospf 1

 mpls ldp autoconfig

 log-adjacency-changes

 network 2.2.2.2 0.0.0.0 area 0

 network 3.3.3.3 0.0.0.0 area 0

 network 192.168.10.0 0.0.0.255 area 0

 network 192.168.11.0 0.0.0.255 area 0

 network 192.168.12.0 0.0.0.255 area 0

 network 192.168.23.0 0.0.0.255 area 0

 network 192.168.34.0 0.0.0.255 area 0

 network 192.168.45.0 0.0.0.255 area 0

!

!

!

no ip http server

no ip http secure-server

!

68 | P a g e

no cdp log mismatch duplex

!

!

!

control-plane

!

!

!

!

line con 0

 exec-timeout 0 0

 privilege level 15

 logging synchronous

line aux 0

 exec-timeout 0 0

 privilege level 15

 logging synchronous

line vty 0 4

 login

!

!

end

