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ABSTRACT  

Software Defined Networking (SDN) is a rapidly growing technology that offers open and 

flexible networking solutions through the management of virtual devices using a mininet 

network emulator. It simplifies network administration by centralizing control and separating the 

control plane from the data plane. One of the major research areas in SDN is performance 

optimization, which involves considering three parameters and their dependencies. The research 

gap by implementing using GNS3 and Mininet a performance enhancement of the Ryu controller 

mechanism using Multiprotocol Label Switching (MPLS). The study utilized the Mininet 

network emulator to create a network environment consisting of a virtual router and hosts 

controlled by the Ryu controller.  

The network system is followed by performance evaluation using the Cbench tool, which 

measures throughput, latency and jitter metrics. To effectively distribute network loads, MPLS 

used instead of a single controller. This thesis approach influenced MPLS networks to handle 

low-level packet flows, allowed for efficient traffic management. The evaluation results 

indicated that the integration of MPLS and load distribution using the Ryu controller led to 

significant improvements in network performance. Based on the findings obtained from the 

research conducted, it appears that integrating MPLS (Multi-Protocol Label Switching) with the 

Ryu controller in an SDN environment resulted in performance enhancements. Specifically, the 

average throughput was improved by 4% compared to without MPLS on the data plane; and the 

latency was reduced by 5%. Based on the findings of the thesis, it was determined that 

combining MPLS and SDN is an effective way to increase the overall performance of software-

defined networks compared to the normal SDN or without MPLS implementation. 

 

Keywords: Software Defined Networking (SDN), Open Flow, Ryu Controller, Multiprotocol 

Label Switching (MPLS), GNS3, Cbench, Throughput, Latency, Jitter. 



VI | P a g e  

 

Table of Contents 

 

DECLARATION .......................................................................................................................... III 

ACKNOWLEDGEMENTs........................................................................................................... IV 

ABSTRACT ................................................................................................................................... V 

List of Figures ............................................................................................................................ VIII 

List of Tables ................................................................................................................................ IX 

List of Abbreviations and Acronyms ............................................................................................. X 

Chapter One: Introduction .............................................................................................................. 1 

1.1 Background of the Study ....................................................................................................... 1 

1.2 Statement of the Problem ...................................................................................................... 2 

1.3 Objectives of the Study ......................................................................................................... 4 

1.3.1 General Objective ........................................................................................................... 4 

1.3.2 Specific Objectives ......................................................................................................... 4 

1.4 Scope of the Study................................................................................................................. 4 

1.5 Significance of the Study ...................................................................................................... 4 

1.6 Organization of the Thesis .................................................................................................... 5 

Chapter Two: Literature Review .................................................................................................... 6 

2.1 Introduction ........................................................................................................................... 6 

2.2 Overview of SDN Architecture ............................................................................................. 6 

2.2.1 SDN Northbound Interface ............................................................................................. 8 

2.2.2 SDN Southbound Interface ............................................................................................. 8 

2.3 Ryu Architecture ................................................................................................................... 9 

2.3.1Traditional Network Architecture ................................................................................. 10 

2.3.2 Limitations of Traditional Networks ............................................................................ 12 

2.4 Open Flow Protocol ............................................................................................................ 13 

2.5 Packet Processing Mechanism ............................................................................................ 15 

2.6 Taxonomy of Load Balancing Approaches ......................................................................... 15 

2.7 Load balancing in SDN ....................................................................................................... 17 

2.8 Types of load-balancing algorithms: Static versus Dynamic .............................................. 18 

2.9 MPLS Architecture ............................................................................................................. 19 



VII | P a g e  

 

2.9.1 MPLS Process using LSR............................................................................................. 20 

2.9.2 Benefits of MPLS networks ......................................................................................... 22 

2.10 Related works .................................................................................................................... 24 

2.11 Gap Analysis from Related Works.................................................................................... 28 

Chapter Three: The Proposed Enhanced RYU controller using MPLS ....................................... 29 

3.1. Introduction ........................................................................................................................ 29 

3.2 RYU Controller ................................................................................................................... 29 

3.3 Research Methodology ........................................................................................................ 30 

3.4 Cbench Algorithm ............................................................................................................... 31 

3.5 Proposed Method................................................................................................................. 31 

3.6 Building blocks of MPLS .................................................................................................... 35 

Chapter Four: Implementation, Result and Analysis .................................................................... 37 

4.1 Setup of the simulation Environment .................................................................................. 37 

4.2 Topology ............................................................................................................................. 37 

4.3 Simulation Tools and Techniques ....................................................................................... 38 

4.3.1 Installation Ryu controller ............................................................................................ 38 

4.3.2 Installation and version ................................................................................................. 39 

4.4 Message establishment between a switch and a controller ................................................. 42 

4.5 Messages exchanged between two hosts ............................................................................. 42 

4.6 Performance Measuring Metrics ......................................................................................... 43 

4.6.1 Throughput ................................................................................................................... 44 

4.6.2 Latency ......................................................................................................................... 49 

4.6.3 Jitter .............................................................................................................................. 52 

Chapter Five: Conclusions and Future Works .............................................................................. 57 

5.1 Conclusions ......................................................................................................................... 57 

5.2 Future Works ....................................................................................................................... 58 

References ..................................................................................................................................... 59 

Appendix ....................................................................................................................................... 63 

 

 



VIII | P a g e  

 

List of Figures 

Figure 2.1: The three layers in SDN architecture ........................................................................... 7 

Figure 2.2 : RYU SDN controller architecture ............................................................................. 10 

Figure 2.3 :.Legacy network architecture ..................................................................................... 11 

Figure 2.4 : OpenFlow table entries .............................................................................................. 13 

Figure 2.5: Open Flow architecture .............................................................................................. 14 

Figure 2.6: Packet flow in Open flow switch ............................................................................... 15 

Figure 2.7: Taxonomy of Load Balancing Approaches ................................................................ 17 

Figure 2.8: General MPLS Architecture [41] ............................................................................... 20 

Figure 2.9: Label Insertion [41] .................................................................................................... 21 

Figure 2.10: Label Swapping [41] ................................................................................................ 22 

Figure 3.1: General Methods using MPLS ................................................................................... 32 

Figure 3.2 Detail Flowchart Ryu Controller with MPLS network ............................................... 34 

Figure 4.1: GNS3 with Mininet Topology .................................................................................... 38 

Figure 4.2: Ryu-manager version ................................................................................................. 39 

Figure 4.3: Mininet Versions ........................................................................................................ 39 

Figure 4.4: Python version ............................................................................................................ 39 

Figure 4.5: Open vSwitch and Database Schema Version ........................................................... 39 

Figure 4.6: linear topology Installation ......................................................................................... 40 

Figure 4.7: linear topology Installation 32 switches ..................................................................... 40 

Figure 4.8: Open vSwitch connections ......................................................................................... 41 

Figure 4.9: Mininet Installation .................................................................................................... 42 

Figure 4.10: Wireshark testing from h1 to h2 ............................................................................... 43 

Figure 4.11: Cbench Throughput Result without MPLS one switch ............................................ 46 

Figure 4.12: Number of switch Tests with and without MPLS Ryu controller ............................ 47 

Figure 4.13: Cbench Throughput Result with MPLS one switch ................................................. 47 

Figure 4.14: Throughput of proposed method with MPLS and normal SDN .............................. 48 

Figure 4.15: Cbench Latency Result without MPLS one switch .................................................. 50 

Figure 4.16: Cbench Latency switch tests with and without MPLS result ................................... 50 

Figure 4.17: Latency of Ryu controller with MPLS ..................................................................... 51 

Figure 4.18: Latency Result proposed method and Normal SDN ................................................ 51 

Figure 4.19 : Jitter result h1 to h2 ................................................................................................. 53 

Figure 4.20: Jitter result h1 to h4 .................................................................................................. 53 

Figure 4.21: Jitter Result Bandwidth vs Jitter ............................................................................... 54 

 

  



IX | P a g e  

 

List of Tables 

Table 2.1: Gap Analysis of Related works ................................................................................... 28 

Table 3.1:  Cbench Algorithm ...................................................................................................... 31 

Table 4.1: Cbench Running Options ............................................................................................. 44 

Table 4.2: Cbench Throughput result with and without MPLS network (Normal SDN) ............. 46 

Table 4.3: Latency total result with and without MPLS Network ................................................ 49 

Table 4.4: Jitter Running Options ................................................................................................. 53 

Table 4.5: Result Jitter single topology ........................................................................................ 54 

Table 4.6: Shows the overall performance metrics used in this research study as compared to 

previous works .............................................................................................................................. 55 

 

 

 

 

 

 

  



X | P a g e  

 

List of Abbreviations and Acronyms 

SDN    Software Defining Network   

OF   Open Flow 

LB   Load Balancer 

CPU   Central Processing Unit 

PC   Personal Computer 

IP   Internet Protocol 

ODL    Open Day Light  

API   Application Programming Interface 

IoT   Internet of Things 

QoS   Quality of Service 

SDN   Software Defined Networking  

NFV    Network Function Virtualization  

ACLs    Access Lists  

ISP    Internet service providers  

MPLS   Multiprotocol Label Switching 

VPN   Virtual Private Network 

FEC   Forwarding Equivalence Classes 

LER   Label Edge Router 

LDP   Label Distribution Protocol 

RSVP-TE  Resource Reservation Protocol - Traffic Engineering 

LSR   Label Switch Router 

MPLS-TE  Multiprotocol Label Switching-traffic Engineering 

NFV   Network Function Virtualization 

TED   Traffic Engineering Database 

FIFO   First in first out 

ICMP   Internet Control Message Protocol   



XI | P a g e  

 

MAC   Media Access Control   

ARP   Address Resolution Protocol 

NAT   Network address Translation 

LTS   Long Term Support  

VM   Virtual Machine 

RAM   Random Access Memory 

LDP   Label Distribution Protocol 

LSR   Label switch router 

TTR   Time to Live 

 



1 | P a g e  

 

Chapter One 

Introduction 

1.1 Background of the Study 

Technology has changed our lifestyles, and web services, such as the internet, have extremely 

impacted various aspects of our lives, including business, entertainment, education, social 

networking, and communication. This remarkable advancement in computer technology has led 

to an increasing need for high speed, reliable, scalable, and rapid services. 

The rapid development of technology has completely transformed our way of life, and internet-

based services, like the World Wide Web, have become an essential part of our daily routine. 

These services provide to diverse aspects of our lives, encompassing areas such as e-commerce, 

relaxation, learning, socializing, and staying connected.  

The scope of the Internet has considerably outshined estimates due to its rapid development. The 

traditional Internet will, however, become more and more challenging to create due to the 

limitations of hardware capabilities and network communication protocol. Furthermore, 

upcoming and current network applications and services are easier. Therefore, it is necessary to 

address the old network shortages. The traditional network mostly consists of switches, routers, 

and other network infrastructure, which complicates network administration. The network users 

have higher expectations for the quality of network services as a result of the increase in network 

performance [22].  

Software-Defined Networking (SDN) is utilized to increase network programmability and 

modernize network administration. SDN represents a novel network model that enables the 

separation of control and data plane functionalities found in conventional networks, resulting in a 

more agile, adaptable, automated, and easily controlled architecture [19]. SDN networks have 

three layers: the infrastructure layer (Data Plane), the control layer (Control Plane), and the 

application layer (Management Plane). The control plane is a controller that acts as a central 

management entity [6]. 

Furthermore, the exponential growth of worldwide IP data traffic has placed considerable 

pressure on traditional networks. The performance of traffic flows, particularly in terms of 

throughput, has significantly diminished beyond a certain level of scalability, primarily due to 
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limitations in the existing physical topology. As a result, the significance of dynamic network 

management has escalated, as it enables the overall enhancement of network throughput without 

forcing any modifications to the physical infrastructure, ensuring effective network maintenance 

[15]. 

Software-defined networking (SDN) is a centralized network management technology that aims 

to minimize the network administration and policy enforcement burdens associated with 

traditional IP networking [4]. This approach revolves around the separation of network 

intelligence, which involves packet forwarding in the data plane, and centralizing it within a 

logical controller.  

The Open Flow for communication between separated data plane and control plain and Linux 

based operating system to build mininet are deployed. However, it's important to note that the 

OpenFlow protocol is just one example of a standard protocol used for this purpose, and there 

are other protocols as well [11], load balancing decisions. Load balancing either statically or 

dynamically [2]. 

 

There are numerous SDN Controllers, namely POX, Ryu, Trema, Open daylight (ODL), and 

Floodlight, etc. that were developed. Ryu follows the OpenFlow standard protocol, which allows 

it to interact with OpenFlow-enabled switches and devices. It supports various network 

applications and services, enabling developers to create custom network applications that can run 

on top of the Ryu controller. This flexibility makes Ryu a popular choice among researchers, 

network administrators, and developers in the SDN community. 

One of the key features of the Ryu controller is its ease of use and extensibility. It provides a 

comprehensive set of APIs and libraries that simplify the development of SDN applications.  The 

Ryu controller uses Open Flow for traffic flow arrangement through different data plane devices 

[21]. 

1.2 Statement of the Problem 

An advanced and radical approach to network administration is the concept of Software-Defined 

Networking (SDN) architecture. To deliver effective and reliable service to those who need it, 

the daily increasing load on the servers carried on by increased demand must be balanced [23]. 
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The performance of software defined networks is still being questioned, and it requires the hard 

work of researchers; it is one of the hot topics to be investigated. The problems of Static packet 

batching in RYU controller refers to a process where packets are grouped together into batches 

based on fixed criteria. This batching process is considered more complex. In static packet 

batching, packets are organized into fixed-size groups or according to specific rules, without 

considering the network conditions or traffic similarities in real-time [21]. However, during static 

batching, when new arrivals, such as incoming packets or tasks, are added to the switch, it 

increases the workload or processing load on the switch. To efficiently handle this workload, a 

batch processing approach is used, where a certain number of tasks or packets are processed 

together as a batch. 

If there is a large number of workload waiting to be processed, the schedule will allocate more 

time for processing in order to accommodate the higher workload. This indicates high latency 

mode, which means that many packets will have to wait for access to the resource. In SDN 

(Software-Defined Networking), switches do not directly process incoming packets. Instead, 

they examine the incoming packets to find a match in their forwarding table. If a match is found, 

the switch can make a forwarding decision based on the table entry. If no match is found in the 

forwarding table, the packet is routed to the controller for further processing. In this context, the 

controller acts as the operating system of the SDN, responsible for making decisions about 

packet forwarding or dropping. 

Several researchers have proposed many techniques to improve SDN performance by describing 

their target areas, such as: According to [9] has worked on Performance Evaluation of Ryu 

Controller in Software Defined Networks to evaluate the performance of the Ryu controller in 

terms of latency and throughput. Cbench is used for measuring throughput and latency of this 

controller but this work is different from this research because to increase the performance of the 

Ryu controller in this work used MPLS on data plane on the top of Cbench. 

According to [6] in this research, a comparative evaluation of the performance of popular SDN 

controllers has evaluated the performance of popular open source SDN (Software-Defined 

Networking) controllers, including ONOS, Ryu, Floodlight, and Open Daylight. The evaluation 

focuses on measuring latency and throughput to understand the performance characteristics of 

these controllers. Additionally, they provided a feature-based comparison of the controllers to aid 
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in decision-making when selecting a controller for specific network requirements.  This work 

attempts to enhance the performance of the Ryu controller by using MPLS (Multiprotocol Label 

Switching) on the data plane, in addition to use cbench algorithms to evaluating, comparing, and 

optimizing the performance of SDN controllers by generating controlled simulated traffic for 

difficult testing and analysis. 

Hence, this work attempts to answer the following research questions:  

 How to enhance throughput of the network in Ryu controller SDN?  

 How to decrease latency of the network in Ryu controller SDN? 

1.3 Objectives of the Study 

1.3.1 General Objective 
 

The general objective of this research is to enhance throughput and latency of the RYU 

controller based software-defined networking using MPLS. 

1.3.2 Specific Objectives 
 

To meet the general objective of the study, the following specific objectives have been identified. 

 To investigate the effect of throughput and latency modes with MPLS network and 

without MPLS network (normal SDN). 

 To implement MPLS network functionality into the RYU controller.  

 To compare the performance of Ryu controller with and without MPLS network. 

1.4 Scope of the Study 

The purpose of this study is to analyze network performance metrics throughput performance 

tests and latency performance tests on Ryu controller SDN using MPLS. Since it is beyond the 

scope of the research work resource utilization, fault tolerance, connectivity, and bandwidth 

usage would not be included or addressed as part of this research.  

1.5 Significance of the Study 

Gg 

This research helps various network service providers and load balancing companies to achieve 

their goal of updating their data centers. This paper should be important in several positions: For 

instance; 
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 Network researchers, Data science and Researchers. 

 Network engineers, and Network administrators who are interested in other areas of 

the field, it is a good resource to know the level of software and the gaps, and the 

future. 

 Later work; opens the way for further investigation and improvement using a variety of 

approaches. This study technique has a significant impact on the performance of software-

defined networks, and significantly improves throughput usage across the network and solves 

performance problems by increasing performance issues. 

1.6 Organization of the Thesis 

The rest part of this thesis is organized as follows: Chapter two presents the literature review of the 

SDN architectures, presents open flow protocols, different load balancing mechanism using the 

data center on MPLS and related works on SDN. Chapter three presents the proposed methods of 

the Ryu controller using MPLS network, and research methodology. Chapter four presents 

implementation, result and analysis of the research, and topology of the general network. Finally, 

conclusion and future works is discussed in chapter five. 
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Chapter Two 

Literature Review  

 

2.1 Introduction 

Software-Defined Networking (SDN) introduces a model shift from traditional networks, 

bringing forth a range of challenges that need to be addressed, including data forwarding, load 

balancing, and energy management. In SDN, flow tables play a central role, with each entry 

containing fields such as the header, counter, and action. Upon packet arrival at a switch, a 

lookup operation is performed to match the flow entries. Network flow headers and counters are 

updated when modifications occur, such as load balancing or re-routing. By leveraging preset 

rules and header information, the switch processes the data flow, effectively controlling network 

traffic. The flow control mechanism relies on algorithms employed for load balancing, as 

dynamic load balancing holds significant importance in SDN's centralized controller [30].  

A number of SDN load-balancing solutions have recently been introduced, with a focus on three 

specific aspects: data plane, control plane, and application plane load-balancing techniques [9]. 

2.2 Overview of SDN Architecture 

SDN has significantly change how to build networks, the way managing the networks, and the 

way running our networks. A centralized controller in SDN enables independent management of 

the network's data plane, resulting in reduced complexity compared to traditional networks. SDN 

has mainly three parts these are [32]. 

 The control plane: A software-defined network's control plane is its central component, 

where controllers select where to forward packets. To decide whether to forward or drop 

the packet, it applies a set of flow rules. To guarantee the successful transmission of the 

data throughout the network, the controllers are charge of determining the path between 

data-transmitting nodes. The controllers consult the flow tables and/or group tables of 

openvswitches to determine the path. In conventional networks, the control plane's is to 

take routing decisions or to choose the optimum path for traffic routing. 

 Data plane/Forwarding plane: Is a component of the software-defined network where 

actual user data transmission takes place.  The set of components that make up the data 

plane, also known as the forwarding plane, are frequently referred to as switches. The 
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forwarding plane is in charge of carrying out the decisions made by the controllers, such 

as packet forwarding. Consequently, the data plane has a number of pathways for sending 

packets. The controller creates paths using group tables or flow tables. Multiple nodes are 

connected in traditional networks using conventional routers and switches.  

 Application plane: By connecting with the controllers using an API known as the 

northbound interface, applications can be developed and installed /deployed on top of the 

controllers to manipulate network activities. These applications are frequently user-

specific, multipurpose, and open source, and they operate without consideration for 

physical network infrastructure. Through the SDN's northbound interface, applications 

communicate with controllers to carry out certain tasks. Through northbound interfaces, 

the programs frequently access network resources to carry out particular tasks. The 

following below figure illustrates the components/general architecture of software-

defined networks. 

 

Figure 2.1: The three layers in SDN architecture 

Unlike the southbound interface, such as Open Flow, there is no commonly used communication 

protocol in the northbound interface [13] so, each vendor should have an own protocol to set up 

and simplify the communication of applications with the control plane. These applications could 

not be interoperable, which could lead to a complicated problem. Using a southbound API, the 

control plane and data plane are able to communicate with one another [9]. 
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2.2.1 SDN Northbound Interface 
 

The northbound interface is an API that enables software to be placed at the top of the controller, 

or what refer to as the application plane, and it allows that software to function without regard 

for the unique characteristics and situations of the network devices themselves [26]. This level of 

abstraction has several significant benefits, one of which is that network applications can operate 

the network service independently of the underlying physical network. The services enable the 

hosting of devices in a manner that allows the hosts to remain unaware that the network 

resources they utilize are virtual and not the original physical resources they were designed. 

There is no currently accepted standard for the interaction of the controller with applications. So, 

each brand of controller could have unique methods to ensure communication with applications. 

It is very difficult to manage applications having conflicting functions even though controllers 

provide very low-level abstraction so, there is a need for a high-level programming language that 

translates high-level strategies into low-level ones [13]. 

2.2.2 SDN Southbound Interface 
 

The southbound interface facilitates communication between the control plane and the data 

plane. It is the protocol used for communication between controllers and data plane/open 

vswitches devices. Southbound interfaces come in a variety of brands, including OVSDB, open 

Flow, and others, although OpenFlow is the most popular [25] [20]. Commonly used 

openvswitches are data plane devices that connect with the control plane using the openFlow 

protocol, and the Ryu controllers act on behalf of flow entries that are stored in the 

openvswitches flow tables. One or more controllers may be present on the control plane, and 

they may be on-time configure devices, establish paths, or keep an eye on the entire network 

from a distance. Business apps operate specific tasks at the top of the control plane by interacting 

with the controllers via the northbound interface. There are four ideologies of SDN networks 

such as: 

1. The networking and IP routing flexible – Instead of spending many days performing 

manual routing to enable reachability, SDN does this in a better way, ultimately saving a 

lot of time. SDN flexibility enable packets or traffic to reach their destination. It does this 

with the help of software and dynamic algorithm with full flexibility and agility 
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2. Decoupling control and data plane- In traditional networks, the router serves as both 

the brain and the data forwarding layer. As a component of SDN, the centralized 

controller determines traffic routing. Only the payload is transmitted over the data plane 

to the actual destination.  

3. Offloading intelligence to a centralized controller and obtaining a centralized view 

of resources- SDN offers a centralized view of substantially more effective resource 

allocation and continues to monitor network services 

4.  Software-defined network, centrally administered, Flexible for varied demands- 

Network control becomes directly programmable with centralized control planes, and 

applications and network services are shielded from the underlying 

infrastructure.  Network operators can enable a variety of applications thanks to SDN, 

including dynamic bandwidth provisioning, automatic scale-out and scale-in etc. 

2.3 Ryu Architecture  

The Ryu SDN controller presents an architecture based on components, serving as a framework. 

In addition to the OpenFlow protocol, it also provides compatibility with Netconf, OF-config etc.  

[18]. SDN Controller architecture encompasses three layers. The uppermost layer encompasses 

business and network logic applications, referred to as the application layer. The middle layer 

comprises network services, known as the control layer or SDN framework. The lowest layer 

encompasses physical and virtual devices, constituting the infrastructure layer. The middle layer 

hosts both northbound APIs and southbound APIs. The controller provides open northbound 

APIs accessible to applications, including Restful administration. 

 RYU works OpenFlow to establish communication with the forwarding plane, containing 

switches and routers, aiming to alter how traffic flows are managed. Various OpenFlow 

switches, including OpenvSwitch and products from Centec, Hewlett Packard, IBM, and NEC, 

have been tested and certified to work with it [18].  
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Figure 2.2 : RYU SDN controller architecture 

2.3.1Traditional Network Architecture 
 

According to the traditional network architecture, a network is made to facilitate communication 

between end hosts and a network node's combined control and data planes. The control plane is 

responsible for configuring the network nodes and programming the data flow routes. It is the 

component of a network architecture that handles tasks related to network management. The 

control plane uses protocols and algorithms to establish and maintain the overall network 

structure and behavior. Once the paths have been determined and configured by the control 

plane, the control information is "pushed down" to the data plane. "Pushed down" means that the 

control information is communicated or transmitted to the data plane, which consists of the 

network devices' hardware and software responsible for data forwarding. 

The control information received by the data plane includes instructions on how to handle and 

forward data packets based on the established paths. The data plane then performs data 
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forwarding at the hardware level according to this control information. This involves the actual 

movement of data packets through the network, ensuring they are directed along the intended 

routes as defined by the control plane. Because there is no control plane abstraction of the overall 

infrastructure, the traditional network system uses a distributed way to administer the network. 

As a result, networks are now difficult to configure and administer when something goes wrong. 

The traditional networks system's drawbacks include manual configuration, debugging, security, 

scalability, and mobility [18].  

 

As below Figure 2.3 shows, the traditional network pairs data plane and control plane, making it 

challenging to mechanize the network. Traditional network infrastructures use physical devices 

or equipment to implement networking and network devices such as switches, routers, firewalls, 

and intrusion prevention systems, etc. Network topology determines networking flows, and each 

network device locally decides how to best move a packet to its destination. But as virtualized 

servers and network architectures based in the cloud have expanded, the capacity to rapidly 

install new applications without requiring significant network upgrades has become a 

prerequisite. The needs of today's businesses, carriers, and end users could be satisfied by these 

kinds of network topologies. A new network design called Software Defined Networking (SDN) 

decouples network control from the network infrastructure, modernizing networking architecture 

[15]. 

 

 

Figure 2.3 :.Legacy network architecture  
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2.3.2 Limitations of Traditional Networks  
 

Traditional network architecture makes it impossible to satisfy current market demands. The 

traditional network was not designed in a manner that aligns with the current needs and 

expectations of end-users, service providers, and enterprises some of the drawbacks are below 

[15]. 

 Management Complexity: The computer network technologies are historically relied on 

a suite of routing protocols methodically designed to establish dependable connections 

between hosts spanning vast distances, ensuring high speeds across diverse network 

topologies. However, to address modern industry demands such as enhanced availability, 

security, and expanded connectivity, protocols have experienced various design 

approaches resulting in different separation, where each protocol provides to solving 

specific problems without implementing main concept abstractions. Unfortunately, this 

approach has led to a prominent difficulty encountered by network administrators 

Network administrators often maintain a static network design to minimize or prevent service 

downtime resulting from changes. However, this static nature restricts the dynamic capabilities 

of server virtualization and subsequently increases the number of hosts requiring connectivity. 

Before the advent of virtualization services, a single server would establish connections with 

specific clients. Today, virtualization enables applications to be distributed across multiple 

virtual machines, allowing for increased scalability and flexibility. Additionally, virtual 

machines often need to migrate to achieve balanced workloads 

1. Policy configuration challenges: In order to maintain an enterprise network policy, 

network managers may be necessary to setup a large number of routers and switches that 

can support the network. When using virtualization, it typically takes up to hours or if not 

days to add a virtual machine to the network since the network administrator needs to 

configure and adjust Access Lists (ACLs) for the overall infrastructure.  

2. Rapid growth demands: Due to the rapid growth requirements of data centers, the 

network must expand at an equivalent bound , and Device vendor dependability 
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2.4 Open Flow Protocol 

The foundation of the whole SDN topology is the open Flow protocol.  

OpenFlow's flexibility allows researchers to achieve great performance with little financial 

outlay and the ability to handle manufacturers’ requirements for closed platforms and as well as 

the ability to handle manufacturers’ requirements for closed platforms and to separate 

experimental data from actual data [1].  

The interaction between the controller and the OpenFlow channel is facilitated through the 

utilization of the OpenFlow protocol. The OpenFlow protocols leverages to configure flows and 

amass network traffic information from switches. An essential element of an OpenFlow switch is 

the flow table, which encompasses specific instructions for each flow entry and provides 

guidance to the switch on how to manage incoming flows. The Flow table also connects the 

switch to a remote controller over a secure channel. The switch and controller can exchange 

packets and commands due to a flow table [10]. 

 

Figure 2.4 : OpenFlow table entries  

A common interface for configuring the data plane switches is made up of OpenFlow protocol. 

Open Flow architecture is composed of three fundamental parts.  The data plane is housed within 

OpenFlow switches, whereas the control plane consists of OpenFlow controllers. The switches 

and controllers are interconnected through secure control channels, forming the connection 

between the switches and the control plane [16]. 

 



14 | P a g e  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: Open Flow architecture 

An OpenFlow switch, functioning as a data plane device, forwards packets based on its flow 

table that encompasses a set of OpenFlow entries comprising match fields, counters, and 

instructions. These entries, known as flow rules, govern the handling of packets within the 

switch. Match fields in a flow table entry define the characteristics used to identify relevant 

packets. Counters in the flow table primarily collect statistics on flows, including packet count, 

byte count, and flow duration. A flow table entry header fields are responsible for evaluating 

various protocols according to the OpenFlow definition. Finally, OpenFlow actions, such as 

forwarding, dropping, and modifying field values, dictate the processing of packets belonging to 

specific flows [5].  

The controller, a fundamental component of OpenFlow, assumes the crucial role of overseeing 

and regulating the flow tables within the switches. The controller is accountable for performing 

various operations, including the addition, alteration, and deletion of flow entries [10]. The 

controller also has the ability to adapt the forwarding conduct of switches. Furthermore, 

OpenFlow establishes a particular communication protocol that empowers the controller to 

command the switches via a secure control channel. 
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2.5 Packet Processing Mechanism 

An OpenFlow switch consists of one or more flow tables, each with unique arrangements of 

fields, such as match fields, action fields, and counters. The switch is responsible for processing 

packets once each one has been compared to its corresponding flow table. The action for that 

entry is applied to the packet if a flow entry and a packet header match. This suggests that 

sending a packet to a certain port may be part of the action. If no match is identified, transmit a 

packet IN message to the controller or send it through a secure communication channel [3]. The 

counters are reserved for gathering flow-related data. They keep track of the number of packets, 

bytes, and flow times that were received. A switch analyzes the header field of each packet it 

receives and matches with the flow table's rules  

 

Figure 2.6: Packet flow in Open flow switch 

2.6 Taxonomy of Load Balancing Approaches 

Load balancing also referred to as server farm is the process of effectively distributing incoming 

network traffic among a collection of backend servers. 

Today's high traffic websites must quickly and reliably respond to hundreds of thousands, of 

concurrent user or client requests for the appropriate text, photos, videos, or application data. 

Modern computing best practice typically requires deploying more servers in order to cost-

effectively scale to handle those high loads. 

These are some commonly used load-balancing methodologies in distributed computing systems. 

Each methodology has its advantages and trade-offs, and the selection depends on factors such as 
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system architecture, workload characteristics, and performance requirements. In order to 

improve resource efficiency and request response times, load balancing reassigns the entire load 

to each individual server in the cluster. This method also removes the problem where Addressing 

load imbalance is crucial to ensure optimal resource utilization and prevent overloaded servers 

from experiencing performance degradation or failure. Load-balancing algorithms and 

techniques are employed to distribute the workload evenly and alleviate the load imbalance. 

These techniques aim to dynamically adjust the workload distribution based on factors such as 

server capacity, current load, and system performance metrics. By mitigating load imbalance, 

organizations can achieve improved system performance, enhanced scalability, and better 

utilization of available resources. 

To effectively load balance client requests among server pools, a variety of techniques can be 

utilized. The algorithm selected will depend on the kind of service or application being provided, 

the network and service state at the time of requests, and the type of service or application. 

Which approach is employed frequently depends on the volume of requests currently being 

processed by the load balancers. These benefits demonstrate the importance of server load 

balancing in achieving optimal performance, high availability, and efficient resource utilization 

in distributed systems. Various load balancing algorithms, such as round robin, weighted round 

robin, least load, ratio, priority, and predictive algorithms, contribute to realizing these 

advantages 

 High availability: Server load balancing helps increase the overall availability of the 

system by distributing incoming traffic across multiple nodes. If one node experiences 

issues or becomes overwhelmed, other nodes can handle the traffic, ensuring that the 

application or service remains accessible. 

 Fault tolerance: Load balancing enhances the fault tolerance of a system by providing 

redundancy. If a server fails or becomes overloaded, load balancers can automatically 

redirect traffic to other available servers, minimizing service disruptions. 

 Resilience: Load balancing contributes to system resilience by distributing the workload 

among multiple servers. This allows the system to withstand sudden increases in traffic or 

unexpected spikes without being overwhelmed. 
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 Scalability: Load balancing enables the system to handle increased traffic by distributing 

it across multiple servers. This scalability helps ensure that the application or service can 

accommodate growing user demands without compromising performance or availability 

[42]. 

 

Figure 2.7: Taxonomy of Load Balancing Approaches  

2.7 Load balancing in SDN 

Software-defined networks (SDN) framework provides numerous benefits over traditional 

networks, including the effectiveness and convenience of network management and the 

application of security standards. The limitations of traditional networks, such as their capacity 

to provide end-to-end quality of service and efficient load balancing, are overcome by SDN. 

With increasing access and data traffic, the network's processing power should rise accordingly. 

It is essentially expensive and a waste of resources to attempt to solve this issue by upgrading or 

replacing the current hardware. With the help of load balancing, the server's processing power 

can be increased while the time it takes to respond to user requests is decreased by distributing a 

large volume of concurrent admission or data movement among numerous computing devices. 
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Improving QoS metrics: The main goal of load balancing in guaranteeing complete Quality of 

Service (QoS) for SDN networks and improving system reliability and overall performance 

through the prevention of excessive device delay, performance optimization, and response time 

reduction, the QoS strives to improve user experience. 

1. Optimize the use of resources:  This is one of the main objectives of load balancing 

since efficient use of resource is essential for the effectiveness of the SDN load balancing 

architecture. As a result, there is a limitation to how much network resources like links, 

bandwidth, processors, and memory can be used. The most effective use of resources for 

load balancing is ensured by an appropriate resource provision algorithm. 

2. Reduce transmission latency: The amount of time it takes the host switch to transmit 

data is referred to as transmission latency. This is dependent on a number of variables, 

including the switch's efficiency, the size of the data packets, and whether or not the 

transmission queue is backed up. Transmission latency serves as both a sign of network 

congestion and, in a sense, a measure of switch load. As a result, the SDN controller must 

record both the number of bytes delivered within a given time period and the 

transmission rate. 

3. Avoiding bottlenecks: In the SDN network environment, load balancing techniques are 

essential to distribute the load correspondingly among several routers and controllers so 

that no router or controller becomes loaded. By making optimum use of the resources that 

are already available, proper load balancing can lower resource use. It also enforces 

failover, permits scaling, avoids bottlenecks, and speeds up response time.  

4. Increase throughput: A high-performance network should have high throughput, which 

is only possible if the workload and resources are distributed evenly across the nodes. 

This is the volume of data that was successfully moved from one location to another over 

a protracted period of time. 

2.8 Types of load-balancing algorithms: Static versus Dynamic 

Static load balancing techniques only take into account data on the typical system behavior. 

Static load balancing algorithms ignore the condition or load of the system's nodes right now. 

The workload distribution is decided upon at run-time using dynamic load balancing. Depending 

on the most recent information gathered, the master offers the worker a new assignment to do. 

Since the workload distribution is carried out while the program is running, performance might 
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well be improved. However, the improved performance comes at the expense of increased 

communication costs. So, the overhead associated should be in reasonable limit to achieve better 

performance [29]. 

Load-balancing is a method to distribute load among network components to enhance QoS and 

maximize network performance. By allocating or Load balancing techniques shift the load to 

support service providers and end users and algorithms significantly contribute to increased 

efficiency.  

 Essential for Load Balancing:  The network's servers are being overloaded as the 

number of concurrent requests from client’s increases; as a result, the load must be 

balanced in order to provide better service and observe QoS standards. Neglecting this 

issue results in links failing and sometimes server crashes. In contrast to traditional 

networks, software-defined networks separate all control planes from switches and place 

them in a centralized unit known as a controller. 

 Significance of Load-balancing: In SDN interfaces are used to connect the three layers. 

The infrastructure layer's network devices forward requests to the control plane. On the 

other hand, it is necessary to fulfill the demands placed on applications by various 

services at the application layer. Therefore, the control plane plays an essential intelligent 

role in satisfying the requirements. The amount of requests from clients is increasing 

along with customer demand for cloud services, which increases the workload on the 

networking components to manage them [8]. 

2.9 MPLS Architecture 

In MPLS architecture, packets are assigned labels at the ingress router (also known as Label 

Edge Router or LER). The labels are distributed throughout the network using protocols like 

Label Distribution Protocol (LDP) or RSVP-TE (Resource Reservation Protocol - Traffic 

Engineering). Each router along the path, known as Label Switch Router (LSR), examines the 

packet's label and forwards it based on the label forwarding table. This label-based forwarding 

allows for faster and more efficient routing decisions, as the routers don't need to perform 

complex IP lookups for each packet. MPLS networks classify packets into Forwarding 

Equivalence Classes (FECs). FECs group packets with similar characteristics or forwarding 

requirements, such as destination IP address, QoS requirements, or application type. Each FEC is 

associated with a unique MPLS label. The labels represent the specific treatment and forwarding 
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instructions for packets within the MPLS network. By using FEC-based forwarding, MPLS 

architecture provides flexibility in implementing different traffic engineering and QoS policies. 

Traffic Engineering and Virtual Private Networks (VPNs): MPLS architecture enables traffic 

engineering capabilities, allowing network operators to optimize the utilization of network 

resources. Traffic engineering techniques, such as MPLS Traffic Engineering (MPLS-TE), 

enable the establishment of explicit paths for traffic, ensuring efficient utilization of available 

bandwidth and avoiding congestion. Additionally, it is widely used for implementing Virtual 

Private Networks (VPNs). MPLS VPNs provide secure and isolated communication between 

different sites of an organization over a shared MPLS network. By assigning unique labels to 

VPN traffic, MPLS architecture ensures privacy and separation of customer traffic within the 

network. 

 

Figure 2.8: General MPLS Architecture [41]  

2.9.1 MPLS Process using LSR 

When an LSR receives an incoming packet, it examines the MPLS label carried in the packet's 

header. This label serves as a key to perform a lookup in the LSR's label forwarding table. The 

label forwarding table contains entries that map MPLS labels to the corresponding outgoing 

interfaces or next-hop routers. Each entry in the table specifies the label value, the corresponding 

outgoing interface or next-hop router, and any necessary instructions for label operations. 

Based on the lookup result, the LSR determines the appropriate outgoing interface or next-hop 

router for the packet. It then encapsulates the packet with the appropriate MPLS label for the 

next hop and forwards it along the determined path. This label-based forwarding mechanism 
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allows LSRs to make fast and deterministic routing decisions, as they don't need to perform 

complex IP lookups for each packet. Instead, they rely on the MPLS label for forwarding. 

In some cases, LSRs may need to perform label operations, such as swapping or stacking labels. 

Label swapping involves replacing the incoming MPLS label with a new label based on the label 

forwarding table entry. This swapping allows LSRs to adjust the label based on the network's 

requirements. Label stacking involves adding additional labels to the existing MPLS label stack. 

This stacking occurs when a packet needs to traverse multiple MPLS domains or undergo 

different label-based operations. 

The label lookup and forwarding process continues at each LSR along the path until the packet 

reaches the egress LER (Label Edge Router). The egress LER determines the exit point of the 

packet based on the MPLS label. It removes the MPLS label and forwards the packet to the 

appropriate destination based on the network layer header information. 

 The following figure 2.8, 2.9, 2.10 illustrates how packets are labeled and forwarded in MPLS 

backbone. 

 

Figure 2.9: Label Insertion [41]  

 



22 | P a g e  

 

 

Figure 2.10: Label Swapping [41]  

2.9.2 Benefits of MPLS networks  

MPLS (Multiprotocol Label Switching) networks, when combined with SDN (Software-Defined 

Networking) principles, offer additional benefits that leverage the flexibility and 

programmability of SDN. Here are some key benefits of MPLS networks in an SDN 

environment: 

1. Simplified Network Management: SDN provides centralized control and 

programmability, allowing network administrators to manage and configure 

MPLS networks more efficiently. With SDN, the network management tasks, 

such as provisioning MPLS tunnels, setting up MPLS labels, and traffic 

engineering, can be automated through a centralized controller, reducing 

complexity and operational overhead. 

2. Dynamic Traffic Engineering: SDN-enabled MPLS networks can leverage the 

real-time traffic and network state information provided by the SDN controller to 

dynamically adjust traffic paths based on current network conditions. This 

dynamic traffic engineering capability improves network efficiency, optimizes 

resource utilization, and enables better load balancing and congestion avoidance. 
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3. Rapid Service Deployment: SDN allows for on-demand service provisioning 

and rapid deployment of MPLS-based services. By programmatically configuring 

MPLS tunnels and labels through the SDN controller, service providers can 

quickly deliver new services or make changes to existing services without manual 

configuration on individual network devices. 

4. Service chaining and Network Function Virtualization (NFV): SDN combined 

with MPLS enables service chaining and integration with NFV. Service chaining 

refers to the ability to direct traffic through a series of virtualized network 

functions (VNFs) in a specific order. MPLS can be used to establish the necessary 

tunnels and labels to steer traffic through different VNFs, allowing for flexible 

service chaining and efficient deployment of network services. 

5. Enhanced Security and Privacy: SDN-based MPLS networks offer enhanced 

security and privacy features. By leveraging the programmability of SDN, 

network administrators can enforce security policies, implement access control, 

and isolate traffic flows more effectively. MPLS-based VPNs in SDN 

environments can provide secure and private communication between different 

network segments or customer sites. 

6. Seamless Integration with SDN-enabled Applications: SDN enables the 

integration of applications and network services with the MPLS network. By 

leveraging APIs and northbound interfaces provided by the SDN controller, 

applications can directly interact with the MPLS network, enabling the 

development of innovative services and applications that can control and utilize 

MPLS functionalities. 

7. Scalability: MPLS involves designing and implementing a network architecture 

that can accommodate growth, handle increased traffic volumes, support a large 

number of network elements, efficiently manage routing information, and provide 

seamless provisioning of services. By ensuring scalability, MPLS networks can 

adapt to evolving requirements, accommodate future growth, and deliver efficient 

and reliable connectivity and services. 

8. MPLS based traffic engineering architecture: MPLS networks is a framework 

that enables network operators to optimize the utilization of network resources 
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and control the flow of traffic in a more efficient and controlled manner. It 

involves the use of specialized mechanisms and protocols to establish explicit 

paths for traffic, considering factors such as bandwidth, latency, and link 

utilization. At the core of MPLS TE architecture is the concept of constraint-

based path computation, where algorithms calculate the optimal paths that satisfy 

specified constraints. This is facilitated by a Traffic Engineering Database (TED) 

that stores information about the network topology, link attributes, and available 

resources. Signaling protocols like RSVP-TE are utilized to establish and 

maintain explicit paths across the network, ensuring that network resources are 

efficiently allocated and quality of service requirements are met. MPLS TE also 

incorporates traffic splitting and load balancing techniques to distribute traffic 

across multiple paths, optimizing resource utilization. Additionally, fast reroute 

mechanisms minimize service disruptions by quickly switching traffic to backup 

paths in case of link or node failures, enhancing network reliability and resilience. 

By combining the benefits of MPLS networks with the programmability and centralized control 

of SDN, organizations can achieve greater flexibility, scalability, and efficiency in their network 

operations. However, it's important to plan and design the SDN-enabled MPLS network 

carefully, considering factors such as traffic patterns, service requirements, and the capabilities 

of the SDN controller and network devices to fully leverage the advantages of this integration. 

2.10 Related works 

For a comprehensive understanding of the subject and to provide effective solutions to the 

identified problems, extensive research has been conducted by reviewing various sources. These 

sources include published articles in journals, reference books, conference papers, and other 

online resources. The purpose of this review is to gain insights into the concept of software-

defined networking (SDN) and its current state-of-the-art. The study extensively examines 

previously published articles and scholarly works written by researchers and experts in the field. 

By analyzing these research articles and literature, a thorough understanding of SDN and its 

various aspects is achieved. The review covers topics related to the performance enhancement of 

the RYU controller in the context of SDN. By exploring into the existing body of knowledge, the 

study aims to gather valuable information and insights that can contribute to addressing the 

identified challenges and improving the performance of the RYU controller. The review of 
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related works provides a foundation for the study, enabling the researchers to build upon the 

existing research and identify potential gaps or areas that require further investigation. 

MPLS introduces label-based packet forwarding, where packets are assigned labels and 

forwarded based on these labels instead of performing complex IP lookups. This label-based 

forwarding mechanism significantly improves packet forwarding efficiency, reducing the 

processing overhead on routers and enhancing overall network performance. By streamlining the 

forwarding process, MPLS enables faster and more efficient packet delivery, resulting in 

improved network responsiveness and reduced latency. In the context of traditional networks, a 

recent study conducted [35] focused on enhancing the quality of service (QoS) through the 

implementation of segment routing multiprotocol label switching (SR-MPLS). This research 

work in the area of traditional networks explored the utilization of SR-MPLS as a means to 

improve QoS. The findings of the study demonstrated significant reductions in packet loss and 

jitter, indicating the effectiveness of the proposed approach. Furthermore, the study identified the 

importance of considering the influence of SR-MPLS on resource utilization, suggesting that 

optimizing resource allocation can further enhance network performance and QoS. 

According to [36] mentioned study proposed a solution to improve resource allocation and study 

the interdependency between flows by utilizing both Software-Defined Networking (SDN) and 

Multi-Protocol Label Switching (MPLS) technologies. 

They introduced two resource re-allocator modules: the flow level resource re-allocator and the 

LSP level resource re-allocator. These modules aim to optimize resource allocation and prevent 

congestion in the network. The flow level resource re-allocator is responsible for managing 

individual flows. It uses openflow switches to assign flows to existing MPLS network Label 

Switched Paths (LSPs). When there is a risk of congestion due to overflow in a link, the flow 

level resource re-allocator re-routes the flow to avoid congestion, based on a predefined 

threshold. However, if the flow level resource re-allocator is unable to control congestion, the 

LSP level resource re-allocator comes into play. 

The proposed approach aims to improve resource utilization and overall throughput in the 

network. However, the authors did not take into account the issue of packet loss during rerouting. 

This means that there is a potential for packet loss when flows are re-routed to avoid congestion 
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and propagation delay of every link in the network is the same. The propagation delays can vary 

depending on the physical characteristics of the links and the distance between nodes. Therefore, 

considering all links to have the same propagation delay may not accurately represent the 

network's behavior. 

According to [36] the research approach, the authors combine Software-Defined Networking 

(SDN) and Multiprotocol Label Switching (MPLS) to enhance resource allocation and 

investigate flow interdependency. They introduce the "flow level resource re-allocator" as a key 

component. This approach involves the use of OpenFlow switches to direct flows onto the 

existing MPLS network Label Switched Paths (LSPs). The "flow level resource re-allocator" is 

responsible for preventing congestion by dynamically rerouting flows when a link's utilization 

exceeds a predefined threshold. This measure ensures efficient load balancing and prevents 

individual links from becoming overloaded, ultimately leading to improved resource utilization 

and higher throughput. By leveraging the advantages of both SDN and MPLS, their approach 

explores how these technologies can optimize resource allocation in the network and study the 

relationships between flows. Through the flow level resource re-allocator, they demonstrate how 

SDN-based dynamic rerouting can complement the capabilities of MPLS, leading to a more 

efficient and resilient network. 

According to [6] this study, the core element of Software-Defined Networking (SDN) network, 

the controller, is explored. With SDN being an alternative to traditional networks, various 

controllers have been developed, including Beacon, Floodlight, RYU, OpenDaylight, ONOS, 

NOX, and POX. Due to the diversity of SDN applications and the availability of different 

controllers, choosing the most suitable controller has become an application-dependent process. 

To address this, the study evaluates different SDN controllers based on their impact on SDN 

Quality of Service (QoS) performance. 

The evaluation focuses on comparing the performance of POX and RYU controllers using the 

Mininet and Miniedit emulation tools. For the emulation, Mininet, iperf3, ping, and the POX and 

RYU controllers were run on an emulation machine with specific specifications. The study 

investigates the QoS performance in terms of key parameters, namely Throughput, Round-Trip 

Time (RTT), and Jitter. These parameters are measured under different traffic scenarios 

involving TCP, UDP, and ICMP traffic. By conducting evaluations for both POX and RYU 
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controllers, the study aims to gain insights into how these controllers impact QoS performance in 

SDN networks. Through this investigation, the study can provide valuable information to help 

users and network administrators make informed decisions when choosing the most suitable 

controller for their specific SDN application and use case. 

According to [33] furthermore, a single-threaded centralized controller can still outperform 

multi-threaded controllers in simplified topologies, but multi-threaded controllers are preferred 

for complicated conditions. Second, the physical topology of the controller has a direct impact on 

various performance characteristics. This work has not gone in this path; however, topology-

specific controller placement experiments, particularly for specialized networks, might be 

interesting future work. Third, quantifying the performance of specialized network controllers is 

a significant difficulty.  

According to [39] this researchers to address the interoperability challenge, it is essential to 

establish standardized interfaces for communication between the SDN control plane and non-

SDN control plane components. This interface acts as a bridge, enabling effective 

communication and coordination between traditional networking devices and the SDN 

architecture. These interfaces play a vital role in facilitating the integration of SDN into existing 

network infrastructures, allowing for a smooth migration and coexistence of SDN with legacy 

networking systems. 

By providing a standardized communication interface, SDN can work alongside non-SDN 

control plane components, supporting gradual deployment and enhancing network flexibility. 

Moreover, such interfaces enable the development of hybrid SDN deployments, where SDN and 

traditional networking coexist, facilitating the transition and adoption of SDN at a pace suitable 

for the organization's needs. 

According [37], implemented MPLS within a Software-Defined Network (SDN) environment. 

The main idea behind this implementation was to allow the controller to assign labels to packets 

when requested by the edge switches. In this approach, both edge switches and core switches are 

utilized. The edge switches forward packets to the core switches using labels assigned by the 

controller. Additionally, the controller is responsible for installing the path on the core switches. 

To store the labels, the author introduced the concept of label mapping. All labels assigned to a 

particular packet are converted into a static label and stored in the MAC address table. The MAC 
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address table contains forwarding rules in the form of static Address Resolution Protocol (ARP) 

entries. Each entry includes the label value and the destination port number on the switch.   

2.11 Gap Analysis from Related Works 

In this section from the related works discussed above the research.  

Table 2.1: Gap Analysis of Related works  

 

Author Title of the research Methods Conclusion Gap identified 

Mohammad et 

al [36]  

SDN-based resources 

allocation in MPLS 

networks: a hybrid 

approach  

SDN-MPLS networks Improve the resource 

utilization and throughput  

Observing the loss of 

packets when re-routing 

traffic. 

John, B[40] implementing MPLS 

with Label Switching in 

SDN 

Enabling the 

controller to assign 

labels to the packets 

when the edge 

switches request for 

labels 

High hit rate to fill flow rules 

in the entire topology 

Offloads the controller 

Askar, S., & 

Keti, F [6]   

Performance 

Evaluation of Different 

SDN Controllers 

SDN uses mininet and 

miniedit an emulated 

tool 

Improve throughput , and jitter Considering latency and 

other metrics 

E.Gamess et al 

33] 

SDN Controllers: 

Benchmarking & 

Performance 

Evaluation 

OpenFlow protocol, 

SDN controllers 

They propose Open Flow 

Benchmarking Tools by 

customizing the feature of 

Cbench. They perform 

performance evaluation on 

OpenDaylight, Floodlight, 

Ryu, OpenMUL controllers. 

Other than OpenFlow 

protocols has not been 

addressed. 

S.Mishra et 

al.[39] 

A Survey on Software 

Defined Networking 

with Multiple 

Controllers 

OpenFlow protocol, 

SDN controllers 

Survey research challenges in 

the SDN network, identify the 

best SDN controller and 

improve the performance. 

Interoperability in SDN 

and non-SDN controllers 

and performance 

constraint in SDN 

controllers. 
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Chapter Three 

The Proposed Enhanced RYU controller using MPLS  

3.1. Introduction  

Chapter three the proposed of enhancement of Ryu controller using MPLS network. In this 

chapter, the research methodology, proposed methods are described. In this proposed method 

design the Ryu controller, being an SDN controller, controls the capabilities of the OpenFlow 

protocol to manage and control the behavior of network devices. By utilizing OpenFlow features, 

the Ryu controller can establish whole communication with both the Openvswitch and the legacy 

network devices. To facilitate communication between the Ryu controller and the Openvswitch, 

the OpenFlow protocol is active. OpenFlow acts as a conduit for the Ryu controller to send 

instructions and commands to the Openvswitch or Openflow event controller. These instructions 

encompass a range of actions, including packet forwarding, header modification, and MPLS 

label assignment. 

The MPLS devices are configured to support, which is a best technique used in packet-switched 

networks. MPLS enables efficient packet routing by utilizing labels attached to packets. Through 

the MPLS network configuration, the context of the MPLS network, the Ryu controller is 

capable of setting up MPLS labels on the packets. These labels play an essential role in the label 

switching mechanism, which enables efficient and accurate routing. By assigning MPLS labels, 

the Ryu controller can direct packets through the network, ensuring optimal path selection and 

efficient data transmission. 

3.2 RYU Controller  

The Ryu controller, developed and designed by NTT Company in Japan, is an open-source SDN 

controller. It offers a range of tools and libraries that facilitate the easy and convenient of SDN 

networks. The Ryu controller is compatible with various versions of the OpenFlow protocol, 

including 1.0, 1.2, 1.3, and 1.4. It is implemented entirely in Python, which is a widely accepted 

programming language used for communication between the control and forwarding layers (data 

plane) in the networking domain. The Ryu controller is recognized as a component-based and 

open-source software defined networking framework. It is developed in Python, providing a 

flexible and extensible platform for managing network devices. It supports multiple southbound 
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protocols for device management, including OpenFlow, NETCONF (Network Configuration 

Protocol), OFConf (OpenFlow Management and Configuration Protocol), and other protocols. 

Additionally, the Ryu controller also supports Nicira extensions, enhancing its capabilities and 

compatibility with various networking technologies and architectures. 

 It is an open-source platform for managing networks at the software level, rather than the 

traditional hardware-level control.  

 Ryu provides a well-defined Application Programming Interface (API) between the 

control layer and the data forwarding layer (data plane), allowing for the application of 

custom control logic to the network.  

3.3 Research Methodology 

The methodology of this research, which aims to enhance the performance of the RYU controller 

in SDN through the utilization of the MPLS (Multiprotocol Label Switching) method and in  

addition to testing SDN infrastructure by emulating controlled workloads. It generates a 

substantial volume of OpenFlow messages to scale how efficiently controllers and switches 

handle diverse traffic patterns. Cbench tool allows network administrators and researchers to 

assess the scalability, throughput, and latency of their SDN deployments under different traffic 

conditions. To achieve the study's objectives and address the research questions, various aspects 

of the existing RYU controller are examined. To investigate the networks of the MPLS in this 

context, a comprehensive review of different methodologies is conducted. Relevant literature 

sources such as books, journals, and conference papers are extensively researched. The aim is to 

gather insights from the state of the art in SDN and related MPLS-based systems. These 

methodologies are carefully evaluated and compared, considering two performance evaluation 

metrics. 

By adopting this research methodology, a thorough understanding of the existing RYU 

controller's features is gained, enabling the identification of areas for improvement. These thesis 

approach is then developed and implemented, facilitating performance analysis to assess its 

impact.  
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3.4 Cbench Algorithm  

To conduct throughput and latency tests on the controller [34]. For the Ryu controller with a 

different number of switches (1, 2, 4, 8, 16, and 32 etc.) used to investigate the performance 

evaluation of the controller. 

 

cbench is a benchmarking tool for controllers 

Algorithm: 

    pretend to be n switches  

    create “n “ openflow sessions to the controller 

    if latency mode (default): 

        for each session: 

            1) send up a packet in 

            2) wait for a matching flow mod to come back 

            3) repeat 

            4) count how many times #1-3 happen per sec 

    else in throughtput mode (i.e., with '-t'): 

        for each session: 

            while buffer not full: 

                queue packet_in's 

                count flow_mod's as they come back 

 

Table 3.1:  Cbench Algorithm 

3.5 Proposed Method 

MPLS (Multiprotocol Label Switching) network can be used in an SDN (Software-Defined 

Networking) environment as part of the data plane to provide traffic engineering and path 

optimization. SDN separates the control plane from the data plane, allowing network 

administrators to manage the network more easily and efficiently. In an SDN architecture, the 

Ryu controller consists of a centralized controller that manages the networks. It can be used to 

optimize traffic flows between different network nodes by assigning labels to packets that 

identify the desired path through the network. By using MPLS network in the data plane, 

network administrators can dynamically adjust traffic routing and prioritize traffic based on 
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performance requirements. The Ryu controller manages the Open flow Vswitch via the Open 

Flow protocols. The packet initially arrives at the data plane, specifically the OpenFlow switch. 

The packet is initially received by the data plane, more precisely the OpenFlow switch. It helps 

us which path the packet either follow or not, this approach reduces unnecessary flows that 

offload the controller and even the path. So, packets are processed and transferred via a pre-

configured path.  

The packets are encapsulated whenever they are transferred from source to destination as shown 

in Figure 3.1. The RYU controller takes on the responsibility of coordinating the entire system. 

MPLS network is a technique used in networking that allows, it would be used to route traffic 

through the network based on labels, rather than using traditional IP routing protocols. Overall, 

this thesis should be scalable the controller with the help of MPLS network services. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: General Methods using MPLS 

Multiprotocol Label Switching (MPLS) is a protocol-independent method utilized in computer 

networks to optimize the effectiveness and efficiency of packet forwarding. It has a mechanism 

for fast and scalable forwarding of IP packets, as well as packets of open flow protocols, and 

introduces the concept of labels, which are short identifiers assigned to packets or flows.  
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The internal components of OpenFlow comprise multiple flow tables and a group table, 

responsible for packet lookups and forwarding operations. As shown the above Figure 3.1, the 

data plane links with the Ryu controller via the OpenFlow protocol, is a secure communications 

protocol used to protect data transmitted. It ensures that data is not accessed by unauthorized 

users and provides encryption for data sent over the network and the Ryu controller manages all 

networks. They are used to define the rules for how packets should be forwarded, as well as 

specify which interfaces to use and which actions to take when a packet arrives at a router. All of 

these components are related in that they are used to manage and optimize the performance of 

Ryu controller. 

MPLS networks are characterized as single-threaded systems, encompassing diverse 

functionalities. They incorporate a receive queue for events, typically adhering to a First-In-First-

Out (FIFO) approach to maintain event order. Moreover, each application includes a dedicated 

thread responsible for processing events from the queue. The primary loop of this thread 

retrieves events from the receive queue and invokes the appropriate event handler. Consequently, 

the event handler is executed within the context of the event-processing thread, operating in a 

blocking manner, which means that no additional events for the Ryu network would processed 

until control is relinquished. 
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Figure 3.2 Detail Flowchart Ryu Controller with MPLS network 
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3.6 Building blocks of MPLS  

Multiprotocol label switching contains the following components. 

 An ingress router, also known as an entry router or edge router, is a network device 

located at the edge of a network. It serves as the entry point for incoming traffic from external 

networks into an internal network or network segment. The primary function of an ingress router 

is to receive packets from external networks and forward them into the internal network based on 

routing and forwarding decisions. 

 An egress router is exit router or edge router, is a network device located at the edge of 

a network. It serves as the exit point for outgoing traffic from an internal network or network 

segment to external networks. The primary function of an egress router is to receive packets from 

the internal network and forward them to the appropriate external destination based on routing 

and forwarding decisions. 

Configuring and managing the priority of MPLS within an ingress and egress router involves 

emphasizing the efficient flow of traffic and handling of events in the network. The prioritization 

process is crucial for proper event handling and control through the Ryu controller, and 

managing the Event Receiving Queue to ensure whole operation. 

In an MPLS network, the ingress router plays a fundamental role in packet classification and 

assigning appropriate labels. MPLS determines the routing path based on labeled packets, the 

ingress router needs to have robust configuration settings that identify traffic types and apply 

corresponding Quality of Service (QoS) policies. These policies dictate how the router gives 

packets, assigning priority levels based on defined parameters  

Simultaneously, the egress router is responsible for forwarding labeled packets based on the 

assigned labels and handling their priority according to the QoS policies defined by the ingress 

router. It ensures that traffic flows smoothly through the network while maintaining the 

prioritization set at the ingress point. 

Ryu controller may command specific MPLS-enabled routers or switches to alter their label 

operations, re-route traffic through different paths, or prioritize certain types of MPLS traffic. 

These handlers receive notifications from the network elements, such as routers, regarding events 

like changes in MPLS label information or packet prioritization alterations. To connect the event 
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handlers to the routers, the Ryu controller utilizes various protocols like OpenFlow to 

communicate with the network devices and exchange information. 

The Event Receiving Queue acts as a buffer for incoming events from the network, enabling the 

Ryu controller to process and respond to these events efficiently. Prioritizing this queue ensures 

that critical events are handled promptly and avoids potential bottlenecks in event processing 
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Chapter Four 

Implementation, Result and Analysis 

4.1 Setup of the simulation Environment  

The simulation environment has been configured using a PC: 

 Processor: Intel(R) Core™ i7-7500U CPU @2.90GHZ  

 Installed RAM:8.0 GB  

 System type: Windows 10 64-bit Operating System  

 Oracle VM Virtual box: an open source hypervisor type 2 to run Ubuntu 20.04 LTS.  

 Ubuntu 20.04 LTS  

 Mininet: installed inside Ubuntu 20.04 LTS 

 RYU: installed Ubuntu 20.04 LTS 

4.2 Topology 

In this research created a network topology containing MPLS core network integrated with SDN; 

the core network contains five MPLS enabled router having the capability to process the packets 

on the data planes. In this scenario, the controllers are responsible for bottom to up flows detail 

below figure, whereas low level flows, such as data transmission among low level users is 

handled by MPLS. 

The GNS3 are installed on virtual machines Ubuntu 20.04 LTS, and in this work integrated them 

with GNS3 to operate together. Mininet is used to create topologies integrated with GNS3, then  

added the interfaces of routers with MPLS capability to openvswitches interfaces so as to 

establish the communication between the MPLS and mininet topology. The interfaces of the 

routers connected to openvswitches are managed by the openflow controller while they are 

sending and receiving the packet.  
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Figure 4.1: GNS3 with Mininet Topology 

NAT is enabled on both MPLS and openvswitch that interconnects two different branches. NAT 

is used to ensure global communication across virtual devices and physical network. So, in this 

work established the communication between virtual machines containing SDN controllers and 

cisco routers in MPLS domain through NAT. CE1, CE2, PE1, PE2, and C inside GNS3 topology 

represent routers, and the topology shows us the physical integration of MPLS with 

openvswitches, whereas the topology inside mininet does not show physical integration of MPLS 

with openflow networks.  

4.3 Simulation Tools and Techniques 

In this thesis, make use of different software solutions, Mininet, Cbench or iperf, and Wireshark, 

to facilitate the development and building of the methodology. 

4.3.1 Installation Ryu controller  

To begin with ensure your system has python installed, by executing python on the terminal, 

which would turn into the python shell, besides displaying the version. 
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 Sudo pip3 install ryu  

 4.3.2 Installation and version 

 Ryu-manager –version 

 

Figure 4.2: Ryu-manager version 

 sudo mn –version 

 

Figure 4.3: Mininet Versions 

 python3 –version 

 

Figure 4.4: Python version 

 ovs-vsctl –version 

 

Figure 4.5: Open vSwitch and Database Schema Version 

The RYU controller operates as a software component responsible for the administration of 

network devices. Its core function revolves around the management and control of the network 

and its corresponding devices through the utilization of the OpenFlow protocol. The performance 

evaluation of the system is conducted using a testbed including a controller and a specific 

number of ingress router, Core MPLS, and Egress router directly linked to the controller, as 

depicted in Figure 4.1. The Ryu controller gets instantiated using a script called Ryu-manager. In 
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this work next add this to the python path variable, so that we don't need to give the complete 

path to invoke the controller at all times: Now to test the installation and using four terminals. In 

the first one, get the controller up and running:  

1. In Terminal One 

 Ryu-manager ryu.app.simple_switch_13. This starts the ryu controller with a 

simple_switch script that pushes down rules to the router. In case of your own NetApp 

(Ryu), replace simple_switch.py with your own .py file, with its complete path.  

 In case you see an oslo.config error, try, as shown here: 

  sudo pip install oslo.config  

2. Wireshark run testing from h1 to h2 

 sudo wireshark & 

3. In terminal three 

  sudo mn  - - controller =remote, ip=127.0.0.1  - - mac - - switch= ovsk, protocols= 

OpenFlows13 - - topo =linear,8  

 

 

 

 

 

 

 

Figure 4.6: linear topology Installation 

 

Figure 4.7: linear topology Installation 32 switches 
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4. In terminal four 

Next upgrade Open vSwitch switches so that they are good to go with OpenFlow version 1.3 

scripts that we may run later.  

 sudo ovs-ofctl –O OpenFlow13 dump-flows s1 

 

 

 

 

 

 

Figure 4.8: Open vSwitch connections 

Mininet allows users to quickly create a realistic virtual network topology with hosts, router, 

links, and controller’s .It provides a platform for rapid prototyping and testing of software-

defined networks (SDN). Mininet also provides a simple interface for creating and controlling 

virtual networks, allowing users to test their network applications on a virtual network in 

seconds, while also providing the option of connecting the virtual network to a physical network. 

Mininet's powerful scripting capabilities allow users to easily customize their virtual networks, 

making it an invaluable tool for testing, debugging, and developing SDN applications. It has also 

supports a variety of programming languages, including Python, C, and Java, making it easy for 

developers to quickly develop and test their applications.  

4.3.2.1 Mininet Installation 

 Use the command:  sudo apt-get install mininet 

 Pingall 

 sudo apt-get install git 

 Git clone https://github.com/mininet/mininet 

 Sudo apt install python3-pip 

 Sudo pip3 install mininet 

 Sudo apt-get install python3-tk 

https://github.com/mininet/mininet
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 sudo apt-get install xterm 

Figure 4.9: Mininet Installation 

 Sudo python3 mininet/examples/miniedit.py 

4.4 Message establishment between a switch and a controller 

The switch uses the controller's IP address, which is typically the Loopback interface 127.0.0.1, 

and the default port 6633 to establish a TCP connection with the OpenFlow controller. The 

foundation for creating a successful OpenFlow communication channel is this TCP connection. 

The controller can effectively manage the flow entries made by the switch and the behavior of 

the entire network. Using Wireshark or comparable network analysis software might be helpful 

for identifying and fixing problems. These tools make it easier to capture and examine the 

particular packets exchanged during this process. 

4.5 Messages exchanged between two hosts 

In order to demonstrate host-to-host connectivity in an OpenFlow network, in this work used the 

Ping tool to send ICMP packets from host h1 to host h2 and the other way around. In order to 

find the MAC address of h2, h1 sends an ARP request to the switch, starting this procedure. 

Because there is no predetermined path of action for this packet, the switch encapsulates it as a 

PACKET-IN message and sends it to the controller. 

In response, the controller creates a PACKETOUT message with an action directive inside that 

tells the switch to broadcast the packet to every port but the one it was received through, and 

then wait for a matching response. When h2 responds to this request, the switch relays this 

response back to the controller under the controller's direction. 
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The controller sends a FLOW-MOD message to the switch after receiving the ARP response 

from the switch. By creating a new flow entry with this message, the switch will immediately 

transmit any upcoming ARP replies from h2 that are meant for h1 without the need for controller 

action. When h1 sends an ICMP request and receives a response, a parallel process occurs. The 

same thing happens when h2 sends an ARP request to find h1's MAC address, followed by an 

ARP reply. 

 

 

Figure 4.10: Wireshark testing from h1 to h2 

4.6 Performance Measuring Metrics 

To measure the performance of the network, in this research used only two metrics that have 

significant effects on the overall performance of the network. Particularly in this study, 

throughput, and latency are given strong focus since they are commonly used in the process of 

measuring the overall performance of the network. 

The performance of the Ryu controller was evaluated using the Cbench tool, which measures 

throughput and latency by sending messages to the controller following the OpenFlow protocol 

and monitoring the arrival of Flow_mod messages. The Cbench tool calculates throughput and 

latency using the following methods 
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1. The throughput is determined by counting the total number of (Flow_mod) messages 

transmitted by the controller and the latency Cbench measures the time taken by the 

controller to process each message from the moment it is received until the 

corresponding Flow_mod message is sent and or latency is determined by calculating 

the average time taken for message processing across multiple iterations. 

2.  Cbench initiates the transmission of multiple packets to the controller (Packet_in) and 

awaits the controller's response by sending (Flow_mod) messages. This process is 

repeated several times, and subsequently, the latency value is calculated. 

Table 4.1: Cbench Running Options 

Option Description Default Values 

-c/ --Controller Controller by his name   "localhost" 

-d/--debug enable debugging   off 

-l/--loops loops per test   16 

-M/--mac-addresses unique source MAC addresses per 

switch  

 100000 

-m/--ms-per test The test time length in ms   1000 

-p/--port controller port number  6633 

-s/--switches Number of switches    

-t/--throughput test throughput instead of latency  

-i/--connect-delay to 

the controller 

<int>delay between groups of 

switches connecting  

in ms 

-I/--connect-group-

size 

<int> number of switches in a 

connection delay 

-1- 

-L/--learn-dst-macs 

macs before testing 

send gratuitious ARP replies to learn 

destination (on) 

 -on- 

4.6.1 Throughput 

Throughput refers to the amount of data that can be transmitted or processed within a given time 

period. It represents the capacity or speed at which data can flow through the network. SDN 

separates the control plane (which makes decisions about how the network should operate) from 

the data plane (which forwards network traffic). 
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In terms of throughput, SDN can provide several benefits. The centralized control allows for 

efficient resource allocation and traffic engineering, enabling better utilization of network 

resources and improved performance. SDN controllers can dynamically adjust network paths, 

prioritize traffic, and optimize routing decisions, which can enhance throughput. The throughput 

is commonly expressed in units such as bits per second (bps), data packets per second (pps), or 

data packets per time slot. A higher throughput is generally preferred in a communication system 

as it signifies increased data transfer capacity. 

 

 Throughput=  
∑                         

       
   -------------------------- (Equation1) 

The throughput can be defined as the ratio of the total number of packets transmitted during a 

specific time period. It can be calculated by determining the difference between the packet 

transmission time at the source node and the time of receipt at the destination node. This 

calculation provides an estimation of the throughput in terms of the number of packets 

successfully transmitted between the source and destination. 

. /cbench -c localhost -p 6653 –s 1/2/4/8 –l 8 -t 

4.6.1.1 Throughput Result  

The integration of MPLS with openflow improved the throughput of the network. In this thesis, 

enabled packet processing and monitoring on both the control plane and the data plane. In this 

work enabled MPLS to operate with SDN controllers it can handle low level traffic flows by the 

help of standalone switch, and the low level flows are directed to MPLS pipe lines instead of 

being sent to SDN controller’s. So, this approach reduced the load of the controllers during 

simultaneous transmission of packets among all classes of users, and then packet transmission 

becomes faster and faster. 
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Table 4.2: Cbench Throughput result with and without MPLS network (Normal SDN) 

Switch Total throughput 

with MPLS 

Network  

Total 

throughput 

without MPLS 

Network 

Min with 

MPLS 

Max with 

MPLS 

Ave with 

MPLS 

Min 

without 

MPLS 

Max 

without 

MPLS 

Ave 

without 

MPLS 

1 7,140 Flows Per 

second 

6,850 Flows 

Per second 

3234.71 4073.57 3838.07 2527.03 3012.47 2759.13 

2 6,730 Flows Per 

second 

6,470 Flows 

Per second 

3411.17 3527.70 3481.57 2921.91 3468.63 3162.78 

4 4,800 Flows Per 

second 

4,100 Flows 

Per second 

3704.10 3904.80 3804.50 3033.02 3181.70 3107.38 

8 3,560 Flows Per 

second 

3,020 Flows 

Per second 

4365.10 4565.00 4465.30 3765.30 3965.90 3853.60 

16 2,970 Flows Per 

second 

2,600 Flows 

Per second 

4352.17 4751.17 4451.17 3451.17 3651.17 3531.17 

 

 

Figure 4.11: Cbench Throughput Result without MPLS one switch 
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Figure 4.12: Number of switch Tests with and without MPLS Ryu controller 

 

Figure 4.13: Cbench Throughput Result with MPLS one switch 
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Figure 4.14: Throughput of proposed method with MPLS and normal SDN 

Discussion 

The above figure 5.10 illustrates if the number of switches are devices that allow network 

packets to be forwarded between different network segments. In networking, flows per second 

refers to the time it takes for a request to be processed and a response to be sent back. Both the 

average throughput of With MPLS and without kept slightly decrease based on number of 

switch, as shown in the above graph. The achieved maximum throughput of the proposed method 

clearly showcases its exceptional performance, demonstrating that when connecting to a single 

switch results in maximum 7,148 flows per second. And the Ryu controller without MPLS 

network has the maximum throughput for a single switch 6,850 flows per second. The proposed 

method, which includes MPLS (Multiprotocol Label Switching), demonstrates superior 

performance compared to the normal SDN implementation, particularly in terms of throughput. 

When evaluating network performance, throughput is a critical metric that measures the amount 

of data transmitted successfully over the network within a given timeframe. MPLS, being a high-
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performance protocol designed to efficiently route and forward data packets using labels, 

significantly enhances the network's ability to handle data traffic and reduces the processing 

overhead on switches and routers. 

4.6.2 Latency 

Latency refers to the amount of time it takes for the controller to process a network event or 

execute an action in response to a request or event received from the switches in the network. 

SDN controller can be measured by the time delay between the occurrence of a network event, 

such as a packet arrival or a switch status change, and the controller's response to that event. It 

includes the time taken for message parsing, flow table lookup, decision-making, and sending 

instructions back to the switches. The general formula to calculate response time is expressed as 

follow 

. /cbench -c localhost -p 6653 –s 1/2/4/8 –l 4 

4.6.2.1 Latency Result  

The ability of handling packets on both the data plane and the control plane allowed network 

operations to be quicker and quicker because the controllers are no more be overloaded, and low 

level packets are handled by the switches by the help of MPLS. MPLS shares the load of the 

controller when there is simultaneous packet transmission among the groups of users; not only 

this, having one controller on the control plane and the controller are no longer be in a busy tone, 

as a result, there is no more queuing delay. 

Table 4.3 Latency total result with and without MPLS Network 

Sw

itc

h 

Total latency 

with MPLS 

Network  

Total latency 

without 

MPLS 

Network 

Min 

with 

MPLS 

Max 

with 

MPLS 

Ave 

with 

MPLS 

Min 

WO 

MPLS 

Max 

WO 

MPLS 

Ave WO 

MPLS 

1 1.123 per ms 1.189 per ms 0.853 1.107 0.977 1.000 1.290 1.153 

2 1.300 per ms 1.325 per ms 0.843 0.843 0.843 1.281 1.325 1.300 

4 1.320 per ms 1.368 per ms 0.811 0.811 0.811 1.356 1.452 1.411 

8 1.320 per ms 1.534 per ms 0.811 0.811 0.811 1.459 1.562 1.519 

16 1.320 per ms 1.642 per ms 0.811 0.811 0.811 1.538 1.701 1.608 
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Figure 4.15: Cbench Latency Result without MPLS one switch 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16: Cbench Latency switch tests with and without MPLS result 
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Figure 4.17: Latency of Ryu controller with MPLS 

 

Figure 4.18: Latency Result proposed method and Normal SDN 
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In this section, analyze the test results to compare the performance enhancements of the Ryu 

controller with MPLS integration and normal SDN. As shown in the above figure, the Ryu 

controller with MPLS demonstrated a latency of 1.123 ms, whereas the Ryu controller without 

MPLS exhibited a latency of 1.189 ms, the latency results indicate that the Ryu controller with 

MPLS had the highest latency among the tested result. According to [38] the experiment setup 

cbench was used to emulate different number of switches (1, 2, 4, 8, 16, and 32) which connect 

to the Ryu controller. The objective was to evaluate the network throughput and latency 

performance evaluation. The result shows that the above figure that performance is increase 

independent of the number of switches emulated. The researcher only one switch is greater 

latency than proposed method but the rest of the switch has a better latency performance using 

the Ryu controller with MPLS integration.  

4.6.3 Jitter  

Jitter refers to the variation in the delay of received packets in a network [33], it is a measure of 

the variability in the time it takes for data packets to travel from the sender to the receiver. 

Measured in milliseconds (ms) or microseconds (µs), representing the time variation in packet 

arrival. 

 Install iperf : Sudo apt-get install iperf 

 Start the Ryu-Controller: ryu-manager ryu.app.simple_switch_13 

 Create the topology : sudo mn  - - controller =remote, ip=127.0.0.1  - - mac - - 

switch= ovsk, protocols= OpenFlows13 - - topo =single,4 

 Verify iperf Server: Inside the Mininet CLI, you should see the iperf server running 

on the specified host 

H2: iperf -s -u -p 6653 -l 1 - This command starts the iperf server 

 Test with iperf Client: On another host in the Mininet environment, start an iperf 

client to test: 

H1: iperf -c <iperf_server_ip> -u -b 10M /20M/30M/40M/50M –t 15 -p 6653  
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Table 4.4: Jitter Running Options 

Option Description 

-s Acts as a server 

-c Acts as a client 

-u UDP test  

-p Port number of the controller 

-b Bandwidth test 10M /20M/30M/40M/50M 

-i Iteration of testing results 

6653 Port numbers of the RYU controller 

 

Figure 4.19 : Jitter result h1 to h2 

 

Figure 4.20: Jitter result h1 to h4 
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Table 4.5 Result Jitter Single Topology 

Bandwidth 

(Mbits/sec) 

h 1 to h2 

jitter (ms) 

h1 to h3 

jitter (ms) 

h1 to h4 

jitter (ms) 

h2 to h3 

jitter (ms) 

h2 to h4 

jitter (ms) 

h3 to h4 

jitter (ms) 

10 0.017ms 0.013 ms 0.010 ms 0.016 ms 0.017 ms 0.013 ms 

20 0.012ms 0.010 ms 0.009 ms 0.010ms 0.009 ms 0.012 ms 

30 0.007ms 0.005 ms 0.007 ms 0.007ms 0.007 ms 0.005 ms 

40 0.011ms 0.005 ms 0.004 ms 0.011ms 0.005 ms 0.005 ms 

50 0.011ms 0.011 ms 0.009 ms 0.011ms 0.011 ms 0.008 ms 

 

Figure 4.21: Jitter Result Bandwidth vs Jitter 
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Table 4.6: Shows the overall performance metrics used in this research study as compared to 

previous works 

Authors  Protocol 

used 

Topol

ogy 

Nature 

of SDN 

Simulat

ion 

Tools 

Evaluati

on Tools 

 

Performance 

Evaluation 

Metrics 

SDN 

Controllers 

used 

 Alaa Taima 

Albu-Salih 
[36] 

Openflo

w 

Single,

linear 

Pure 

SDN 

Mininet  

 

Cbench Throughput and 

latency 

OpenFlow,  

Ryu 

controller 

Lusani 

Mamushiane, 

Albert 

Lysko, 

Sabelo 

Dlamini [23] 

Openflo

w 

Single,

linear 

plus 

MAC 

testing 

Pure 

SDN 

Mininet  

 

Cbench Throughput and 

latency 

OpenFlow,  

Ryu, 

floodlight, 

Opendaylight

, & 

ONOScontro

ller 

Shavan 

Askar & 

Faris Keti.[6] 

Openflo

w 

Single Pure 

SDN 

Mininet  

 

iperf3 

benchma

rk 

Throughput & 

RTT using 

TCP,UDP,ICMP 

traffic 

OpenFlow, 

Pox and Ryu 

Controller 

  
 

Bhardwaj, S., 

& Panda, S. 

N. [9] 

Openflo

w 

single Pure 

SDN 

Mininet  

 

Cbench Throughput, 

Band width, 

Round trip time 

(RTT) and 

Transmission 

Open flow 

Packets 

OpenFlow, 

Ryu 

Controller 

 

Islam, M. T., 

Islam, N., & 

Refat, M. 

Al.[18]  

Openflo

w 

Single Pure 

SDN 

Mininet  

 

Cbench Throughput, 

Round-Trip 

Time( RTT), 

Jitter and Packet 

lose 

Open Flow,  

Ryu 

controller 

Proposed 

Study 

MPLS 

and 

Open 

flow 

Single, 

linear[

2,4,16,

32] 

Pure 

SDN 

GNS3 

and 

mininet  

 

Cbench Throughput, 

Jitter and latency 

Open Flow,  

Ryu 

controller 

In the first chapter of the research, a fundamental question has raised concerning the impact of 

network size on data plane requests and its consequent effect on network performance as given 

below questions 

 How to investigate the effect of with and without MPLS network on throughput, and 

latency using Ryu controller? 

 How to compare the performance of Ryu controller without MPLS or normal SDN and 

with MPLS network 

The implementation of an MPLS network has a significant impact on both throughput and 

latency. One of the most important advantages of MPLS is when the workload increases, the 
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network dynamically adjusts itself to handle the rising demand efficiently. This adaptability is 

essential in maintaining a smooth flow of data and minimizing delays in processing. 

Furthermore, MPLS helps to optimize the workload distribution across the network by updating 

the workload based on the capacity of the queue size in the OpenFlow switches. When many 

queues become congested, MPLS adjusts the size of data batches, which allows for more 

effective management of network resources and improves potential bottlenecks. 

The latency of an MPLS network based on the RYU controller is especially reduced due to its 

ability to minimize the wait time for packets to access network resources. MPLS efficiently 

directs data packets along predefined paths, reducing the time taken for packets to reach their 

intended destinations. By prioritizing packet forwarding, MPLS effectively minimizes latency 

and enhances the overall responsiveness of the network. 

In terms of throughput, the implementation of MPLS in a RYU controller based network leads to 

significant improvements. As the MPLS network efficiently handles data plane requests, there is 

a clear increase in the system's ability to process multiple requests simultaneously. This 

streamlined processing allows the RYU controller to handle job requests quickly and efficiently, 

without the saturation of many queues. As a result, the throughput of the MPLS-based network is 

improved, providing a more continuous and faster data transmission experience. 
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Chapter Five 

Conclusions and Future Works 

5.1 Conclusions 

The utilization of MPLS networks for enhancing the performance of the Ryu controller offers 

significant improvements in terms of throughput and latency. By using MPLS, the Ryu controller 

can optimize network paths, allocate resources efficiently, and ensure reliable  

MPLS implements on the data plane enables techniques using Ryu controller, such as traffic 

shaping and load balancing. These techniques allow for increased throughput and decrease the 

latency. By the label routing mechanism of MPLS enables the Ryu controller to make faster 

routing decisions compared to without MPLS Ryu controller.  Additionally, it has supports 

explicit paths and fast rerouting, which further contribute to minimizing latency by quickly 

redirecting traffic along alternative paths in case of link failures, and provides Quality of Service 

(QoS) mechanisms that enable the Ryu controller to prioritize traffic based on different service 

requirements. With MPLS, the Ryu controller can assign different labels to packets, allowing for 

differentiated handling of traffic flows.  

The controller is located between the infrastructure layer (Data plane), which is made up of 

various network devices, and the application layer (Application plane). As a result, the controller 

is in responsibility for controlling the network's resources using the OpenFlow protocol. Based 

on the results illustrated in chapter four figure 4.12 or table 4.2 it can be concluded that the Ryu 

controller integrated with the MPLS network achieved the highest throughput, reaching in one 

switch 7,140 flows per second. In comparison, the throughput for the SDN controller varied only 

based on the number of flows set up and reached in one switch 6,850 flows per second, when 

connected without MPLS. Therefore, using the Ryu controller with MPLS resulted in an average 

throughput enhancement of 4%. 

Additionally, latency tests were performed on the controllers with different routers of connected 

switches to observe the impact of increasing workload on switches, as shown the above figure 

4.17 or table 4.3 in chapter four. The tests shown that the Ryu controller with MPLS had a 

latency of 1.123 ms, while the Ryu controller without MPLS had a latency of 1.189 ms. In 
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general, the Ryu controller with MPLS exhibited an average latency improvement of 5% 

compared to the Ryu controller without MPLS. 

Consequently, the implementation of the Ryu controller with MPLS led to an average 

enhancement of 4% in throughput and 5% reduction in latency. These findings indicate that the 

proposed mechanism successfully improved throughput and reduced latency when compared to 

without MPLS integration or normal SDN. 

5.2 Future Works 

This research successfully integrated and executed an MPLS networks to increase the performance 

of the Ryu controller. Moreover, with this methodology significantly optimized the controller's 

functionality. Futures works will aim at considering: 

 We conducted our experiments on virtual machines, which limited the available resources 

for running applications, impacting our experimental outcomes. Therefore, we suggest 

transitioning to real machines. 

 We have evaluated and analysis the performance metrics using latency and throughput, 

we suggest evaluated and analysis the performance of the RYU controller using resource 

utilization, fault tolerance, and bandwidth usage etc. 

 

 

 

  



59 | P a g e  

 

References  

[1]     minike  kpovi,  .,  .  .  debayo, and  .  .  sisanwo.  Introduction to Software 

Defined  etworks (SD ). ." International Journal of Applied Information Systems (2016): 

10-14 .https://doi.org/10.5120/ijais2016451623 

 [2]   Al Bowarab, M. H., Zakaria, N. A., & Zainal Abidin, Z. (2019). Load balancing algorithms 

in software defined network. International Journal of Recent Technology and Engineering, 

7(6), 686–693.  

[3]   Ali, S., Alvi, M. K., Faizullah, S., Khan, M. A., Alshanqiti, A., & Khan, I. (2020). Detecting 

DDoS attack on SDN Due to vulnerabilities in OpenFlow. 2019 International Conference 

on Advances in the Emerging Computing Technologies, AECT 2019. 

https://doi.org/10.1109/AECT47998.2020.9194211 

[4]   Alraawi, Abdulmaged Ali M., and Sami Abbas Nagar Adam. "Performance evaluation of 

controller based sdn network over non-controller based network in data center network." 

In 2020 International Conference on Computer, Control, Electrical, and Electronics 

Engineering (ICCCEEE), pp. 1-4. IEEE, 2021 

[5]   A sadollahi, Saleh, Bhargavi Goswami, Ahmad Sohaib Raoufy, and Hedmilson Guimaraes 

Jose Domingos. "Scalability of software defined network on floodlight controller using 

OFNet." In 2017 International Conference on Electrical, Electronics, Communication, 

Computer, and Optimization Techniques (ICEECCOT), pp. 1-5. IEEE, 2017. 

[6]   Askar, S., & Keti, F. (2021). Performance Evaluation of Different SDN Controllers: A 

Review. 67–80. https://doi.org/10.5281/zenodo.4742771 

[7]   Belayeneh, T. (2021). Improving the performance of  of software defined Networks in multi 

metrics perspective , MSc Thesis. https://doi.org/10.1201/9780203970843-50 

[8]   Belgaum, M. R., Musa, S.,  lam, M. M., & Su’Ud, M. M. (2020).   Systematic Review of 

Load Balancing Techniques in Software-Defined Networking. IEEE Access, 8, 98612–

98636. https://doi.org/10.1109/ACCESS.2020.2995849 

[9]   Bhardwaj, S., & Panda, S. N. (2022). Performance Evaluation Using RYU SDN Controller 

in Software-Defined Networking Environment. Wireless Personal Communications, 122(1), 

701–723. https://doi.org/10.1007/s11277-021-08920-3 



60 | P a g e  

 

[10] Braun, W., & Menth, M. (2014). Software-Defined Networking Using OpenFlow:  

Protocols, Applications and Architectural Design Choices. Future Internet, 6(2), 302–336. 

https://doi.org/10.3390/fi6020302 

[11] Capdevila-Werning, R. (2018). Open Networking Foundation. SDN Architecture, 1, 373–

380. https://doi.org/10.1002/9781119154242.ch42 

[12] Chuang, P. J., & Chen, H. J. (2018). Efficient load balancing in software defined networks. 

Proceedings of the 2017 IEEE International Conference on Information, Communication 

and Engineering: Information and Innovation for Modern Technology, ICICE 2017, 12, 

526–528. https://doi.org/10.1109/ICICE.2017.8478924 

[13] Stallings, W. (2015). Foundations of modern networking: SDN, NFV, QoE, IoT, and Cloud. 

Addison-Wesley Professional.  

[14] Liyanage, M., Gurtov, A., & Ylianttila, M. (Eds.). (2015). Software defined mobile 

networks (SDMN): beyond LTE network architecture. John Wiley & Sons.  

[15] Erel, M., Teoman, E., Özçevik, Y., Seçinti, G., & Canberk, B. (2016). Scalability analysis 

and flow admission control in mininet-based SDN environment. 2015 IEEE Conference on 

Network Function Virtualization and Software Defined Network, NFV-SDN 2015, 18–19. 

https://doi.org/10.1109/NFV-SDN.2015.7387396 

[16] Erickson, D. (2013). The Beacon OpenFlow controller. HotSDN 2013 - Proceedings of the 

2013 ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking, 13–18. 

https://doi.org/10.1145/2491185.2491189 

[17] Fernandez, C., & Muñoz, J. L. (2015). Software Defined Networking (SDN) with 

OpenFlow 1.3, Open vSwitch and Ryu. 11–181. 

https://upcommons.upc.edu/bitstream/handle/2117/ 77684/sdn-book.pdf.zip 

[18] Islam, M. T., Islam, N., & Refat, M. Al. (2020). Node to Node Performance Evaluation 

through RYU SDN Controller. Wireless Personal Communications, 112(1), 555–570. 

https://doi.org/10.1007/s11277-020-07060-4 

[19] Lara, A., Kolasani, A., & Ramamurthy, B. (2013). White-Energy-Cultural-Evolution.pdf. 1–

20.  

[20] Latif, Z., Sharif, K., Li, F., Karim, M. M., Biswas, S., & Wang, Y. (2020). A comprehensive 

survey of interface protocols for software defined networks. Journal of Network and 



61 | P a g e  

 

Computer Applications, 156, 102563. https://doi.org/10.1016/j.jnca.2020.102563 

[21] Li, X., Mhamdi, L., & Hamdi, M. (2007). High-performance Packet Switching  rchitectures. 

In High-performance Packet Switching Architectures (Issue January 2016). 

https://doi.org/10.1007/1-84628-274-8 

[22] Li, Y., Guo, X., Pang, X., Peng, B., Li, X., & Zhang, P. (2020). Performance Analysis of 

Floodlight and Ryu SDN Controllers under Mininet Simulator. 2020 IEEE/CIC 

International Conference on Communications in China, ICCC Workshops 2020, 85–90. 

https://doi.org/10.1109/ICCCWorkshops49972.2020.9209935 

[23] Mamushiane, L., Lysko, A., & Dlamini, S. (2018). A comparative evaluation of the 

performance of popular SDN controllers. IFIP Wireless Days, 2018-April, 54–59. 

https://doi.org/10.1109/WD.2018.8361694 

[24] Mitiku, K. (2022). Improving the Performance of Software-Defined Network Load Balancer 

Using Open Flow Based Multi-Controller Topology.  

[25] Mittal, S. (2018). Performance Evaluation of Openflow SDN Controllers. In Advances in 

Intelligent Systems and Computing (Vol. 736). Springer International Publishing. 

https://doi.org/10.1007/978-3-319-76348-4_87 

[26] Nunes, B. A. A., Mendonca, M., Nguyen, X. N., Obraczka, K., & Turletti, T. (2014). A 

survey of software-defined networking: Past, present, and future of programmable 

networks. IEEE Communications Surveys and Tutorials, 16(3), 1617–1634. 

https://doi.org/10.1109/SURV.2014.012214.00180 

[27] Petros, B. (2019). Performance Enhancement of Floodlight Software Defined Networking 

Controller using Workload Adaptive Packet Batching. MSc Thesis.  

[28] Shah, S. A., Faiz, J., Farooq, M., Shafi, A., & Mehdi, S. A. (2013). An architectural 

evaluation of SDN controllers. IEEE International Conference on Communications, 1, 

3504–3508. https://doi.org/10.1109/ICC.2013.6655093 

[29] Talavera, M. (2014). Load balancing control of a server network cluster. July.  

[30] Xue, H., Kim, K. T., & Youn, H. Y. (2019). Dynamic load balancing of software-defined 

networking based on genetic-ant colony optimization. Sensors (Switzerland), 19(2). 

https://doi.org/10.3390/s19020311 



62 | P a g e  

 

[31] Zakia, U., & Ben Yedder, H. (2017). Dynamic load balancing in SDN-based data center 

networks. 2017 8th IEEE Annual Information Technology, Electronics and Mobile 

Communication Conference, IEMCON 2017, 10(03), 242–247.  

[32] Zerifi, M., Ezzouhairi, A., & Boulaalam, A. (2020). Overview on SDN and NFV based 

architectures for IoT environments: Challenges and solutions. 4th International Conference 

on Intelligent Computing in Data Sciences, ICDS 2020. 

https://doi.org/10.1109/ICDS50568.2020.9268779 

[33] Zhu, Liehuang & Karim, Md Monjurul & Sharif, Kashif & Xu, Chang & Li, Fan & Du, 

Xiaojiang & Guizani, Mohsen. (2020). SDN Controllers: A Comprehensive Analysis and 

Performance Evaluation Study. ACM Computing Surveys. 53. 1-40. 10.1145/3421764. 

[34] B. Heller. Cbench [Online]. Available:https://github.com/mininet/oflops/tree/master/cbench. 

[Accessed: Jan. 5, 2019].  

[35] Alemayehu, K. (2019, December). Analyzing Impact of Segment Routing MPLS on QoS 

Addis Ababa University, Addis Ababa, Ethiopia. 

[36] Mohammed, T. M., Behzad , A., Nader , M., & Luca , C. (2018). SDN-Based Resource 

       Allocation in MPLS Networks: concurrency and computation practice and experience (pp.  

1-11). 2018 John Wiley & Sons, Ltd. 

[37] Bellessa, J. (2015). Implementing MPLS with Label Switching in Software-Defined 

Networks University of Illinois, Urbana, Illinois, USA. 

[38] Albu-Salih, A. T. (2022). Performance evaluation of ryu controller in software defined    

networks. Journal of al-qadisiyah for computer science and mathematics, 14(1), Page-1. 

[39] Zhang, Y., Cui, L., Wang, W., & Zhang, Y. (2017). A survey on software defined networking with 

multiple controllers. Journal of Network and Computer Applications, 103, 101-118. 

[40] John, B (2015). Implementing MPLS with Label Switching In Software-Defined Networks. Thesis 

paper University of Illinois at Urbana-Champaign. 

[41] Enno Rey (2016, June 1) MPLS and VPLS security [On-line].Available 

https://docplayer.net/2887672-Mpls-and-vpls-security.html 

[42] E., Systems, O., Edition, S., & Communications, B. D. (2011). Foundations of Modern   networkin 

SDN, NFV, QoE, IoT, and Cloud. In Network (Vol. 139, Issue 3). https://doi.org/10.1007/11935070 

 

 



63 | P a g e  

 

Appendix 

 

Figure 1: Starting Web topology 

Figure 2: Topology Web access Ryu controller 

 

Figure 3:  Starting Ryu Controller 

from ryu.base import app_manager 

from ryu.controller import ofp_event 

from ryu.controller.handler import MAIN_DISPATCHER, set_ev_cls 

from ryu.ofproto import ofproto_v1_3 

from ryu.lib.packet import packet, ethernet, mpls 

class MPLSHandler(app_manager.RyuApp): 
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    def __init__(self, *args, **kwargs): 

        super(MPLSHandler, self).__init__(*args, **kwargs) 

        self.waiting_queue = { 

}   

    @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER) 

    def packet_in_handler(self, ev): 

        msg = ev.msg 

        datapath = msg.datapath 

        pkt = packet.Packet(msg.data) 

        eth = pkt.get_protocol(ethernet.ethernet) 

      if eth.ethertype == ethernet.ETH_TYPE_MPLS: 

            mpls_pkt = pkt.get_protocol(mpls.mpls) 

            if mpls_pkt: 

                label = mpls_pkt.label 

                self.handle_mpls_packet(label, pkt) 

    def handle_mpls_packet(self, label, pkt): 

        if self.waiting_queue: 

            # Check if there are packets waiting 

            waiting_label = next(iter(self.waiting_queue)) 

            if label1> waiting_label: 

                # Forward label1 to the destination 

                self.forward_packet(pkt, f"Forwarding label {label} to the destination") 

                # Add label2 to waiting 

                self.waiting_queue[label] = pkt 

                return 

            else: 

                # Forward label2 to the destination 

                self.forward_packet(self.waiting_queue[waiting_label], f"Forwarding label 

{waiting_label} to the destination")                 

# Clear waiting queue 

                self.waiting_queue = {} 
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            self.forward_packet(pkt, f"No packets waiting. Forwarding label {label} to the 

destination") 

          def forward_packet(self, pkt, action): 

        # This function simulates forwarding the packet 

        print(action) 

        # Implement the actual forwarding logic here     

def main(): 

    app_manager.instantiate(MPLSHandler) 

} 

} 

 

 MPLS network Configuration   

==================================== 

P#show running-config 

Building configuration... 

Current configuration : 1787 bytes 

! 

version 12.4 

service timestamps debug datetime msec 

service timestamps log datetime msec 

no service password-encryption 

 

hostname P 

! 

boot-start-marker 

boot-end-marker 

! 

! 

no aaa new-model 

memory-size iomem 5 

no ip icmp rate-limit unreachable 

ip cef 

! 

! 

! 

! 
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no ip domain lookup 

!         

! 

! 

 

! 

! 

! 

ip tcp synwait-time 5 

! 

! 

! 

interface Loopback0 

 ip address 3.3.3.3 255.255.255.255 

! 

interface FastEthernet0/0 

 ip address 192.168.23.3 255.255.255.0 

 duplex auto 

 speed auto 

 mpls ip 

! 

interface FastEthernet0/1 

 ip address 192.168.34.3 255.255.255.0 

 duplex auto 

 speed auto 

 mpls ip 

! 

interface FastEthernet1/0 

! 

interface FastEthernet1/1 

 no switchport 

 ip address 192.168.20.3 255.255.255.0 

! 

interface FastEthernet1/2 

! 

interface FastEthernet1/3 

!         

interface FastEthernet1/4 

! 

interface FastEthernet1/5 

! 
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interface FastEthernet1/6 

! 

interface FastEthernet1/7 

! 

interface FastEthernet1/8 

! 

interface FastEthernet1/9 

! 

interface FastEthernet1/10 

! 

interface FastEthernet1/11 

! 

interface FastEthernet1/12 

! 

interface FastEthernet1/13 

! 

interface FastEthernet1/14 

! 

interface FastEthernet1/15 

! 

interface Vlan1 

 no ip address 

! 

router ospf 1 

 mpls ldp autoconfig 

 log-adjacency-changes 

 network 2.2.2.2 0.0.0.0 area 0 

 network 3.3.3.3 0.0.0.0 area 0 

 network 192.168.10.0 0.0.0.255 area 0 

 network 192.168.11.0 0.0.0.255 area 0 

 network 192.168.12.0 0.0.0.255 area 0 

 network 192.168.23.0 0.0.0.255 area 0 

 network 192.168.34.0 0.0.0.255 area 0 

 network 192.168.45.0 0.0.0.255 area 0 

! 

! 

! 

no ip http server 

no ip http secure-server 

! 
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no cdp log mismatch duplex 

!         

! 

! 

control-plane 

! 

! 

! 

! 

line con 0 

 exec-timeout 0 0 

 privilege level 15 

 logging synchronous 

line aux 0 

 exec-timeout 0 0 

 privilege level 15 

 logging synchronous 

line vty 0 4 

 login 

!         

! 

end 

 

 

 

  

 


